Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Table of Contents

- 1. General
- 2. Synthetic Procedures of 2 and 3
- 3. Crystallographic Data of **3**
- 4. ^{1}H and ^{13}C NMR of 2
- 5. ¹H, ¹³C, 2D NOESY spectra and HRMS of **3**
- 6. ¹H NMR for **3** in CDCl₃, CD₂Cl₂ and CDCl₃-CD₂Cl₂ (1:1, v/v)
- 7. H NMR Spectra for Host-Guest Complexation of **3** and **G**
- 8. Crystal structures of **3**
- 9. Chiral HPLC Trace of **3a** and **3c**
- 10.Circular Dichroism (CD) Spectra and UV-vis spectra of 3a and 3c
- 11.DFT Calculated CD Spectra of 3a and 3c
- 12. Calculated Relative Energy
- 13.References

1. General

Unless otherwise noted, all starting materials were obtained from commercial suppliers and used without further purification. ¹H and ¹³C NMR spectra were recorded on Bruker NMR spectrometers (400 MHz, or 600 MHz) with TMS as reference. ESI Mass spectra were recorded on an Esquire 6000 spectrometer (LC/MS). Single crystal X-ray diffraction data were collected on a SMART APEX 2 X-ray diffractometer equipped with a normal focus Mo-target X-ray tube ($\lambda = 0.71073$ Å. Data reduction included absorption corrections by the multi-scan method. The structures were solved by direct methods and refined by full-matrix least-squares using SHELXS-97. All non-hydrogen atoms were refined anisotropically and hydrogen atoms were added at their geometrically ideal positions and refined isotropically. The DFT-optimized calculation was carried out with B3LYP hybrid exchange-correlation functional and DGTZVP set.^{1,2} The PCM model were used to simulate the different solution effect.³ The ECD spectroscopy simulation were using TD-DFT method at the same calculation level. These calculations were performed with the Gaussian 09 program package.⁴

2. Synthetic Procedures of 2 and 3

2a: A mixture of 2,6-dichloropyrazine (1.04 g, 7.00 mmol), Cs₂CO₃(2.28 g, 7.00 mmol) and 1,4-butanediol (0.18 ml, 2 mmol) in DMSO (100 mL) was stirred at 35 °C for 24 h, poured into an aqueous HCl solution (1.0 M, 100 mL) and extracted with ethyl acetate (3 × 50 mL). The organic phases were combined, washed with brine, and concentrated under reduced pressure. The resulting residue was subjected to silica gel column chromatography (EtOAc/petroleum ether = 1:100) to afford 2a as a white solid (yield 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 2H), 8.11 (s, 2H), 4.40 (t, *J* = 5.2 Hz, 4H), 2.01-1.93 (4H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 145.4, 135.2, 133.1, 66.7, 25.3. HRMS *m/z* [M + H]⁺ calcd for C₁₂H₁₃Cl₂N₄O₂ 315.0410, found 315.0405.

2b: A white solid (yield 59%). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 2H), 8.10 (s, 2H), 4.33 (t, J = 6.6 Hz, 4H), 1.85-1.78 (m, 4H), 1.55-1.49 (4H); ¹³C NMR (100 MHz,

CDCl₃,) δ 157.9, 143.9, 133.4, 131.6, 65.6, 27.0, 24.1. HRMS *m*/*z* [M + H]⁺ calcd for C₁₄H₁₇Cl₂N₄O₂ 343.0723, found 343.0719.

2c: A white solid (yield: 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 2H), 8.10 (s, 2H), 4.31 (t, *J* = 6.6 Hz, 4H), 1.82-1.75 (4H), 1.49-1.36 (8H); ¹³C NMR (100MHz, CDCl₃) δ 159.5 145.4, 134.9, 133.2, 67.3, 29.2, 28.6, 25.8. HRMS *m*/*z* [M + H]⁺ calcd for C₁₆H₂₁Cl₂N₄O₂ 371.1036, found 371.1032.

2d: A white solid (yield 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 2H), 8.10 (s, 2H), 4.31 (t, *J* = 6.7 Hz, 4H), 1.81-1.74 (4H), 1.45-1.32 (12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 145.4, 134.9, 133.2, 67.4, 29.4, 29.3, 28.6, 25.9. HRMS *m*/*z* [M + H]⁺ calcd for C₁₈H₂₅Cl₂N₄O₂ 399.1349, found 399.1343.

Synthesis of 3.

