Supporting Information

Synthesis of highly functionalized 1,6-dihydropyridines via Zn(OTf)2-catalysed threecomponent cascade reaction of aldimines and two alkynes (IA²-coupling)

Syeda Aaliya Shehzadi^a, Christophe M. L. Vande Velde, ^b Aamer Saeed^c and Kourosch Abbaspour Tehrania*

^aOrganic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium

^cDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320 Pakistan

Fax: (+32)32653233; phone: (+32)32653226; e-mail: kourosch.abbaspourtehrani@uantwerpen.be

Table of Contents

1.

- General remarks and instrumentation 2. Extra optimization experiments for the synthesis of dihydropyridine monocarboxylate
- 2
- 3 3. General experimental procedure for the synthesis of 1,6-dihydropyridines
- 4. Synthesis and characterization data of 1,6-dihydropyridines 3
- 5. **60** References

1

^bAdvanced Reactor Technology, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.

1. General remarks and instrumentation

All reactions were carried out under air, in an oven dried 10 mL microwave vial. Solvents used in extraction and purification were distilled prior to use. All acetylenes, pivaldehyde, isobutyraldehyde, n-butyraldehyde, benzaldehyde, primary amines, DMAD, methyl propiolate, ethyl 2-butynoate and ethyl phenylpropiolate were purchased from commercial suppliers (Sigma-Aldrich, Acros Organics, Alfa-Aesar, and TCI. Imines 3a-h were prepared using a previously reported method. The final products were purified by flash column chromatography using silica gel pore 60 Å, 40-63 µm mesh size, as an adsorbent while the procedure included the subsequent evaporation of solvents in vacuo. For thin layer chromatography (TLC) silica gel plates with fluorescence indicator 254 nm were used and compounds were visualized by irradiation with UV light. ¹H (¹³C) NMR spectra were recorded at 400 (100) MHz on a Bruker type spectrometer using CDCl₃ as solvent with TMS as the internal standard for both ¹H and ¹³C NMR. Assignments were made either on the basis of unambiguous chemical shifts, coupling patterns or 2D NMR experiments (COSY, HMQC and HMBC). Coupling constants (J values) are given in hertz (Hz), chemical shifts are given in parts per million (ppm). For high resolution mass spectrometric analysis (HRMS), samples were dissolved in CH₃OH and diluted to a concentration of approximately 10⁻⁵ mol/L and measurements were performed on a microTOF spectrometer equipped with orthogonal electrospray interface (ESI). The parent ions [M+H⁺] are quoted.

2. Extra optimization experiments for the synthesis of dihydropyridine monocarboxylate

Table S1. Optimization of the synthesis of dihydropyridine monocarboxylate (10a).

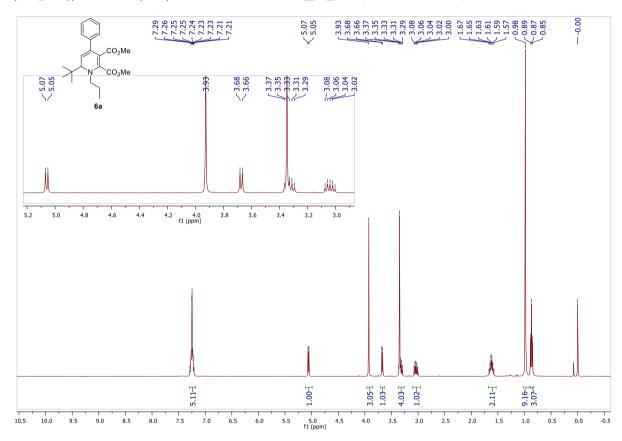
Entry	Amount	<i>T/t</i> (°C/h)	Solvent	Yield 10a
	of 5b		(1 mL)	(%) ^a
	(equiv)			
1	1.0	100/18	PhMe/DMF (7/3)	45
2	1.5	100/24	PhMe/DMF (7/3)	50
3	1.5	110/24	PhMe/DMF (7/3)	52
4	1.5	110/24	PhMe/DMF (1/1)	78
5	1.5	110/24	DMF	89
6	1.1	110/24	PhMe	35^b

^a Crude yields. ^b xx% propargylamine **7** was detected

3. General experimental procedure for the synthesis of 1,6-dihydropyridines

In an oven dried 10 mL vial containing a stirring bar, the appropriate imine (3) (0.5 mmol), acetylene (4) (0.5 mmol, 1 equiv), dimethyl 2-butynedioate (DMAD) (5a) (71.06 mg 0.5 mmol) and Zn(OTf)₂ (0.018 g, 0.050 mmol, 10 mol %) were added successively and the vial was sealed under air. Then, 1 mL of toluene/DMF (7/3) was added and the reaction mixture was stirred at 100 °C for 18-24 h. Afterwards the reaction mixture was diluted with CH₂Cl₂ (10 mL) washed with 0.5 N NaOH (10 mL). The aqueous phase was extracted with CH₂Cl₂, dried over anhydrous MgSO₄ and the solvent was evaporated under reduced pressure. The crude reaction mixture was purified over silica gel by column chromatography using EtOAc:*n*-Heptane (10:90) as eluent.

4. Synthesis and characterization data of dihydropyridines


Dimethyl 6-(*tert*-butyl)-4-phenyl-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6a) sas-2-116pure

$$CO_2Me$$
 N
 CO_2Me
 $6a$

According to the general procedure N-(2,2-dimethylpropylidene)propan-

1-amine (**3a**) (0.5 mmol, 0.071 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted in 1 mL of of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography over silica gel afforded 176 mg (95%) of dimethyl 6-(*tert*-butyl)-4-phenyl-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6a**) as a viscous yellow oil. $R_f = 0.55$ (Heptane/EtOAc: 90/10). This reaction could be scaled up using 5 mmol of the starting imine **3a**. In this case a yield of 89% was obtained.

¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.22 (m, 5H, aromatic), 5.06 (d, J = 6.9 Hz, 1H, HC=C), 3.93 (s, 3H, OCH₃), 3.67 (d, J = 6.9 Hz, 1H, HCHC=C), 3.37 – 3.28 (m, 4H, overlapped signal OCH₃ and NC(H)H), 3.07 – 3.00 (m, 1H, NC(H)H), 1.65 – 1.59 (m, 2H, CH₂CH₃), 0.98 (s, 9H, C(CH₃)₃), 0.87 (t, J = 7.5 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.5 (NC(CO₂CH₃)=CCO₂CH₃), 166.1 (NC(CO₂CH₃)=CCO₂CH₃), 150.3 (NC(CO₂CH₃)=CCO₂CH₃), 141.5 (NC(CO₂CH₃)=CCO₂CH₃), 138.0 (C_{ipso}), 127.5, 127.4, 126.7 (C_{para}), 112.8 (HCHC=C), 103.8 (HCHC=C), 67.3 (HCHC=C), 56.9 (NCH₂), 52.8 (OCH₃ close to N), 50.6 (OCH₃), 40.7 (C(CH₃)₃), 25.2 (C(CH₃)₃), 23.7 (NCH₂CH₂), 10.9 (CH₂CH₃). HRMS (ESI) m/z calculated for C₂₂H₂₉NO₄+H⁺: 372.2175; found 372.2175.

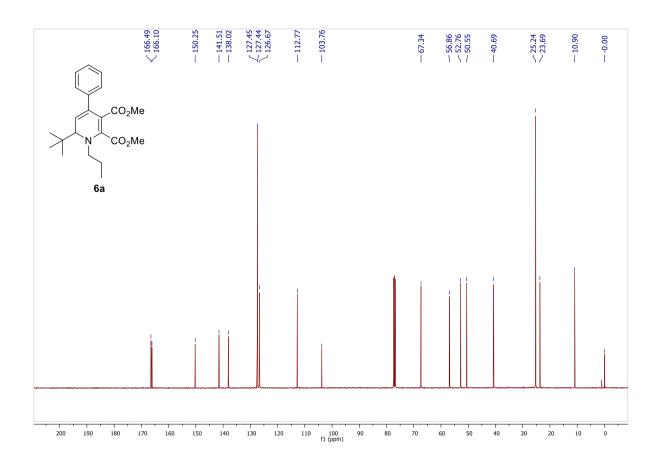
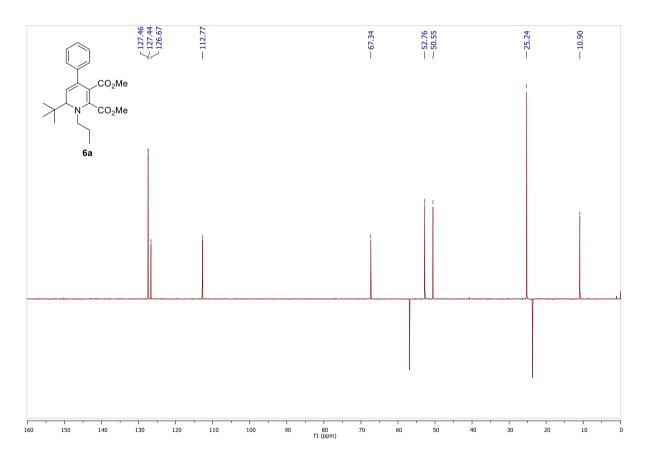



Figure 1. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **6a** in CDCl₃.

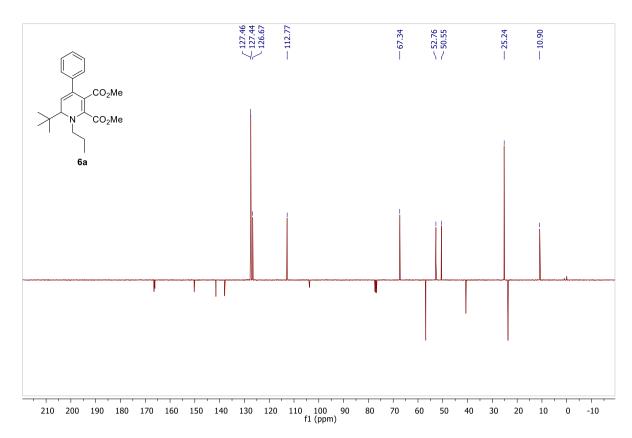


Figure 2. ¹³C-DEPT 135 and ¹³C-APT spectra of **6a** in CDCl₃.

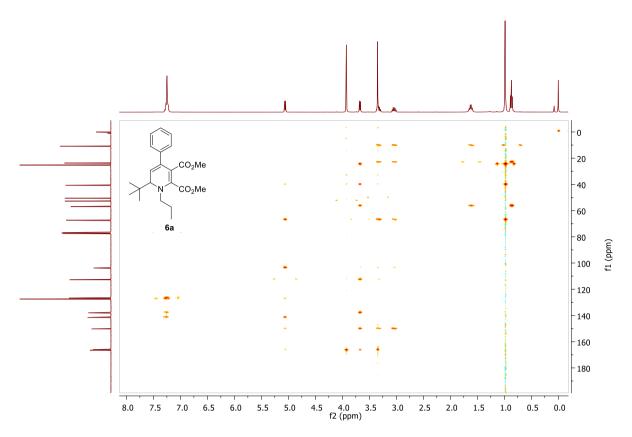


Figure 3. HMQC and HMBC spectra of 6a in CDCl₃.

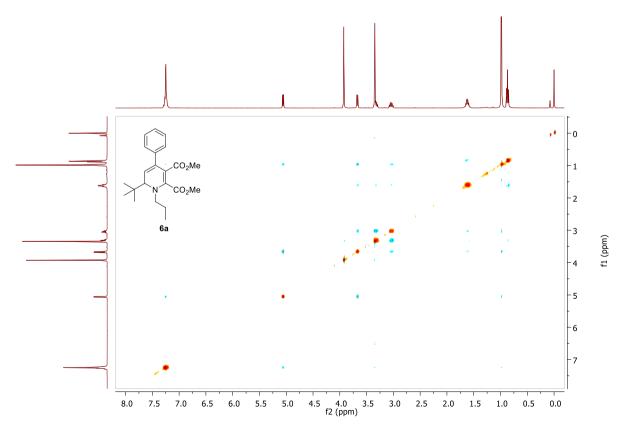
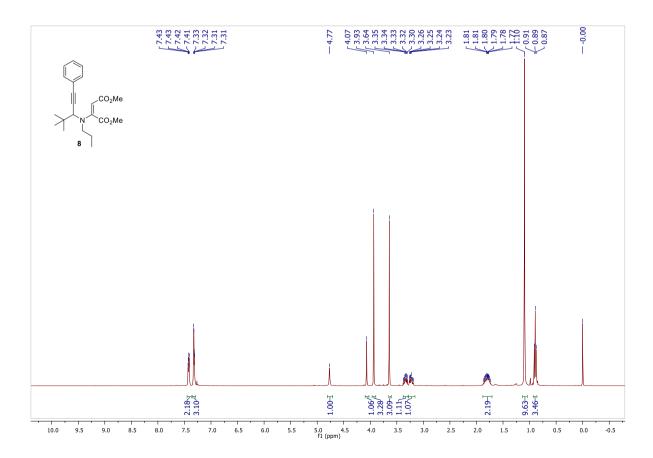



Figure 4. NOESY spectrum of 6a in CDCl₃.

Dimethyl 2-((4,4-dimethyl-1-phenylpent-1-yn-3-yl)(propyl)amino)maleate (8) SAS-2-117Pure

CO₂Me
N CO₂Me

R_f = 0.50 (Heptane/EtOAc: 90/10). ¹**H NMR** (400 MHz, CDCl₃): δ 7.43 – 7.41 (m, 2H, aromatic), 7.33 – 7.31 (m, 3H, aromatic), 4.77 (s, 1H, C=CHCO₂Me), 4.07 (s, 1H, NCH), 3.93 (s, 3H, C=CHCO₂CH₃), 3.64 (s, 3H, HC=CCO₂CH₃), 3.38 – 3.32 (m, 1H, NC(H)H), 3.27 – 3.16 (m, 1H, NC(H)H), 1.88 – 1.71 (m, 2H, NCH₂CH₂), 1.10 (s, 9H, C(CH₃)₃), 0.89 (t, J = 7.5 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 167.9 (C=O), 166.0 (C=CHCO₂Me), 154.0 (C=CHCO₂Me), 131.6 (aromatic), 128.5 (C_{para}), 128.4 (aromatic), 122.6 (C_{ipso}), 87.9 (C=CHCO₂Me), 87.1 (C=CPh), 84.9 (C=CPh), 63.0 (NC(H)C=C), 52.9 (C=CHCO₂CH₃), 50.8 (HC=CCO₂CH₃), 49.9 (NCH₂), 38.6 (C(CH₃)₃), 27.5 (C(CH₃)₃), 19.5 (CH₂CH₃), 11.3 (CH₂CH₃). **HRMS** (ESI) m/z calculated for C₂₂H₂₉NO₄+H⁺: 372.2169; found 372.2178.

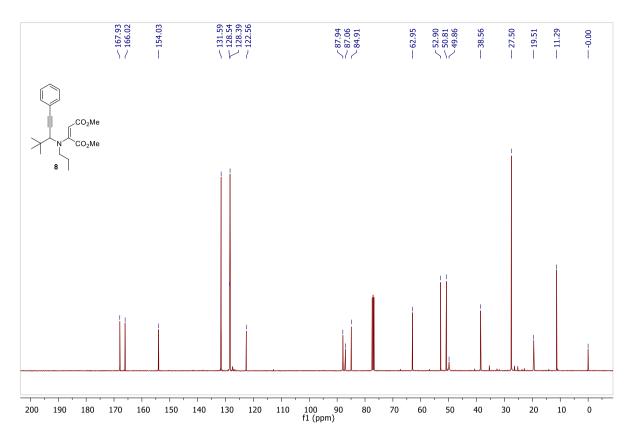
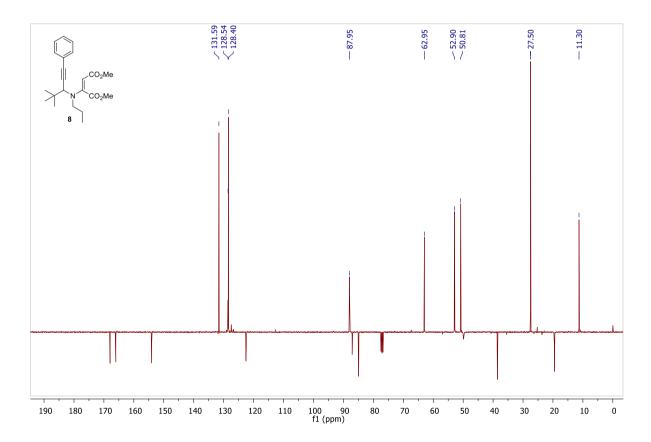



Figure 5. 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of 8 in CDCl₃.

Figure 6. ¹³C APT spectrum of **8** in CDCl₃.

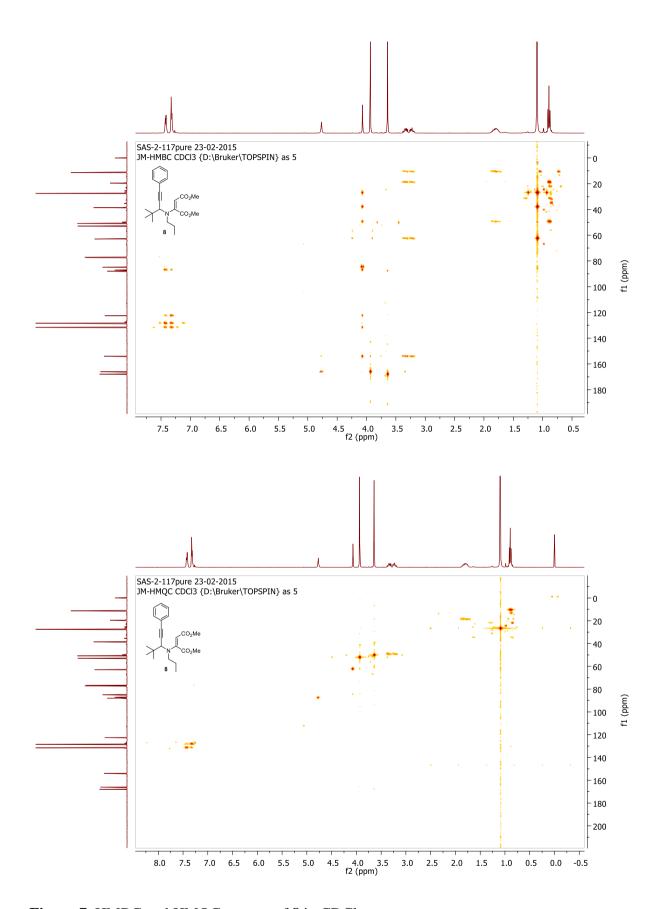
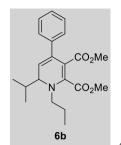
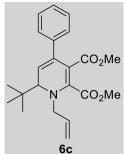



Figure 7. HMBC and HMQC spectra of 8 in CDCl₃.

$\label{lem:control} \begin{tabular}{ll} Dimethyl 6-isopropyl-4-phenyl-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6b) sass-5-21 \end{tabular}$

According to the general procedure *N*-(2-methylpropylidene)propan-1-amine (**3b**) (0.5 mmol, 0.057 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 155 mg (87%) of dimethyl 6-isopropyl-4-phenyl-1-propyl-1,6-dihydropyridine-2,3-


dicarboxylate (**6b**) as a yellow viscous oil. $R_f = 0.52$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.28 – 7.22 (m, 5H, aromatic), 5.12 (d, J = 6.7 Hz, 1H, **H**C=C), 3.94 (s, 3H, OC**H**₃), 3.60 (dd, J = 8.2, 6.8 Hz, 1H, C**H***i*-Pr), 3.36 (s, 3H, OC**H**₃), 3.29 (dt, J = 14.7, 7.5 Hz, 1H, NC(**H**)H), 3.15 – 3.08 (m, 1H, NC(H)**H**), 2.09 – 2.00 (m, 1H, **H**C(CH₃)₂), 1.64 – 1.58 (m, 2H, C**H**₂CH₃), 0.99 (d, J = 6.7 Hz, 3H, HC(C**H**₃)CH₃), 0.97 (d, J = 6.8 Hz, 3H, HC(CH₃)C**H**₃), 0.86 (t, J = 7.4 Hz, 3H, CH₂C**H**₃). ¹³C **NMR** (100 MHz, CDCl₃): δ 166.3 (C=O), 166.2 (C=O), 149.2, 141.5, 137.2, 127.5, 127.5, 126.7, 112.8, 101.2, 64.2, 55.4, 52.8, 50.5, 31.7, 23.5, 18.5, 17.4, 10.9. **HRMS** (ESI) m/z calculated for C₂₁H₂₇NO₄+H⁺: 358.2018; found 358.2024.

Figure 8. 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of **6b** in CDCl₃.

According to the general procedure *N*-(2,2-dimethylpropylidene)prop-2-

en-1-amine (**3c**) (0.5 mmol, 0.063 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 151 mg (82%) of dimethyl 1-allyl-6-(*tert*-butyl)-4-phenyl-1,6-dihydropyridine-2,3-dicarboxylate (**6c**) as yellow viscous oil, which became square shaped crystals on standing; mp = 94-96 °C. $R_f = 0.53$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.29 – 7.21 (m, 5H, aromatic), 5.79 – 5.69 (m, 1H, **H**C=CH₂), 5.22 – 5.12 (m, 2H, HC=C**H**₂), 5.06 (d, J = 6.8 Hz, 1H, **H**C=C), 4.05 – 3.99 (m, 1H, **H**CHC=C), 3.90 (s, 3H, OC**H**₃), 3.69 – 3.63 (m, 2H, NC**H**₂), 3.35 (s, 3H, OC**H**₃), 1.00 (s, 9H, C(C**H**₃)₃). ¹³**C NMR** (100 MHz, CDCl₃): δ 166.3 (C=O), 166.1 (C=O), 149.8, 141.4, 137.8, 133.4, 127.5, 127.4, 126.7, 117.0, 113.4, 104.3, 66.8, 57.3, 52.8, 50.6, 40.6, 25.3. **HRMS** (ESI) m/z calculated for C₂₂H₂₇NO₄+H⁺: 370.2013; found 370.2015.

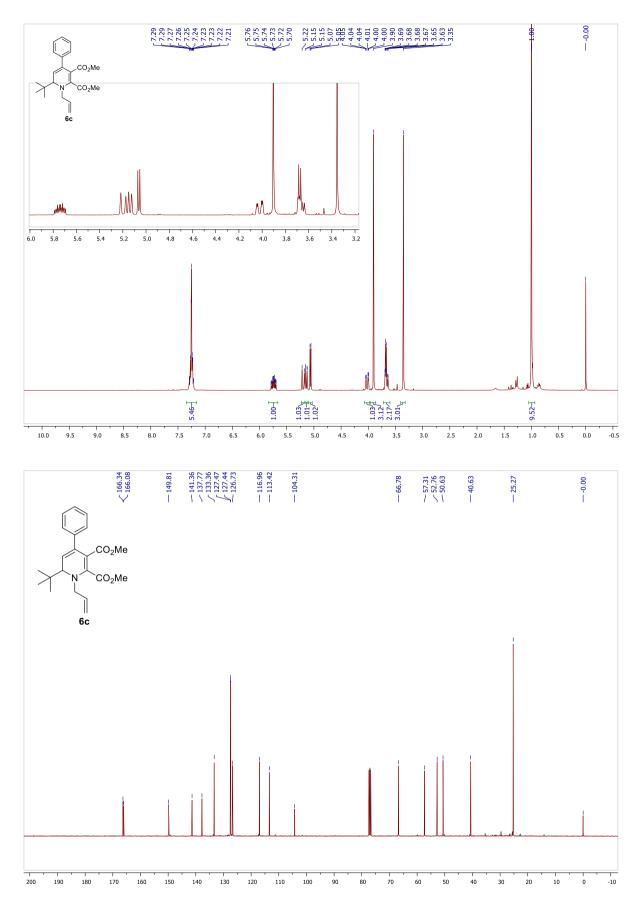
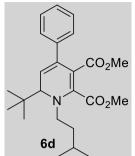



Figure 9. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6c in CDCl₃.

Dimethyl 6-(*tert*-butyl)-1-isopentyl-4-phenyl-1,6-dihydropyridine-2,3-dicarboxylate (6d) sas-5-40pure

According to the general procedure *N*-(2,2-dimethylpropylidene)-3-

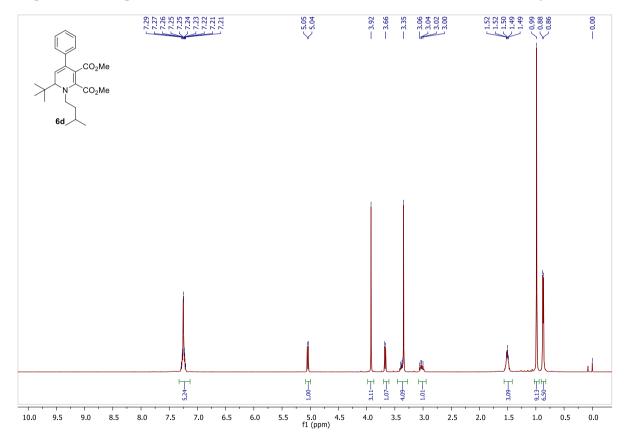
methylbutan-1-amine (**3d**) (0.5 mmol, 0.078 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 179 mg (90%) of dimethyl 6-(*tert*-butyl)-1-isopentyl-4-phenyl-1,6-dihydropyridine-2,3-dicarboxylate (**6d**) as shiny crystals; mp = 100 °C sharp. $R_f = 0.60$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.32 – 7.24 (m, 5H, aromatic), 5.07 (d, J = 6.9 Hz, 1H, **H**C=C), 3.92 (s, 3H, OC**H**₃), 3.70 (d, J = 6.9 Hz, 1H, **H**CHC=C), 3.40 – 3.37 (m, 4H, overlapped signal OCH₃ & NC(**H**)H), 3.09 – 3.03 (m, 1H, NC(H)**H**), 1.55 – 1.52 (m, 3H, overlapped signal NCH₂C**H**₂C**H**), 1.02 (s, 9H, C(C**H**₃)₃), 0.87 (d, J = 6.1 Hz, 6H, HC(C**H**₃)₂). ¹³C **NMR** (100 MHz, CDCl₃): δ 166.6 (C=O), 166.1 (C=O), 150.01, 141.5, 138.0, 127.5, 127.4, 126.7, 112.8, 103.8, 67.4, 53.8, 52.7, 50.5, 40.7, 39.4, 25.8, 25.2, 22.6, 22.2. **HRMS** (ESI) m/z calculated for C₂₄H₃₃NO₄+H⁺: 400.2488; found 400.2490.

Single crystals of **6d** were recrystallized from ethyl acetate, mounted in inert oil and transferred to the cold gas stream of the diffractometer.