3a: A mixture of **1** (361.0 mg, 0.5 mmol), Cs₂CO₃(652.0 mg, 2.0 mmol) and **2a** (189 mg, 0.6 mmol) in DMSO (50 mL) was heated to 50 °C under nitrogen for 2 h, poured into an aqueous HCl solution (1.0 M, 50 mL), and extracted with EtOAc (3×25 mL). The organic phases were combined, washed with brine, and concentrated under reduced pressure. The resulting residue was subjected to silica gel column chromatography (EtOAc/petroleum ether = 1:5) to afford **3a** as a white solid (yield 34%). ¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 2H), 7.69 (s, 2H), 7.26 (s, 2H), 7.05 (s, 2H), 6.81 (s, 2H), 6.73 (s, 2H), 5.76 (s, 2H), 3.90-3.83 (16H), 3.74-3.68 (6H), 3.39 (s, 6H), 3.08 (s, 6H), 2.48-2.44 (2H), 2.02-1.95 (2H), -1.22 (m, 2H), -1.80 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 158.3, 150.9, 150.4, 150.0, 149.9, 147.0, 132.1, 129.2, 128.4, 128.4, 126.2, 125.9, 125.8, 122.9, 113.8, 113.5, 113.1, 113.0, 67.6, 55.4, 55.0, 54.9, 54.4, 30.0, 29.5, 28.2, 19.9. HRMS *m/z* [M + H]⁺ calcd for C₅₅H₅₇N₄O₁₂ 965.3967, found 965.3963.

3b: A white solid (yield 38%). ¹H NMR (600 MHz, CDCl₃) δ 8.10 (s, 2H), 7.86 (s, 2H), 7.11 (s, 2H), 6.95 (s, 2H), 6.87 (s, 2H), 6.77 (s, 2H), 6.15 (s, 2H), 3.87-3.77 (18H), 3.74-3.70 (4H), 3.55 (s, 6H), 3.37-3.31(2H), 3.26-3.20 (2H), 3.04 (s, 6H), 0.03 (m, 2H), -0.15 (m, 2H), -2.12 (m, 2H), -2.24 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 158.5, 157.7, 150.6, 150.5, 150.3, 150.1, 146.9, 132.1, 128.3, 128.0, 127.9, 127.2, 124.3, 123.7, 114.2, 113.5, 113.3, 112.4, 67.7, 55.5, 55.3, 55.2, 53.9, 29.3, 29.2, 29.0, 27.1, 21.6. HRMS *m/z* [M + H]⁺ calcd for C₅₇H₆₁N₄O₁₂, 993.4280, found 993.4278.

3c: A white solid (yield 41%). ¹H NMR (600 MHz, CDCl₃) δ 8.07 (s, 2H), 7.87 (s, 2H), 7.03 (s, 2H), 6.95 (s, 2H), 6.90 (s, 2H), 6.74 (s, 2H), 6.32 (s, 2H), 3.83-3.78 (16H), 3.75-3.69 (6H), 3.63-3.58 (2H), 3.48 (s, 6H), 3.41 (s, 6H), 3.32-3.27 (m, 2H), 0.25-0.12 (m, 6H), -0.42 (m, 2H), -0.59 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 159.4, 157.5, 150.5, 150.3, 150.1, 148.3, 130.5, 128.8, 128.2, 128.1, 127.7, 126.3, 125.4, 120.7, 113.7, 113.6, 113.2, 113.1, 65.9, 55.4, 55.1, 55.0, 55.0, 29.5, 29.3, 28.7, 28.6, 27.9, 23.8. HRMS *m*/*z* [M + H]⁺ calcd for C₅₉H₆₅N₄O₁₂ 1021.4593, found 1021.4594.

3d: A white solid (yield 32%). ¹H NMR (600 MHz, CDCl₃) δ 7.86 (s, 2H), 7.83 (s, 2H), 7.19 (s, 2H), 6.95 (s, 2H), 6.90 (s, 2H), 6.80 (s, 2H), 6.26 (s, 2H), 3.87 – 3.74 (20H), 3.67-3.62 (2H), 3.62-3.58 (2H), 3.53 (s, 6H), 3.51 (s, 6H), 3.33-3.26 (2H), 0.91-0.83 (2H), 0.71-0.62 (2H), 0.50-0.40 (2H), 0.33-0.16 (6H), (-0.30)-(-0.54) (4H); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 158.9, 150.4, 150.3, 150.1, 150.1, 148.2, 132.4, 129.0, 128.3, 128.0, 127.4, 125.8, 124.2, 123.0, 113.8, 113.2, 113.1, 112.9, 66.4, 55.2, 55.2, 55.0, 54.7, 30.6, 29.8, 29.7, 28.8, 28.7, 25.8, 23.4. HRMS *m/z* [M + H]⁺ calcd for C₆₁H₆₉N₄O₁₂ 1049.4907, found 1049.4906.