Crystal structure determination of **6d** (CSD1814906):

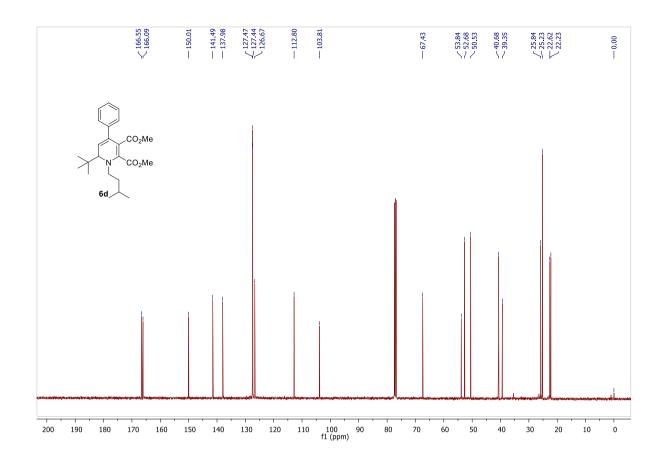
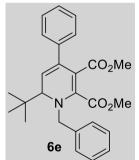
Crystal data:

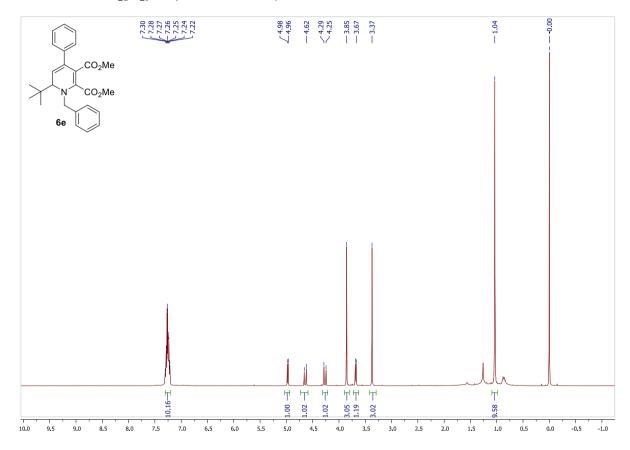

 $C_{24}H_{33}NO_4$, M = 399.51 a = 18.3692(7), b = 13.9179(5), c = 18.6682(9) Å $\beta = 107.269(5)^{\circ} V = 4557.6(3)$ Å³ T = 101(2) K

Space group, crystal system: $P2_1/n$ (no.14), monoclinic

Z=8, 20926 reflections measured, 8932 unique ($R^{\rm int}=0.0518$), which were used in all calculations. The final $RI(F^2)$ was 0.0543 ($I>2\sigma(I)$), w $R(F^2)$ was 0.1524 (all data), GoOF 1.018.

Figure 10. Single-crystal X-ray structure of **6d**. The asymmetric unit is shown (Z'=2). Displacement ellipsoids are at the 50% level, H atoms have been omitted for clarity.

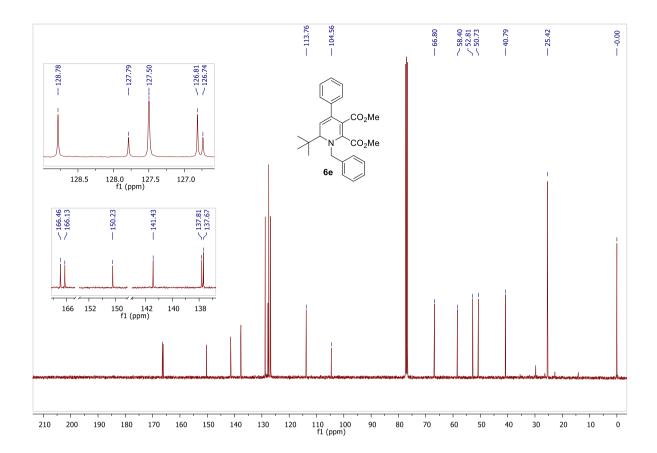



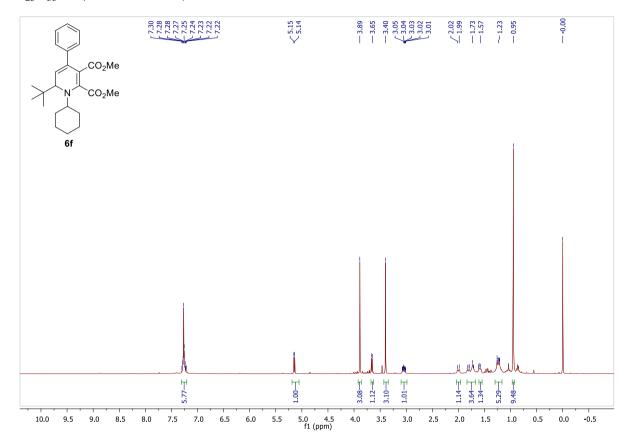

Figure 11. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6d in CDCl₃.

Dimethyl 1-benzyl-6-(*tert*-butyl)-4-phenyl-1,6-dihydropyridine-2,3-dicarboxylate (6e) sas-5-12

According to the general procedure N-(2,2-dimethylpropylidene)-1-phenylmethanamine (**3e**) (0.5 mmol, 0.088 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 128 mg (61%) of dimethyl 1-benzyl-6-(tert-butyl)-4-phenyl-1,6-dihydropyridine-2,3-dicarboxylate (**6e**) as a yellow viscous oil. $R_f = 0.62$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.30 – 7.22 (m, 10H, aromatic), 4.97 (d, J = 6.9 Hz, 1H, **H**C=C), 4.65 (d, J = 16.1 Hz, 1H, NC(**H**)H), 4.28 (d, J = 16.1 Hz, 1H, NC(H)**H**), 3.85 (s, 3H, OC**H**₃), 3.68 (d, J = 6.9 Hz, 1H, **H**CHC=C), 3.37 (s, 3H, OC**H**₃), 1.04 (s, 9H, C(C**H**₃)₃). ¹³**C NMR** (100 MHz, CDCl₃): δ 166.5 (C=O), 166.1 (C=O), 150.2, 141.4, 137.8, 137.7, 128.8, 127.8, 127.5, 126.8, 126.7, 113.8, 104.6, 66.8, 58.4, 52.8, 50.7, 40.8, 25.4. **HRMS** (ESI) m/z calculated for C₂₆H₂₉NO₄+H⁺: 420.2175; found 420.2179.




Figure 12. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6e in CDCl₃.

Dimethyl 6-(*tert*-butyl)-1-cyclohexyl-4-phenyl-1,6-dihydropyridine-2,3-dicarboxylate (6f) (sas-5-15)

According to the general procedure N-(2,2-dimethylpropylidene) cyclohexanamine (3f) (0.5 mmol, 0.084 g), phenylacetylene (4a) (0.5 mmol, 0.051 g), dimethyl 2-butynedioate (5a) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were

cyclohexanamine (**3f**) (0.5 mmol, 0.084 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted together in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 182 mg (89%) of dimethyl 6-(*tert*-butyl)-1-cyclohexyl-4-phenyl-1,6-dihydropyridine-2,3-dicarboxylate (**6f**) as a yellow viscous oil which became light yellow solid on long standing; mp = 82-84 °C. $R_f = 0.59$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.30 – 7.22 (m, 5H, aromatic), 5.13 (d, J = 7.0 Hz, 1H, **H**C=C), 3.89 (s, 3H, OC**H**₃), 3.66 (d, J = 7.0 Hz, 1H, **H**CHC=C), 3.40 (s, 3H, OC**H**₃), 3.05 – 3.01 (m, 1H, Cy), 2.02 – 1.21 (m, 10 H, Cy), 0.95 (s, 9H, C(C**H**₃)₃). ¹³C **NMR** (100 MHz, CDCl₃): δ 167.3 (C=O), 166.4 (C=O), 147.5, 140.7, 137.4, 127.8, 127.5, 126.8, 115.8, 112.5, 64.1, 61.5, 52.7, 51.0, 38.4, 33.2, 32.6, 26.4, 26.1, 25.9, 25.3. **HRMS** (ESI) m/z calculated for C₂₅H₃₃NO₄+H⁺: 402.1700; found 402.1705.

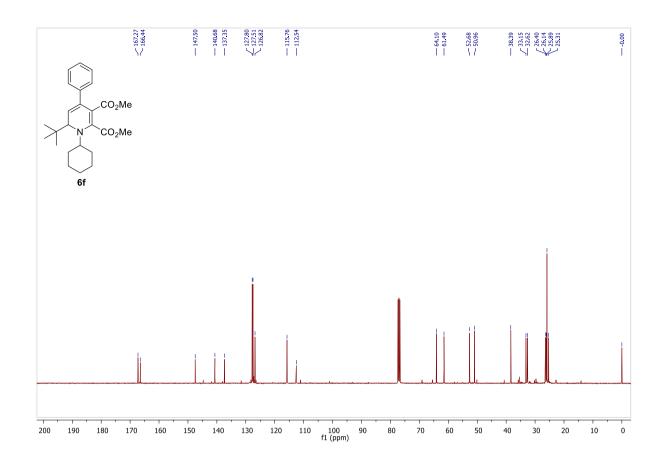
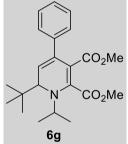
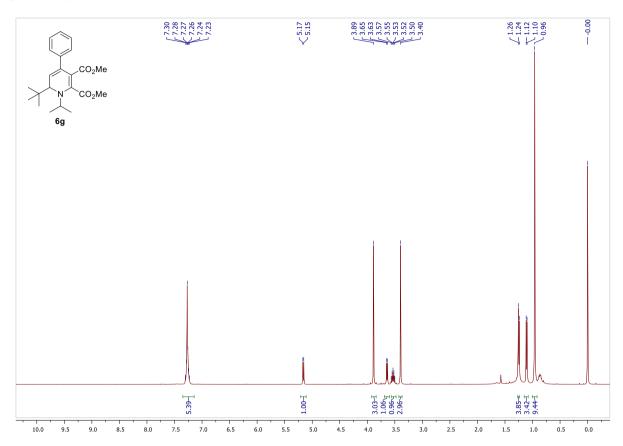



Figure 13. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6f in CDCl₃.


$\label{lem:condition} \begin{tabular}{ll} Dimethyl 6-$($\it tert$-butyl)-1$-$isopropyl-4$-phenyl-1,6$-dihydropyridine-2,3$-dicarboxylate $(6g)$ sas-5-10 \\ \end{tabular}$

dimethylpropylidene)propan-2-amine (**3g**) (0.5 mmol, 0.064 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 148 mg (80%) of dimethyl 6-(*tert*-butyl)-1-cyclohexyl-4-phenyl-1,6-dihydropyridine-2,3-dicarboxylate (**6g**) as a yellow viscous oil. $R_f = 0.54$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.30 – 7.23 (m, 5H, aromatic), 5.16 (d, J = 6.9 Hz, 1H, **H**C=C), 3.89 (s, 3H, OC**H**₃), 3.64 (d, J = 7.0 Hz, 1H, **H**CHC=C), 3.57 – 3.50 (m, 1H,

HC(CH₃)₂), 3.40 (s, 3H, OCH₃), 1.25 (d, J = 6.8 Hz, 3H, HC(CH₃)CH₃), 1.11 (d, J = 6.7 Hz, 3H, HC(CH₃)CH₃), 0.96 (s, 9H, C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃): δ 167.3 (C=O), 166.4 (C=O), 147.4, 140.7, 137.3, 127.8, 127.5, 126.8, 115.9, 112.3, 61.1, 55.5, 52.7, 51.0, 38.5, 25.9, 22.4, 22.0. **HRMS** (ESI) m/z calculated for C₂₂H₂₉NO₄+H⁺: 372.2175; found 372.2170.

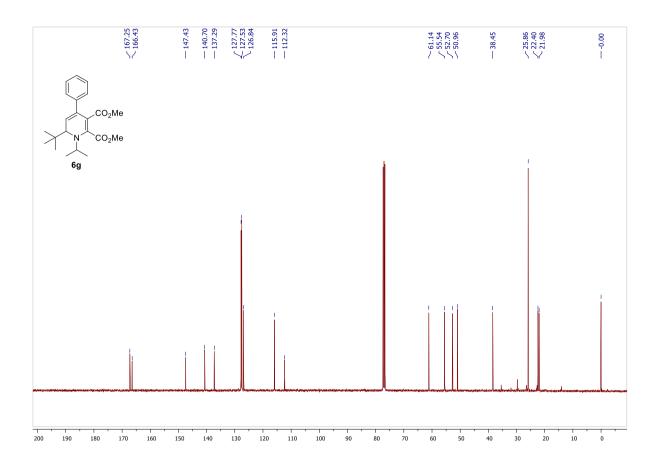
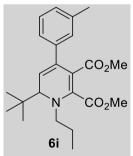
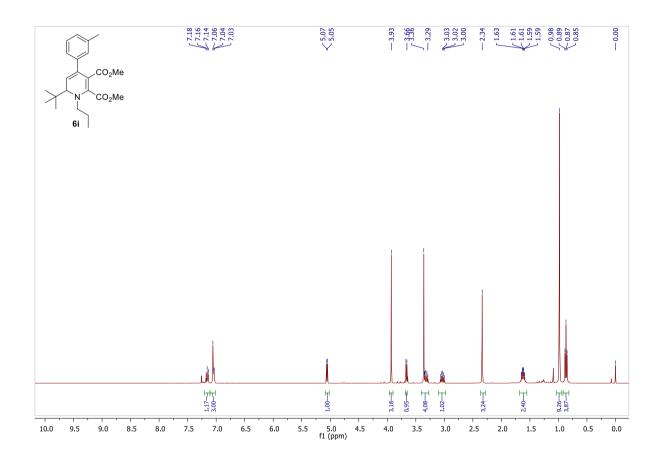



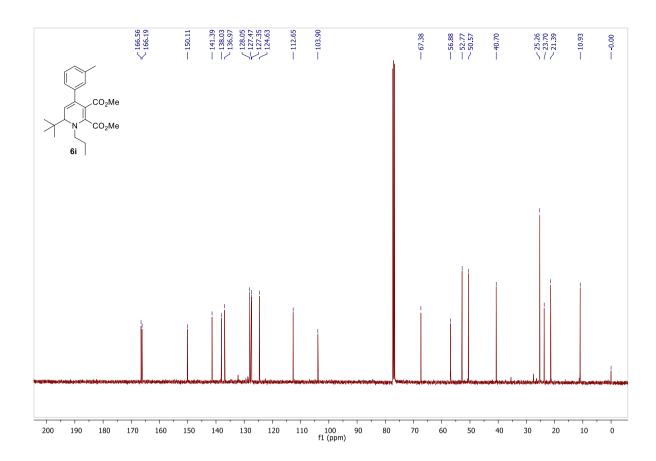
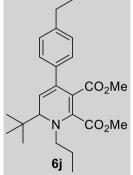
Figure 14. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6g in CDCl₃.

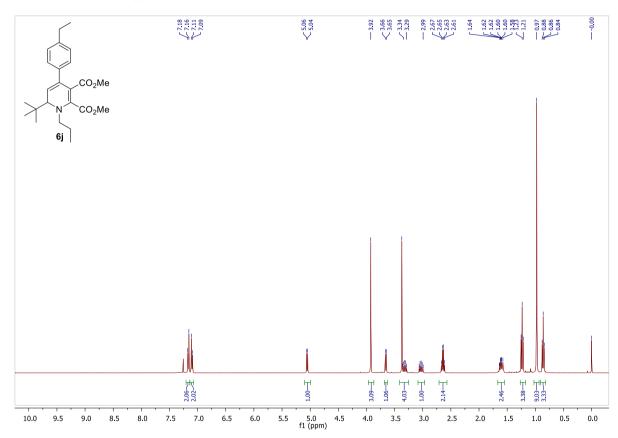

Dimethyl 6-(tert-butyl)-1-propyl-4-(m-tolyl)-1,6-dihydropyridine-2,3-dicarboxylate (6i) sas-5-24

dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), 3-methylphenylacetylene (**4b**) (0.5 mmol, 0.058 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 68 mg (70%) of dimethyl 6-(*tert*-butyl)-1-propyl-4-(*m*-tolyl)-1,6-dihydropyridine-2,3-dicarboxylate (**6i**) as a yellow viscous oil. $R_f = 0.56$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.18 – 7.14 (t, J = 7.2, 1H, aromatic), 7.06 – 7.03 (m, 3H, aromatic), 5.06 (d, J = 6.9 Hz, 1H, **H**C=C), 3.93 (s, 3H, OC**H**₃), 3.67 (d, J = 6.9 Hz, 1H,

HCHC=C), 3.36 – 3.29 (m, 4H, overlapped signal OCH₃ & NC(H)H), 3.07 – 3.00 (m, 1H, NC(H)H), 2.34 (s, 3H, CH₃Ph), 1.65 – 1.59 (m, 2H, CH₂CH₃), 0.98 (s, 9H, C(CH₃)₃), 0.87 (t, J = 7.4 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C=O), 166.2 (C=O), 150.1, 141.4, 138.0, 137.0, 128.1, 127.5, 127.4, 124.6, 112.7, 103.9, 67.4, 56.9, 52.8, 50.6, 40.7, 25.3, 23.7, 21.4, 10.9. HRMS (ESI) m/z calculated for C₂₃H₃₁NO₄+H⁺: 386.2326; found 386.2331.

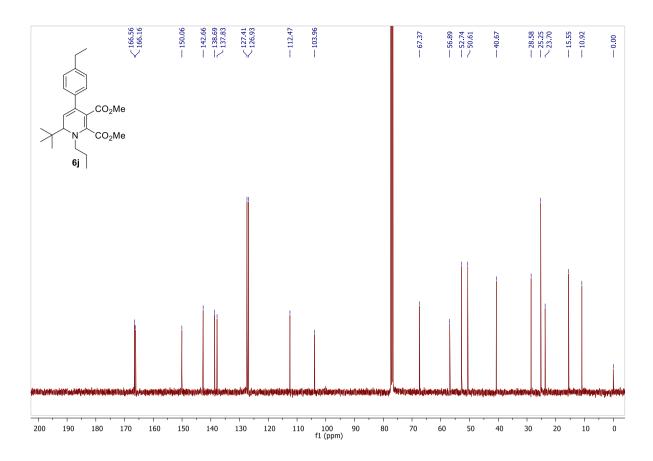
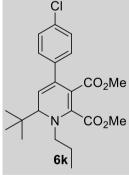



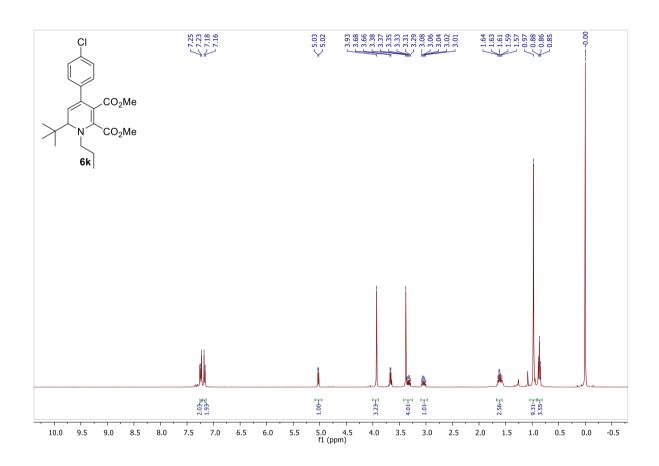

Figure 15. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6i in CDCl₃.

Dimethyl 6-(*tert*-butyl)-4-(4-ethylphenyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6j) sas-5-26

dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), 1-ethyl-4-ethynyl-benzene (**4c**) (0.5 mmol, 0.065 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 179 mg (90%) of dimethyl 6-(*tert*-butyl)-4-(4-ethylphenyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6j**) as a yellow viscous oil. R_f = 0.56 (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.17 (d, J = 8.1 Hz, 2H, aromatic), 7.10 (d, J = 8.1 Hz, 2H, aromatic), 5.05 (d, J = 6.9 Hz, 1H, **H**C=C), 3.92 (s, 3H, OC**H**₃), 3.66 (d, J = 6.9 Hz, 1H, **H**CHC=C), 3.37 (s, 3H, OC**H**₃) 3.32 (dt, J = 14.5, 7.3 Hz, 1H, NC(**H**)H), 3.05 – 2.99 (m, 1H, NC(H)**H**), 2.64 (q, J = 7.6 Hz, 2H, PhC**H**₂CH₃), 1.64 – 1.56 (m, 2H, C**H**₂CH₃), 1.23 (t, J = 7.6 Hz, 3H, PhCH₂C**H**₃), 0.97 (s, 9H, C(C**H**₃)₃), 0.86 (t, J = 7.4 Hz, 3H, CH₂CH₂C**H**₃). ¹³C **NMR** (100 MHz, CDCl₃): δ 166.6 (C=O), 166.2 (C=O), 150.1, 142.7, 138.7, 137.8, 127.4, 126.9, 112.5, 104.0, 67.4, 56.9, 52.7, 50.6, 40.7, 28.6, 25.3, 23.7, 15.6, 10.9. **HRMS** (ESI) m/z calculated for C₂₄H₃₃NO₄+H⁺: 400.2488; found 400.2501.


Figure 16. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6j in CDCl₃.

Dimethyl 6-(*tert*-butyl)-4-(4-chlorophenyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6k) sas-5-27

dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), 1-chloro-4-ethynylbenzene (**4d**) (0.5 mmol, 0.068 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 48 h. Alkaline work up and column chromatography afforded 111 mg (55%) of dimethyl 6-(*tert*-butyl)-4-(4-chlorophenyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6k**) as a yellow viscous oil. $R_f = 0.48$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.24 (d, J = 8.4 Hz, 2H, aromatic), 7.17 (d, J = 8.4 Hz, 2H, aromatic), 5.03 (d, J = 6.9 Hz, 1H, HCHC=CPh), 3.93 (s, 3H, OCH₃), 3.67 (d, J = 6.9 Hz, 1H, HCHC=C), 3.38 (s, 3H, OCH₃), 3.37 – 3.29 (m, 1H, NC(H)H), 3.04 (dt, J = 14.2, 6.9 Hz, 1H, NC(H)H), 1.64 – 1.57 (m, 2H, CH₂CH₃), 0.97 (s, 9H, C(CH₃)₃), 0.86 (t, J = 7.4 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.3 (C=O), 165.9 (C=O), 150.6 (NC=C), 140.0, 137.1, 132.4, 128.8 (aromatic), 127.6 (aromatic), 113.0 (HCHC=CPh), 103.3 (HCHC=CPh), 67.3 (HCHC=CPh), 56.9 (NCH₂), 52.8 and 50.7 (2 × OCH₃), 40.7 (C(CH₃)₃), 25.2 (C(CH₃)₃), 23.7 (CH₂CH₃), 10.9 (CH₂CH₃). **HRMS** (ESI) m/z calculated for C₂₂H₂₈ClNO₄+H⁺: 406.1785; found 406.1772.

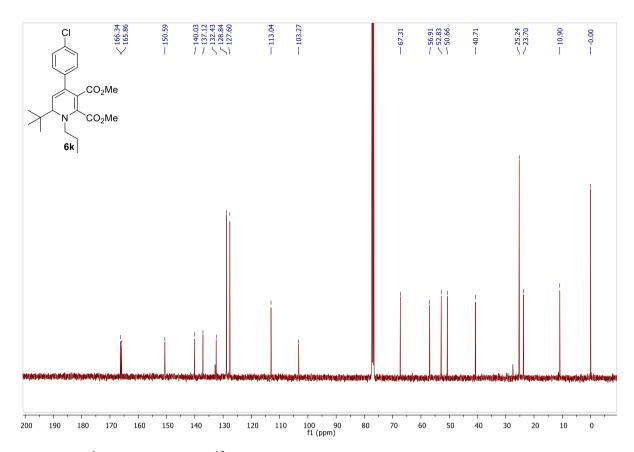
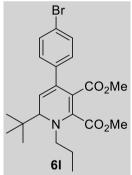
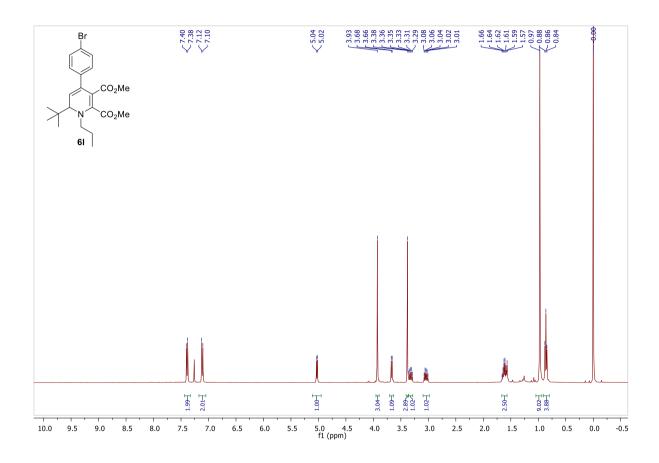



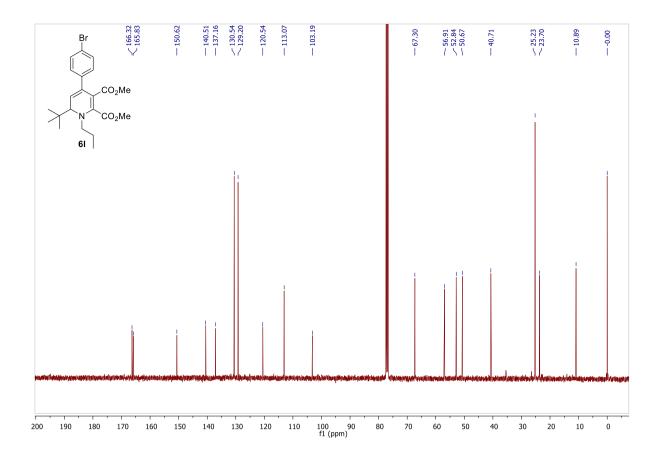
Figure 17. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6k in CDCl₃.