3. Crystallographic Data of 3

3a: $C_{55}H_{56}N_4O_{12}$, $M_r = 965.04$, T = 296(2) K, Monoclinic, space group P2(1)/c, a = 21.1000(11), b = 23.1109(12), c = 23.2010(12) Å, $\alpha = \gamma = 90^\circ$, $\beta = 112.784(2)^\circ$, V = 10430.9(9) Å³, Z = 8, ρ calcd. = 1.229 g/cm³, crystal size = $0.48 \times 0.42 \times 0.18$ mm, $\mu = 0.087$ mm⁻¹, reflections collected 121362, unique reflections 18375, data/restraints/parameters 18375/1/1279, GOF on F^2 1.069, R_{int} for independent data 0.0558, final $R_1 = 0.0532$, $wR_2 = 0.1427$, R indices (all data): $R_1 = 0.0962$, $wR_2 = 0.1586$, largest diff. peak and hole: 0.277 and -0.175 e/Å³.

3b: $C_{57}H_{60}N_4O_{12}, M_r = 993.09, T = 296(2)$ K, triclinic, space group *P*-1, *a* = 12.3460(5), *b* = 19.5371(7), *c* = 22.8661(9) Å, *a* = 106.5610(10)°, *β*= 102.4580(10)°, *γ* = 97.1470(10)°, V = 5059.3(3) Å³, Z = 4, ρ calcd. = 1.304 g/cm³, crystal size = 0.41×0.40×0.19 mm, $\mu = 0.092$ mm⁻¹, reflections collected 59757, unique reflections 17744, data/restraints/parameters 17744/8/1315, GOF on F^2 1.029, R_{int} for independent data 0.0452, final $R_1 = 0.0580$, $wR_2 = 0.1453$, R indices (all data): $R_1 = 0.1031$, $wR_2 = 0.1776$, largest diff. peak and hole: 0.764 and -0.470 e/Å³.

G ⊂ **3b**: $C_{63}H_{68}N_6O_{12}$, $M_r = 1101.23$, T = 293(2) K, Orthorhombic, space group *Pbca*, a = 20.9082(3), b = 23.7424(4), c = 23.9838(4) Å, $a = \beta = \gamma = 90^\circ$, V = 11905.8(3) Å³, Z = 8, ρ calcd. = 1.229 g/cm³, crystal size = 0.48×0.42×0.36 mm, $\mu = 0.698$ mm⁻¹, reflections collected 75376, unique reflections 11202, data/restraints/parameters 11202/1410/731, GOF on F^2 1.436, R_{int} for independent data 0.0442, final $R_1 = 0.1012$, $wR_2 = 0.3309$, R indices (all data): $R_1 = 0.1236$, $wR_2 = 0.3593$, largest diff. peak and hole: 1.135 and - 0.925 e/Å³.

3c: $C_{59}H_{64}N_4O_{12}$, $M_r = 1021.14$, T = 293(2) K, monoclinic, space group $P \ 1 \ 21/c \ 1$, a = 11.54060(10), b = 19.4516(2), c = 23.9649(2) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 101.4550(10)^{\circ}$, V = 5272.56(9) Å³, Z = 4, ρ calcd. = 1.286 g/cm³, crystal size = $0.48 \times 0.41 \times 0.32$ mm, $\mu = 0.735$ mm⁻¹, reflections collected 143580, unique reflections 10739, data/restraints/parameters 10739/0/685, GOF on $F^2 \ 1.042$, R_{int} for independent data 0.0591, final $R_1 = 0.0436$, $wR_2 = 0.1176$, R indices (all data): $R_1 = 0.0522$, $wR_2 = 0.1226$, largest diff. peak and hole: 0.220 and -0.174 e/Å³.