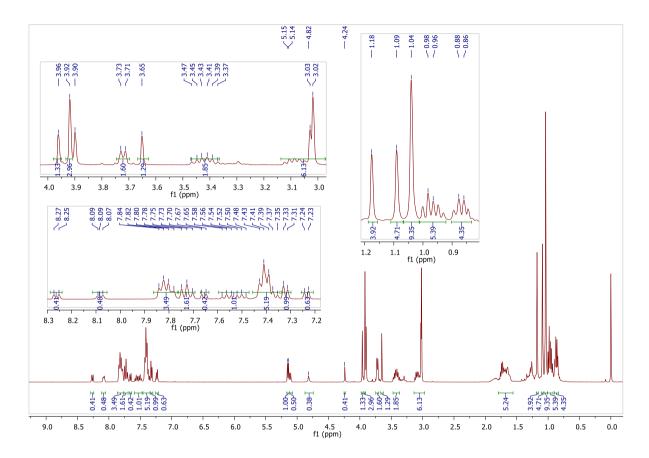

Dimethyl 4-(4-bromophenyl)-6-(*tert*-butyl)-1-propyl-1,6-dihydropyridine-2,3 dicarboxylate (6l) sas-5-28

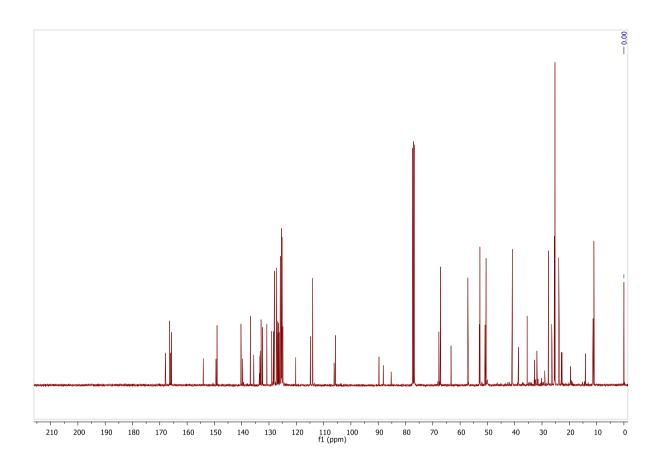
dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), 1-bromo-4-ethynylbenzene (**4e**) (0.5 mmol, 0.091 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 48 h. Alkaline work up and column chromatography afforded 112 mg (50%) of dimethyl 4-(4-bromophenyl)-6-(tert-butyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6l**) as a yellow viscous oil. $R_f = 0.49$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (d, J = 8.3 Hz, 2H, aromatic), 7.11 (d, J = 8.3 Hz, 2H, aromatic), 5.03 (d, J = 6.9 Hz, 1H, **H**C=C), 3.93 (s, 3H, OC**H**₃), 3.67 (d, J = 6.9 Hz, 1H,

HCHC=C), 3.38 (s, 3H, OCH₃), 3.35 – 3.29 (m, 1H, NC(H)H), 3.08 – 3.01 (m, 1H, NC(H)H), 1.66 – 1.57 (m, 2H, CH₂CH₃), 0.97 (s, 9H, C(CH₃)₃), 0.86 (t, J = 7.4 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.3 (C=O), 165.8 (C=O), 150.6 (NC=C), 140.5, 137.2, 130.5 (aromatic), 129.2 (aromatic), 120.5, 113.1 (HCHC=CPh), 103.2 (HCHC=CPh), 67.3 (HCHC=CPh), 56.9 (NCH₂), 52.8 and 50.7 (2 × OCH₃), 40.7 (C(CH₃)₃), 25.2 (C(CH₃)₃), 23.7 (CH₂CH₃), 10.9 (CH₂CH₃). **HRMS** (ESI) m/z calculated for C₂₂H₂₈BrNO₄+H⁺: 450.1280; found 450.1276.




Figure 18. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 61 in CDCl₃.


Dimethyl 6-(*tert*-butyl)-4-(2-naphthyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6m)

$$CO_2Me$$
 CO_2Me
 C

dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), 1-ethynylnapthalene (**4f**) (0.5 mmol, 0.076 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 24 h. Alkaline work up afforded 139 mg of a complex mixture in which the major compounds dimethyl 6-(*tert*-butyl)-4-(2-naphthyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6m**) and its corresponding enamine **6m**' could be distinguished. Besides **6m** and **6m**', another compound was present

which could not be identified. These compounds could not be separated by means of column chromatography. Therefore no yield could be determined.

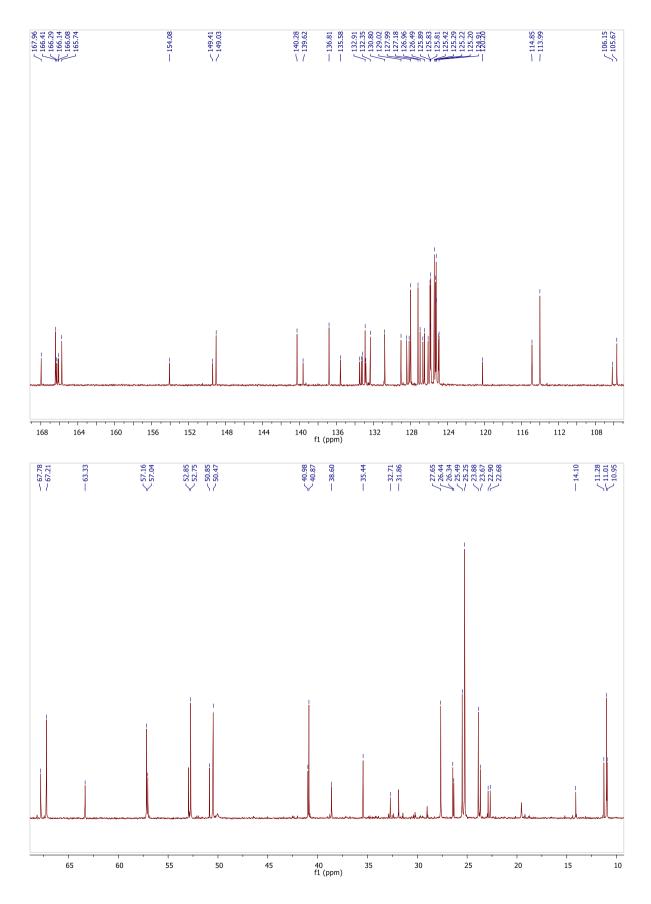
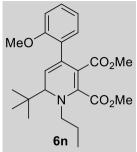



Figure 19. 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of $6m/6m^{2}$ in CDCl₃.

Dimethyl 6-(*tert*-butyl)-4-(2-methoxyphenyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6n) sas-5-23

dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), 1-ethynyl-2-methoxybenzene (**4g**) (0.5 mmol, 0.066 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 61 mg (60%) of dimethyl 6-(*tert*-butyl)-4-(2-methoxyphenyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6n**) as a yellow viscous oil. $R_f = 0.50$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.20 – 7.16 (m, 1H, aromatic), 6.85 – 6.78 (m, 3H, aromatic), 5.08 (d, J = 6.9 Hz, 1H, **H**C=C), 3.93 (s, 3H, OC**H**₃), 3.80 (s, 3H, OC**H**₃), 3.66 (d, J = 6.9 Hz, 1H, **H**CHC=C), 3.37 (s, 3H, OC**H**₃) 3.35 – 3.29 (m, 1H, NC(**H**)H), 3.07 – 3.00 (m, 1H, NC(H)**H**), 1.67 – 1.57 (m, 2H, C**H**₂CH₃), 0.98 (s, 9H, C(C**H**₃)₃), 0.87 (t, J = 7.4 Hz, 3H, CH₂C**H**₃). ¹³C **NMR** (100 MHz, CDCl₃): δ 166.5 (C=O), 166.1 (C=O), 159.0, 150.2, 143.0, 137.9, 128.3, 120.3, 113.4, 112.8, 112.0, 103.8, 67.3, 56.9, 55.3, 52.8, 50.6, 40.7, 25.2, 23.7, 10.9. **HRMS** (ESI) m/z calculated for C₂₃H₃₁NO₅+H⁺: 402.2280; found 402.2265.

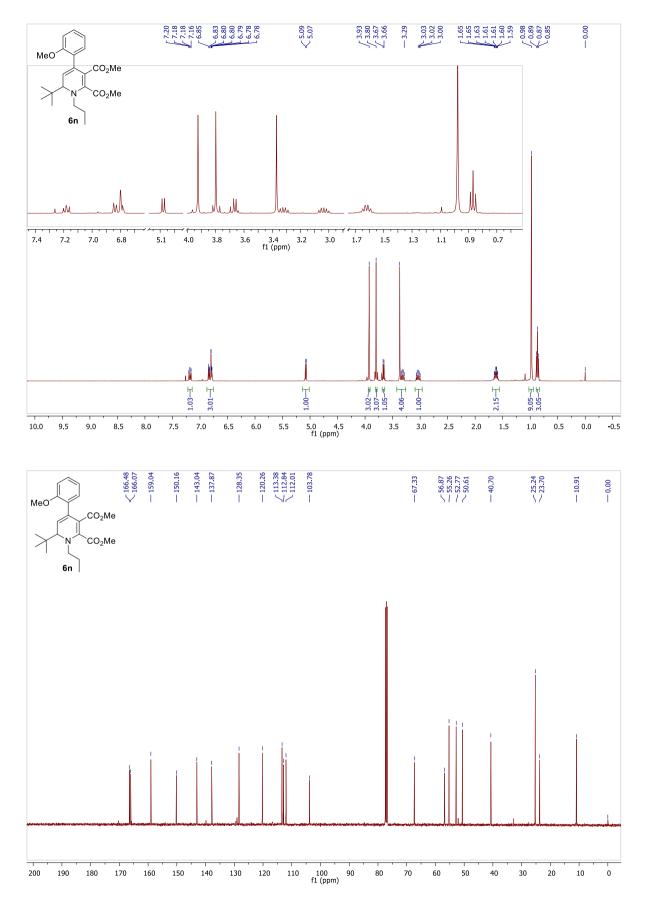
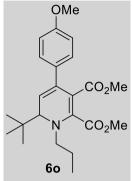



Figure 20. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6n in CDCl₃.

Dimethyl 6-(*tert*-butyl)-4-(4-methoxyphenyl)-1-propyl-1,6-dihydropyridine-2,3 dicarboxylate (60) sas-5-31

dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), 1-ethynyl-4-methoxybenzene (**4h**) (0.5 mmol, 0.066 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 110 mg (55%) of dimethyl 6-(*tert*-butyl)-4-(4-methoxyphenyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6o**) as a yellow viscous oil. $R_f = 0.50$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.17 (d, J = 7.5 Hz, 2H, aromatic), 6.81 (d, J = 7.5 Hz, 2H, aromatic), 5.01 (d, J = 6.8 Hz, 1H, **H**C=C), 3.92 (s, 3H, OC**H**₃), 3.80 (s, 3H, OC**H**₃), 3.66 (d, J = 6.9 Hz, 1H), 3.38 (s, 3H, OC**H**₃) 3.36 – 3.29 (m, 1H, NC(**H**)H), 3.07 – 3.00 (m, 1H, NC(H)**H**), 1.64 – 1.58 (m, 2H, C**H**₂CH₃), 0.97 (s, 9H, C(C**H**₃)₃), 0.86 (t, J = 7.3 Hz, 3H, CH₂C**H**₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C=O), 166.2 (C=O), 158.6, 150.1, 137.4, 134.0, 128.6, 112.9, 112.0, 103.9, 67.4, 56.9, 55.2, 52.7, 50.7, 40.7, 25.2, 23.7, 10.9. **HRMS** (ESI) m/z calculated for C₂₃H₃₁NO₅+H⁺: 402.2280; found 402.2261.

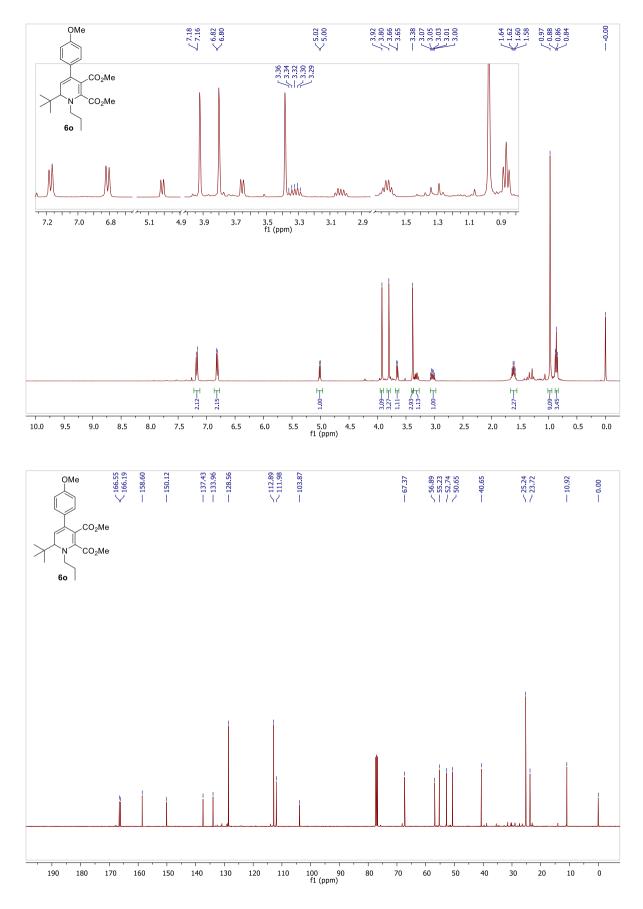
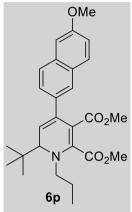



Figure 21. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **60** in CDCl₃.

Dimethyl 6-(*tert*-butyl)-4-(6-methoxynaphthalen-2-yl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6p) SAS-5-39

According the general procedure N-(2,2to dimethylpropylidene)propan-1-amine (3a)(0.5)mmol, 0.064 g), 2-ethynyl-6methoxynaphthalene (4i) (0.5 mmol, 0.091 g), dimethyl 2-butynedioate (5a) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 146 mg (59%) of dimethyl 6-(*tert*-butyl)-4-(6-methoxynaphthalen-2-yl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6p) as a brown oil, which became solid upon long standing; mp = 104-106 °C. $R_f = 0.53$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.71 (d, J = 9.6 Hz, 1H, aromatic), 7.63 (dd, J = 9.3, 4.9 Hz, 2H, aromatic), 7.33 (dd, J = 8.5, 1.8 Hz, 1H, aromatic), 7.13 – 7.08 (m, 2H, aromatic), 5.14 (d, J = 6.9 Hz, 1H, **H**C=C), 3.95 (s, 3H, OC**H**₃), 3.91 (s, 3H, OC**H**₃), 3.71 (d, J = 6.9 Hz, 1H, **H**CHC=C), 3.39 – 3.32 (m, 1H, NC(**H**)H), 3.31 (s, 3H, OC**H**₃), 3.07 – 3.00 (m, 1H, NC(H)**H**), 1.67 – 1.61 (m, 2H, C**H**₂CH₃), 1.02 (s, 9H, C(C**H**₃)₃), 0.88 (t, J = 7.4 Hz, 3H, CH₂C**H**₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.6 (C=O), 166.3 (C=O), 157.4, 150.4, 138.0, 137.1, 133.7, 129.4, 128.8, 127.2, 125.5, 125.2, 118.5, 112.8, 105.8, 103.7, 67.5, 57.0, 55.3, 52.8, 50.6, 40.8, 25.3, 23.7, 10.9. **HRMS** (ESI) m/z calculated for C₂₇H₃₃NO₅+H⁺: 452.2437; found 452.2454.

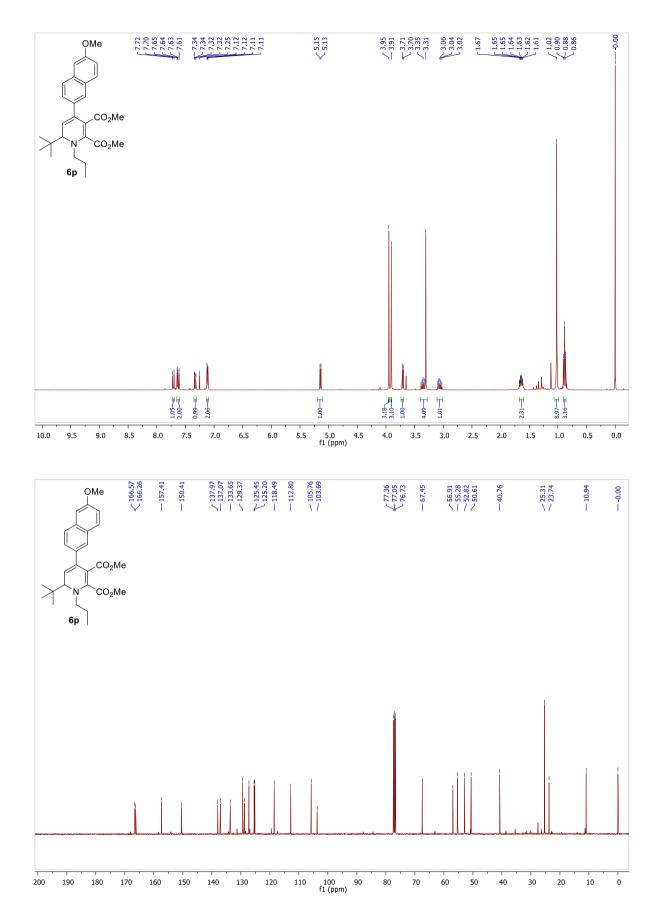
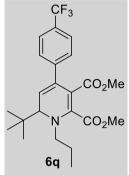



Figure 22. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **6p** in CDCl₃.

Dimethyl 6-(*tert*-butyl)-1-propyl-4-(4-(trifluoromethyl)phenyl)-1,6-dihydropyridine-2,3-dicarboxylate (6q) sas-5-30

According to the general procedure N-(2,2dimethylpropylidene)propan-1-amine (3a) (0.5)mmol, 0.064 g), 1-ethynyl-4-(trifluoromethyl)benzene (4j) (0.5 mmol, 0.085 g), dimethyl 2-butynedioate (5a) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 24 h. Alkaline work up and column chromatography afforded 96 mg (44%) of dimethyl 6-(*tert*-butyl)-1-propyl-4-(4-(trifluoromethyl)phenyl)-1,6-dihydropyridine-2,3dicarboxylate (6q) as a yellow viscous oil. $R_f = 0.45$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.52 (d, J = 8.0 Hz, 2H, aromatic), 7.34 (d, J = 8.0 Hz, 2H, aromatic), 5.07 (d, J = 6.9 Hz, 1H, **H**C=C), 3.94 (s, 3H, OC**H**₃), 3.70 (d, J = 6.9 Hz, 1H, **H**CHC=C), 3.36 (s, 3H, OC**H**₃), 3.38 – 3.31 (m, 1H, overlapping signal NC(**H**)H), 3.10 – 3.02 (m, 1H, NC(H)**H**), 1.65 – 1.60 (m, 2H, C**H**₂CH₃), 0.99 (s, 9H, C(C**H**₃)₃), 0.87 (t, J = 7.4 Hz, 3H, CH₂C**H**₃). ¹³**C NMR** (100 MHz, CDCl₃): δ 166.2 (C=O), 165.7 (C=O), 150.8 (NC=C), 145.3 (q, ${}^4J_{C^-F} = 1.2$ Hz), 137.3 (C_{ipso}), 128.8 (q, ${}^2J_{C^-F} = 32.3$ Hz,), 127.8, 124.42 (q, ${}^3J_{C^-F} = 3.7$ Hz,) 124.43 (q, ${}^1J_{C^-F} = 271.8$ Hz, CF₃), 113.9 (HCHC=CPh), 103.1 (HCHC=CPh), 67.3 (HCHC=CPh), 57.0 (NCH₂), 52.9 and 50.7 (2 × OCH₃), 40.8 (C(CH₃)₃), 25.3 (C(CH₃)₃), 23.7 (CH₂CH₃), 10.9 (CH₂CH₃). **HRMS** (ESI) m/z calculated for C₂₃H₂₈F₃NO₄+H⁺: 440.2049; found 440.2037.

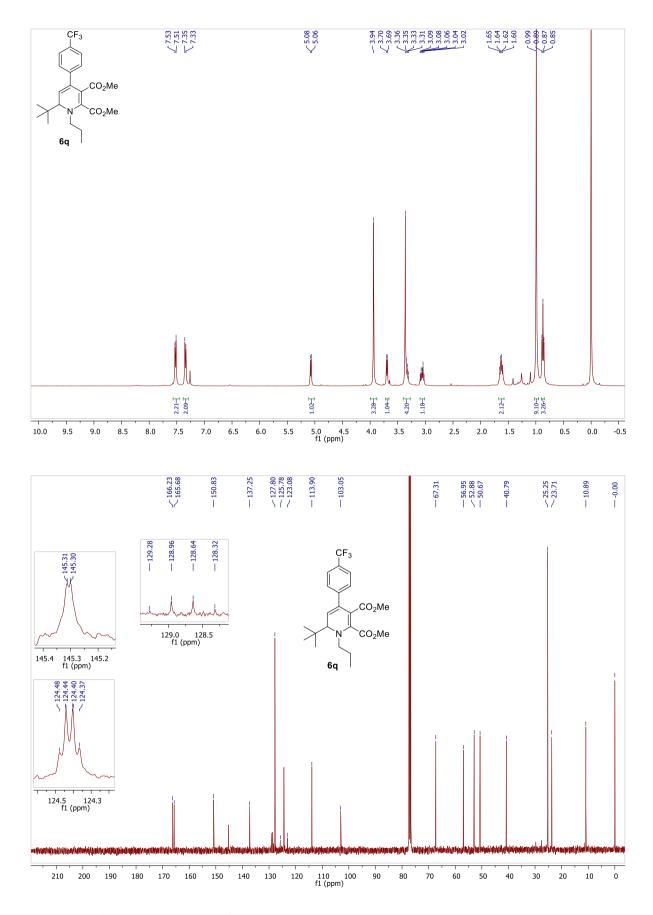
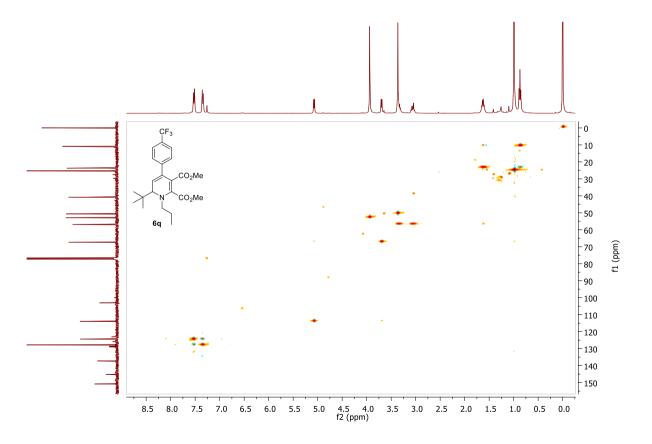



Figure 23. 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of 6q in CDCl₃.

Figure 24. ¹³C-APT (100 MHz) spectrum of 6q in CDCl₃.

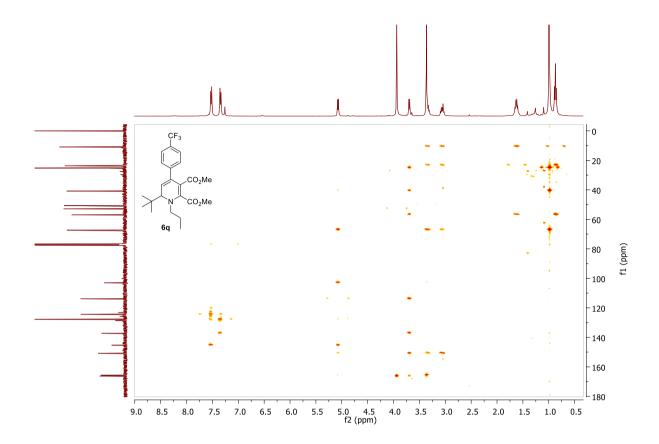
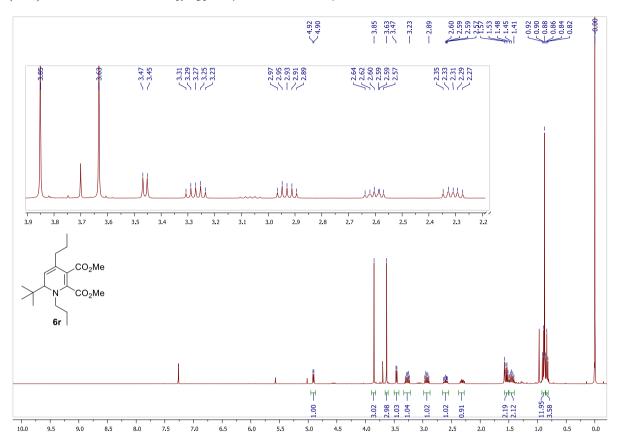


Figure 25. HSQC and HMBC spectra of 6q in CDCl₃.


Dimethyl 6-(tert-butyl)-1,4-dipropyl-1,6-dihydropyridine-2,3-dicarboxylate (6r) sas-5-34

CO₂Me
CO₂Me
According to the general procedure N-(2,2-dimethylpropylidene)propan-

1-amine (**3a**) (0.5 mmol, 0.064 g), 1-pentyne (**4k**) (0.5 mmol, 0.034 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 112 mg (67%) of dimethyl 6-(*tert*-butyl)-1,4-dipropyl-1,6-dihydropyridine-2,3-dicarboxylate (**6r**) as a yellow viscous oil. $R_f = 0.60$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 4.91 (d, J = 6.6 Hz, 1H, **H**C=C), 3.85 (s, 3H, OC**H**₃), 3.63 (s, 3H, OC**H**₃), 3.46 (d, J = 6.6 Hz, 1H, **H**CHC=C), 3.27 (dt, J = 14.5, 7.2 Hz, 1H, N(C**H**)H), 2.93 (dt, J = 14.4, 7.1 Hz, 1H, NC(H)**H**), 2.61 (ddd, J = 13.9, 7.9, 6.2 Hz, 1H, C=CC(**H**)H), 2.35 – 2.27 (m, 1H, C=CC(H)**H**), 1.54 (q, J = 7.3 Hz, 2H, C**H**₂CH₃), 1.50 – 1.41 (m, 2H, C**H**₂CH₃), 0.90 (d, J = 7.3 Hz, 3H, CH₂C**H**₃), 0.88 (s, 9H, C(C**H**₃)₃), 0.84 (t, J = 7.4 Hz, 3H,

CH₂C**H**₃). ¹³C **NMR** (101 MHz, CDCl₃): δ 166.8 (C=O), 166.7 (C=O), 149.2, 136.1, 110.6, 105.4, 99.3, 88.8, 67.2, 57.1, 52.5, 50.9, 40.4, 35.9, 25.1, 24.2, 23.7, 23.1, 13.9, 11.0. **HRMS** (ESI) m/z calculated for C₁₉H₃₁NO₄+H⁺: 338.2331; found 338.2315.