DCM \subset 3c: C₆₁H₆₈Cl₄N₄O₁₂, M_r = 1190.99, T =296(2) K, triclinic, space group *P*-1, *a* = 11.0365(7), *b* =16.7007(10), *c* = 17.2058(10) Å, α = 93.872(2)°, β = 92.106(2)°, γ = 108.051(2)°, V =3002.8(3)Å³, Z = 2, ρ calcd. = 1.317 g/cm³, crystal size = 0.36×0.32×0.28 mm, μ = 0.261 mm⁻¹, reflections collected 35309, unique reflections 10513, data/restraints/parameters 10513/0/730, GOF on *F*² 1.018, *R*_{int} for independent data 0.0403, final *R*₁ = 0.0896, *wR*₂ = 0.2567, *R* indices (all data): *R*₁ = 0.1276, *wR*₂ = 0.2999, largest diff. peak and hole: 0.767 and -0.885 e/Å³.

3d: $C_{61}H_{68}N_4O_{12}$, $M_r = 1049.19$, T = 296(2) K, monoclinic, space group P2(1)/n, a = 11.9894(6), b = 21.2887(10), c = 21.7173(11) Å, $\alpha = \gamma = 90^\circ$, $\beta = 93.300(2)^\circ$, V = 5533.9(5) Å³, Z = 4, ρ calcd. = 1.259 g/cm³, crystal size = $0.46 \times 0.38 \times 0.26$ mm, $\mu = 0.088$ mm⁻¹, reflections collected 64552, unique reflections 9755, data/restraints/parameters 9755/0/694, GOF on F^2 0.995, R_{int} for independent data 0.1194, final $R_1 = 0.0521$, $wR_2 = 0.1071$, R indices (all data): $R_1 = 0.1511$, $wR_2 = 0.1492$, largest diff. peak and hole: 0.149 and -0.203 e/Å³.

4. ¹H NMR and ¹³C NMR of 2

Fig. S1 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 2a.

Fig. S2 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 2a.

Fig. S3 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 2b.

Fig. S4 13 C NMR spectrum (100 MHz, CDCl₃) of compound 2b.

Fig. S5 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 2c.

Fig. S6 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 2c.

Fig. S7 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 2d.

Fig. S8 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 2d.

5. ¹H NMR, ¹³C NMR, 2D NOESY spectra and HRMS of 3

Fig. S9 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 3a.

Fig. S10¹³C NMR spectrum (150 MHz, CDCl₃) of compound 3a.

Fig. S11 ESI HRMS spectrum of compound 3a.

Fig. S12 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 3b.

Fig. S13 ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 3b.

Fig. S14 ESI HRMS spectrum of compound 3b.

Fig. S15 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 3c.

Fig. S16¹³C NMR spectrum (150 MHz, CDCl₃) of compound 3c.

Fig. S17 ESI HRMS spectrum of compound 3c.

Fig. S18 ¹H NMR spectrum (600 MHz, CDCl₃) of compound 3d.

Fig. S19¹³C NMR spectrum (150 MHz, CDCl₃) of compound 3d.

Fig. S20 HRMS spectrum of compound 3d.

Fig. S21 2D NOESY spectrum of 3a in CDCl₃ (600 MHz, 298 K).

Fig. S22 2D NOESY spectrum of 3b in CDCl₃ (600 MHz, 298 K).

Fig. S23 2D NOESY spectrum of 3c in CDCl₃ (600 MHz, 298 K).

Fig. S24 2D NOESY spectrum of 3c with access G in CDCl₃ (600 MHz, 298 K).

Fig. S25 2D NOESY spectrum of 3d in CDCl₃ (600 MHz, 298 K).

6. ¹H NMR for 3 in CDCl₃, CD₂Cl₂ and CDCl₃-CD₂Cl₂ (1:1, v/v)

Fig. S26 ¹H NMR spectra (600 MHz) of compound **3a** in CDCl₃ (0.08 M) (top), CDCl₃-CD₂Cl₂ (1:1, v/v) (0.04 M)(middle), and CD₂Cl₂ (0.04 M) (bottom).

Fig. S27 ¹H NMR spectra (600 MHz) of compound **3b** in $CDCl_3$ (0.08 M) (top), $CDCl_3$ - CD_2Cl_2 (1:1, v/v) (0.04 M)(middle), and CD_2Cl_2 (0.04 M) (bottom).

Fig. S28 ¹H NMR spectra (600 MHz) of compound 3c in CDCl₃ (0.08 M) (top), CDCl₃-CD₂Cl₂ (1:1, v/v) (0.04 M)(middle), and CD₂Cl₂ (0.04 M) (bottom).