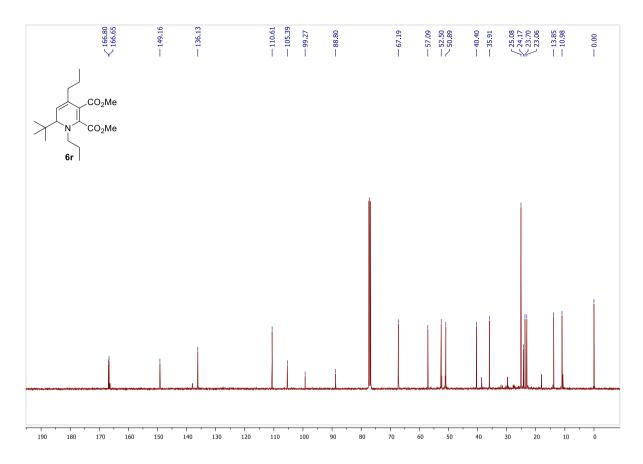
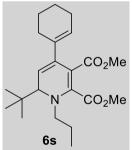
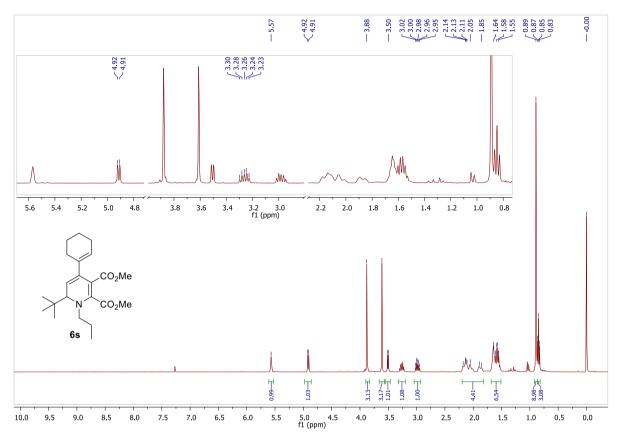



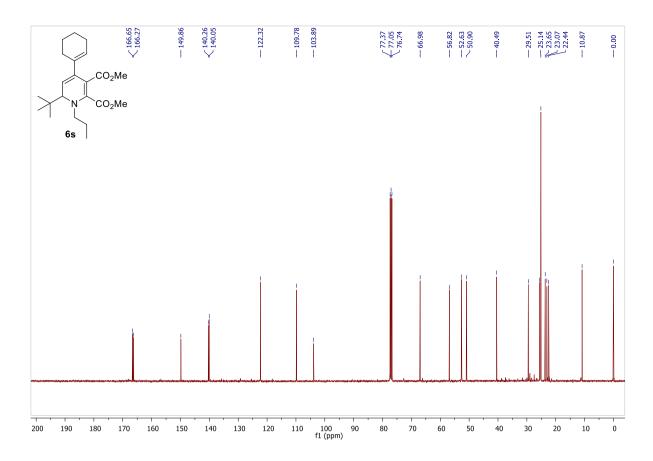
Figure 26. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6r in CDCl₃.

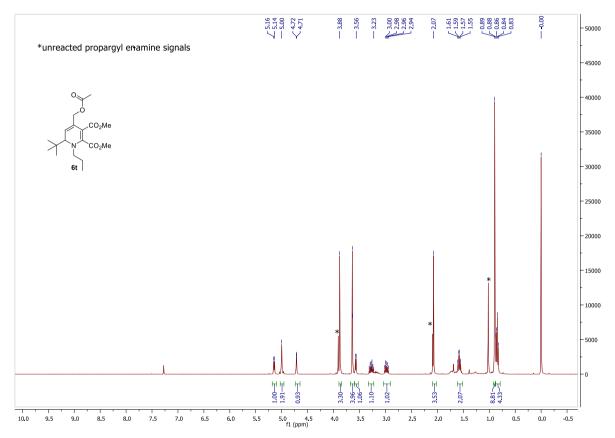

Dimethyl 6-(*tert*-butyl)-4-(cyclohex-1-en-1-yl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6s) sas-5-37

dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), 1-ethynylcyclohex-1-ene (**4l**) (0.5 mmol, 0.053 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and Zn(OTf)₂ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 165 mg (88%) of dimethyl 6-(*tert*-butyl)-4-(cyclohex-1-en-1-yl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6s**) as a yellow viscous oil. $R_f = 0.61$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 5.57 (bs, 1H, *Cy*C=C**H**), 4.92 (d, *J* = 6.7 Hz, 1H, **H**C=C), 3.88 (s, 3H, OC**H**₃), 3.61 (s, 3H, OC**H**₃), 3.51 (d, *J* = 6.7 Hz, 1H, **H**CHC=C), 3.30 – 3.23 (m,

1H, NC(**H**)H), 3.02 - 2.95 (m, 1H, NC(H)**H**), 2.18 - 2.05 (m, 4H, *Cy*), 1.65 - 1.53 (m, 6H, *Cy*), 0.89 (s, 9H, C(C**H**₃)₃), 0.85 (t, J = 7.4 Hz, 3H, CH₂C**H**₃). ¹³C **NMR** (100 MHz, CDCl₃): δ 166.7 (C=O), 166.3 (C=O), 149.9, 140.3, 140.1, 122.3, 109.8, 103.9, 67.0, 56.8, 52.6, 50.9, 40.5, 29.5, 25.6, 25.1, 23.7, 23.1, 22.4, 10.9. **HRMS** (ESI) *m/z* calculated for C₂₂H₃₃NO₄+H⁺: 376.2488; found 376.2488.




Figure 27. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6s in CDCl₃.

Dimethyl 4-(acetoxymethyl)-6-(*tert*-butyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (6t) sas-5-35

According to the general procedure N-(2,2)

dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), prop-2-yn-1-yl acetate (**4m**) (0.5 mmol, 0.049 g), dimethyl 2-butynedioate (**5a**) (0.5 mmol, 0.071 g) and $Zn(OTf)_2$ (0.05 mmol, 0.018 g) were reacted in 1 mL of toluene/DMF (7/3) at 100 °C for 18 h. Alkaline work up and column chromatography afforded 176 mg (96%) of dimethyl 4-(acetoxymethyl)-6-(*tert*-butyl)-1-propyl-1,6-dihydropyridine-2,3-dicarboxylate (**6t**) as yellow viscous oil. $R_f = 0.59$ (Heptane/EtOAc: 90/10). Some unreacted propargyl enamine (**6t'**) was also present, which due to exact same R_f value could not be separated (yield is collective).

¹**H NMR** (400 MHz, CDCl₃): δ 5.15 (d, J = 6.4 Hz, 1H, **H**C=C), 5.00 (s, 2H, C**H**₂OCOCH₃), 3.88 (s, 3H, OC**H**₃), 3.64 (s, 3H, OC**H**₃), 3.58 (d, J = 6.5 Hz, 1H, **H**CHC=C), 3.30 – 3.24 (m, 1H, NC(**H**)H), 3.02 – 2.95 (m, 1H, NC(H)**H**), 2.07 (s, 3H, CH₂OCOC**H**₃), 1.61 – 1.55 (m, 2H, C**H**₂CH₃), 0.90 (s, 9H, C(C**H**₃)₃), 0.84 (t, J = 7.4 Hz, 3H, CH₂C**H**₃). ¹³C **NMR** (100 MHz, CDCl₃): δ 170.6 (C=O), 166.2 (C=O), 166.1 (C=O), 150.2, 131.0, 111.4, 102.2, 66.9, 64.8, 57.0, 52.7, 51.0, 40.7, 27.4, 25.1, 23.7, 21.0, 10.9. **HRMS** (ESI) m/z calculated for C₁₉H₂₉NO₆+H⁺: 368.2073; found 368.2079.

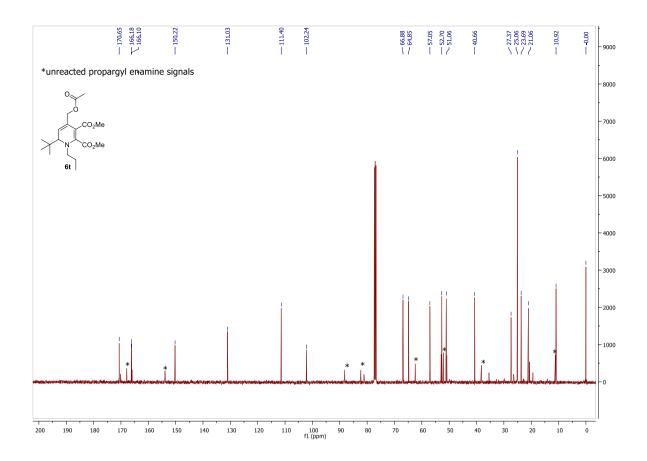


Figure 28. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of 6t in CDCl₃.

Methyl 6-(*tert*-butyl)-4-phenyl-1-propyl-1,6-dihydropyridine-3-carboxylate (10a) SAS-5-110C 2D

CO₂Me

For the synthesis of **10a**, N-(2,2-dimethylpropylidene)propan-1-amine (**3a**)

(0.5 mmol, 0.064 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), methyl propiolate (**5b**) (0.75 mmol, 0.063 g) and Zn(OTf)₂ (0.05 mmol 0.018 g) were reacted in 1 mL of DMF at 110 °C for 24 h. Alkaline work up and column chromatography afforded 139 mg (78%) of methyl 6-(*tert*-butyl)-4-phenyl-1-propyl-1,6-dihydropyridine-3-carboxylate (**10a**) as transparent crystals; mp = 96-98 °C. $R_f = 0.49$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): 7.62 (d, J = 1.7 Hz, 1H, **H**C=CCO₂Me), 7.25 – 7.20 (m, 5H, aromatic), 4.86 (d, J = 6.4 Hz, 1H, **H**C=C), 3.77 (dd, J = 6.4, 1.8 Hz, 1H, **H**CHC=C), 3.47 (s, 3H, OC**H**₃), 3.38 (m, 1H), 3.42 – 3.35 (m, 1H, NC(**H**)H), 3.28 – 3.22 (m, 1H, NC(H)**H**), 1.65

(m, 2H, CH₂CH₃), 0.97 (s, 9H, C(CH₃)₃), 0.91 (t, J = 7.4 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.5 (C=O), 149.0, 141.9, 138.1, 127.7, 127.3, 126.5, 110.7, 100.8, 67.5, 59.2, 50.2, 41.1, 25.6, 24.0, 11.0. **HRMS** (ESI) m/z calculated for C₂₀H₂₇NO₂+H⁺: 314.2120; found 314.2124.

Single crystals of **10a** were recrystallized from ethyl acetate, mounted in inert oil and transferred to the cold gas stream of the diffractometer.

Crystal structure determination of **10a** (CSD1814907):

Crystal data:

 $C_{20}H_{27}NO_2$, M = 313.42,

a = 11.7972(6), b = 12.1131(5), c = 13.4962(7) Å

 $\alpha = 94.970(4), \, \beta = 103.881(4), \, \gamma = 109.494(4)^\circ$

 $V = 1762.2(2) \text{ Å}^3$

T = 100.0(1)K

space group, crystal system: P1 (no.2), triclinic

Z = 4, 12090 reflections measured, 6966 unique ($R^{\text{int}} = 0.0235$), which were used in all calculations. The final $RI(F^2)$ was 0.0430 (I > 2 σ (I)), w $R(F^2)$ was 0.122 (all data), GoOF 1.023.

Figure 29. Single-crystal X-ray structure of **10a**. The asymmetric unit is shown (Z'=2). Displacement ellipsoids are at the 50% level, H atoms have been omitted for clarity.

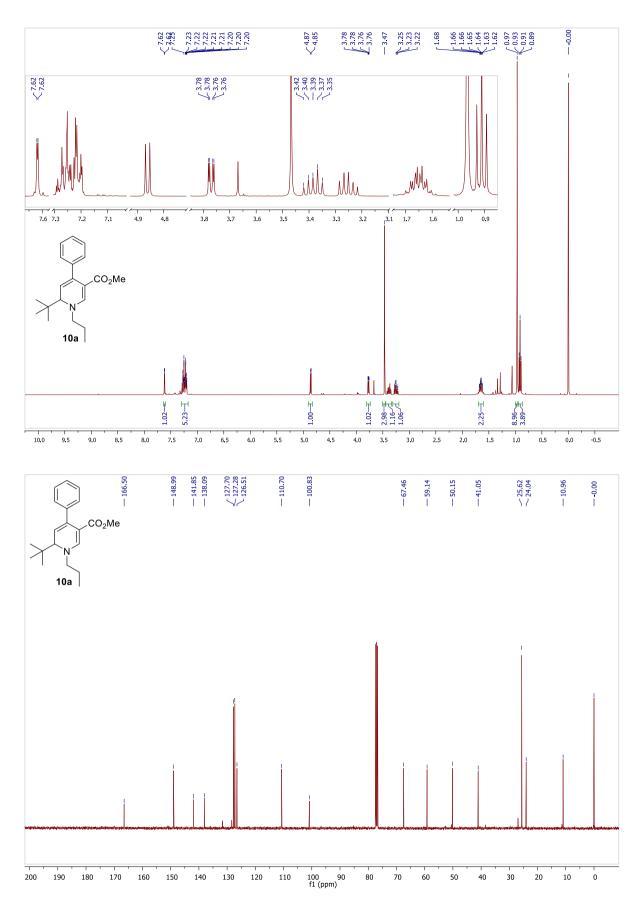


Figure 30. 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of 10a in CDCl₃.