Fig. S29 ¹H NMR spectra (600 MHz) of compound 3d in $CDCl_3$ (0.08 M) (top), $CDCl_3-CD_2Cl_2$ (1:1, v/v) (0.04 M)(middle), and CD_2Cl_2 (0.04 M) (bottom).

7. ¹H NMR Spectra for Host-Guest Complexation

Fig. S30 ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of G (0.01 M) (top), 3a (0.04 M) (middle), and a mixture of 3a with excess G (0.04M) (bottom).

Fig. S31 ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of **G** (0.01 M) (top), **3b** (0.04 M) (middle), and a mixture of **3b** with excess **G** (0.04M) (bottom).

Fig. S32 ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of G (0.01 M) (top), 3c (0.04 M) (middle), and a mixture of 3c with excess G (0.04M) (bottom).

Fig. S33 ¹H NMR spectra (600 MHz, CDCl₃, 298 K) of G (0.01 M) (top), 3d (0.04 M) (middle), and a mixture of 3d with excess G (0.04M) (bottom).

8. Crystal structures of 3

Fig. S34 Crystal structures of 3a.

Fig. S35 Crystal structures of 3b.

Fig. S36 Crystal structures of $\mathbf{G} \subset \mathbf{3b}$.

Fig. S37 Crystal structures of 3c.

Fig. S38 Crystal structures of DCM \subset 3c.

Fig. S39 Crystal structures of 3d.

9. Chiral HPLC Trace of 3a and 3c

Fig. S40 Chiral-phase HPLC traces of **3a**, obtained by using a Chiralpak IA column eluted at 1 mL/min with 1:3 (v/v) THF/n-hexane (n-H), at 303 K.

Fig. S41 Chiral-phase HPLC traces of **3c**, obtained by using a Chiralpak IA column eluted at 1 mL/min with 1:3 (v/v) THF/n-hexane (n-H), at 303 K.

10. Circular Dichroism (CD) Spectra and UV-vis spectra of **3a and 3c**

Fig. S42 Circular dichroism and UV-vis spectra (20 μ M) in-*p*S-3a and in-*p*R-3a in CHCl₃ at 298 K.

Fig. S43 Circular dichroism and UV-vis spectra (20 μ M) in-*p*S-3c and in-*p*R-3c in CHCl₃ at 298 K.

Fig. S44 Circular dichroism and UV-vis spectra (13.2 μ M) in-*p*S-3a in adiponitrile at 298 K.

Fig. S45 Circular dichroism and UV-vis spectra of in-pS-3a in the solid state at 298 K.

Fig. S46 Circular dichroism and UV-vis spectra (15.7 μ M) of in-*p*S-3c in adiponitrile at 298 K.

Fig. S47 Circular dichroism and UV-vis spectra of in-pS-3c in the solid state at 298 K.

Fig. S48 CD spectra (13.2 μ M, 2mL CHCl₃, room temperature, black line) of **in**-*p*S-3**a** and its spectral changes upon addition of adiponitrile (0–1000 μ L).

Fig. S49 UV-vis spectra (13.2 μ M, 2mL CHCl₃, room temperature, black line) of **in***p***S-3a** and its spectral changes upon addition of adiponitrile (0–1000 μ L).

Fig. S50 CD spectra (15.7 μ M, 2mL CHCl₃, room temperature, black line) of **in**-*p***S**-3**c** and its spectral changes upon addition of adiponitrile (0–80 μ L).

Fig. S51 UV-vis spectra (15.7 μ M, 2mL CHCl₃, room temperature, black line) of **in***p***S-3c** and its spectral changes upon addition of adiponitrile (0–80 μ L).

11. DFT Calculated CD Spectra of 3a and 3c

Fig. S52 Calculated CD spectra of in-pS-**3a** and in-pR-**3a** at the CAM-B3LYP/DGTZVP level. Wavelengths were 30nm red-shifted.

Fig. S53 Calculated CD spectra of in-pS-**3c** and in-pR-**3c** at the CAM-B3LYP/DGTZVP level. Wavelengths were 30nm red-shifted.

12. DFT Calculation of Relative Energy Differences

Fig. S54 Calculated relative energy of in-3b and out-3b in CHCl₃.

Fig. S55 Calculated relative energy of in-3c and out-3c in CH₂Cl₂.

13. References

1. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.

2. C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs, D. A. Dixon, *J. Phys. Chem.*, 1992, **96**, 6630-36.

3. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 2005, 105, 2999-3093.

4. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, Gaussian, Inc, Wallingford CT, 2009.