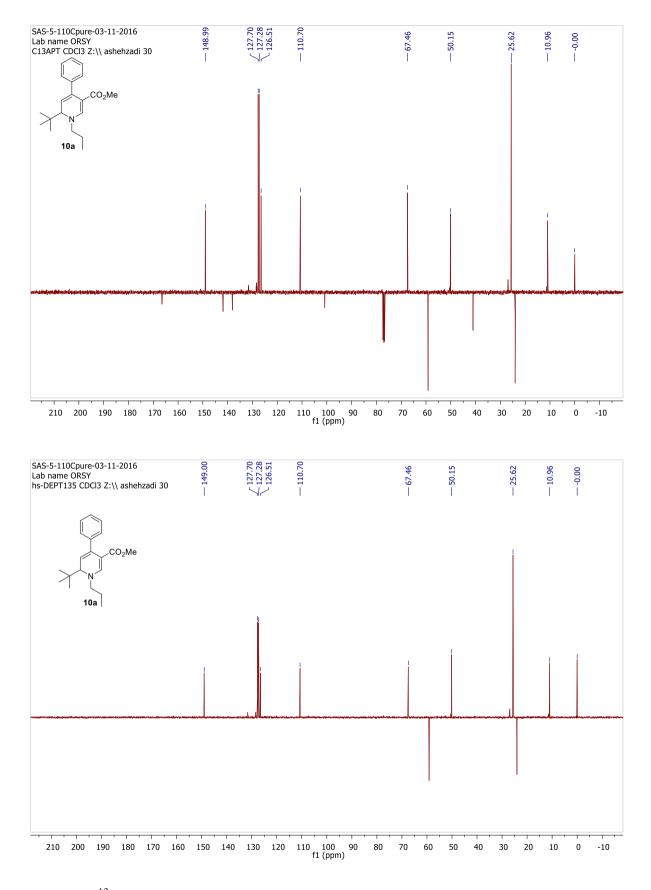


Figure 31. ¹³C APT and DEPT (100 MHz) spectra of 10a in CDCl₃.

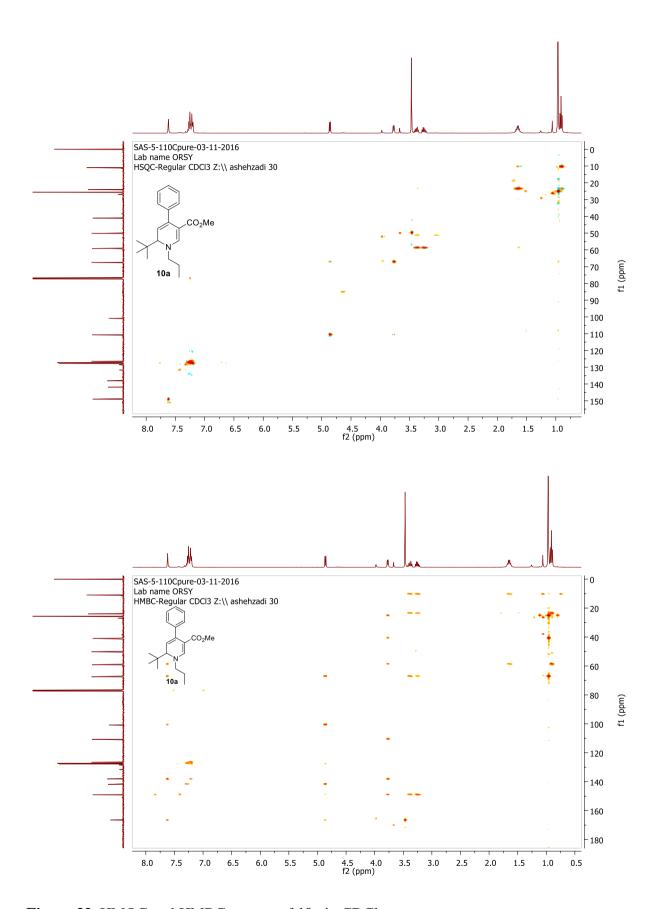
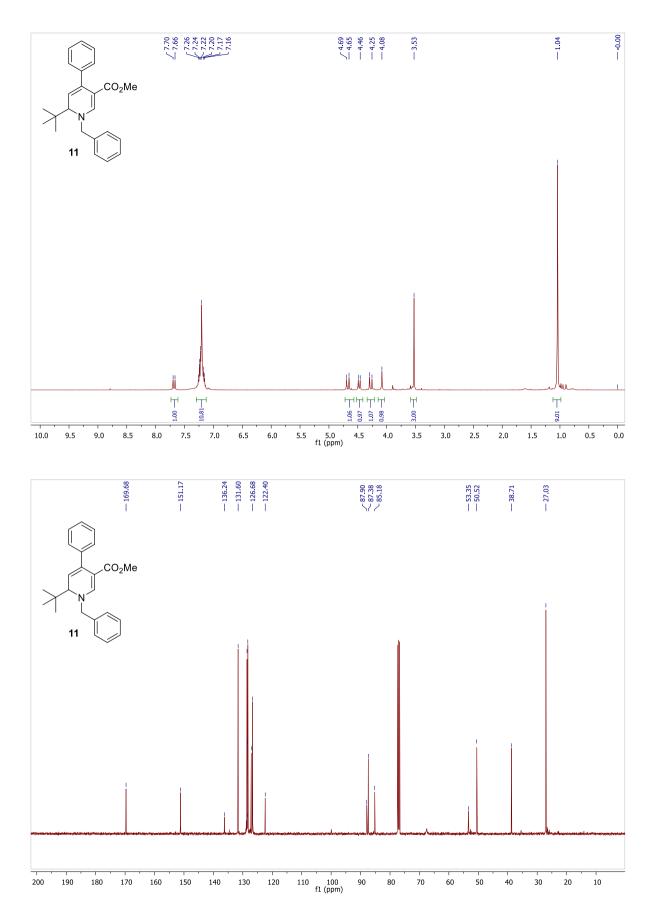


Figure 32. HMQC and HMBC spectra of 10a in CDCl₃.


$\label{lem:sas-sample} \begin{tabular}{ll} Methyl 1-benzyl-6-(\emph{tert}-butyl)-4-phenyl-1,6-dihydropyridine-3-carboxylate (11) SAS-5-111A \\ \end{tabular}$

CO₂Me

C₂₀H₂₇NO₂+H⁺: 362.2115; found 362.2110

For the synthesis of **11**, N-(2,2-dimethylpropylidene)-1-phenylmethanamine (**3l**) (0.5 mmol, 0.088 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), methyl propiolate (**5b**) (0.75 mmol, 0.063 g) and Zn(OTf)₂ (0.05 mmol 0.018 g) were reacted in 1 mL of DMF at 110 °C for 24 h. Alkaline work up and column chromatography afforded 118 mg (65%) of methyl 1-benzyl-6-(*tert*-butyl)-4-phenyl-1,6-dihydropyridine-3-carboxylate (**11**) as a yellow viscous oil that became solid after long standing; mp = 76-78 °C; R_f = 0.60 (Heptane/EtOAc: 90/10). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 13.3 Hz, 1H, HC=CCO₂Me), 7.29 – 7.14 (m, 10H), 4.67 (d, J = 16.4 Hz, 1H, NC(H)HPh), 4.48 (d, J = 13.2 Hz, 1H, HC=C), 4.28 (d, J = 16.4 Hz, 1H, NC(H)HPh), 4.08 (s, 1H, HCHC=C), 3.53 (s, 3H, OCH₃), 1.04 (s, 9H, C(CH₃)₃). ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 151.2, 136.3, 131.6, 128.6, 128.5, 128.3,

127.2, 126.7, 122.4, 87.9, 87.4, 85.2, 53.4, 50.5, 38.7, 27.0. **HRMS** (ESI) m/z calculated for

Figure 33. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra of **11** in CDCl₃.

Ethyl 6-(*tert*-butyl)-2-methyl-4-phenyl-1-propyl-1,6-dihydropyridine-3-carboxylate (12) SAS-5-81

CO₂Et

For the synthesis of **12**, N-(2,2-dimethylpropylidene)propan-1-amine (**3a**) (0.5 mmol, 0.064 g), phenylacetylene (**4a**) (0.5 mmol, 0.051 g), ethyl-2-butynoate (**5c**) (0.75 mmol, 0.084 g, 1.5 equiv) and $Zn(OTf)_2$ (0.05 mmol 0.018 g) were reacted together in 1 mL of DMF at 110 °C for 48 h. Alkaline work up and column chromatography over silica gel afforded 107 mg (63%) of ethyl 6-(*tert*-butyl)-2-methyl-4-phenyl-1-propyl-1,6-dihydropyridine-3-carboxylate (**12**) as a yellow viscous oil. $R_f = 0.50$ (Heptane/EtOAc: 90/10).

¹**H NMR** (400 MHz, CDCl₃): δ 7.25 – 7.17 (m, 5H, aromatic), 5.05 (d, J = 7.0 Hz, 1H, HC=C), 3.87 – 3.80 (m, 1H, NC(H)H), 3.69 (tdd, J = 10.7, 7.2, 3.6 Hz, 2H, OCH₂CH₃), 3.59 (d, J = 7.0 Hz, 1H, HCHC=C), 2.89 (dt, J = 14.4, 7.1 Hz, 1H, NC(H)H)), 2.47 (s, 3H, C=CCH₃), 1.60 – 1.45 (m, 2H, NCH₂CH₂), 0.92 (s, 9H, C(CH₃)₃), 0.85 (t, J = 7.3 Hz, 3H, CH₂CH₃), 0.58 (t, J = 7.1 Hz, 3H, OCH₂CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 168.5 (C=O), 154.5 (CH₃C=C), 143.6 (HCHC=C), 139.4 (C_{ipso}), 127.7 (Ph_{para}), 126.7 (Ph), 126.1 (Ph), 110.9 (HCHC=C), 105.4 (CH₃C=C), 68.7 (HCHC=C), 58.8 (OCH₂CH₃), 55.8 (NCH₂), 40.5 (C(CH₃)₃), 25.5 (C(CH₃)₃, 23.8 (NCH₂CH₂), 17.3 (CH₃C=C), 13.4 (OCH₂CH₃), 11.0 (CH₂CH₃). **HRMS** (ESI) m/z calculated for C₂₂H₃₁NO₂+H⁺: 342.2428; found 342.2430

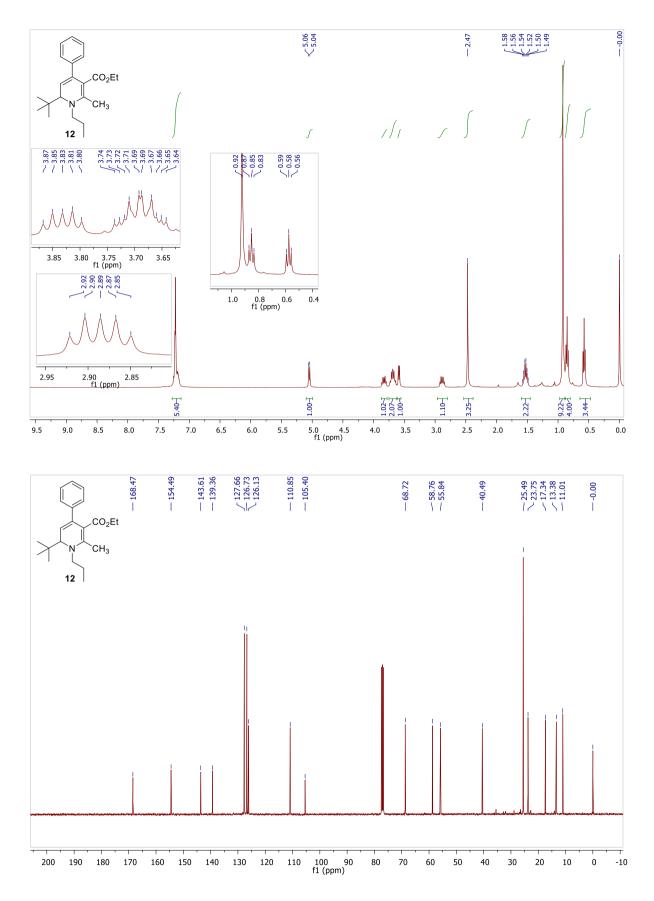


Figure 34. 1 H (400 MHz) and 13 C (100 MHz) NMR spectra of 12 in CDCl₃.

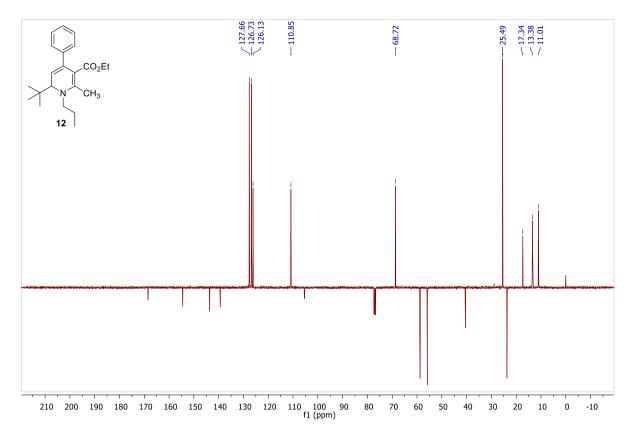
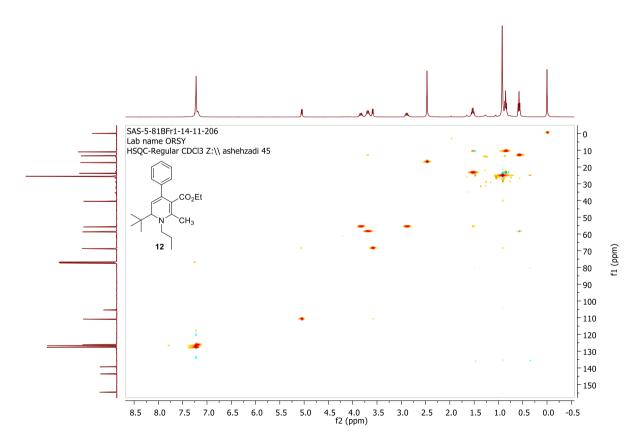



Figure 35. ¹³C-APT NMR spectrum of 12 in CDCl₃.

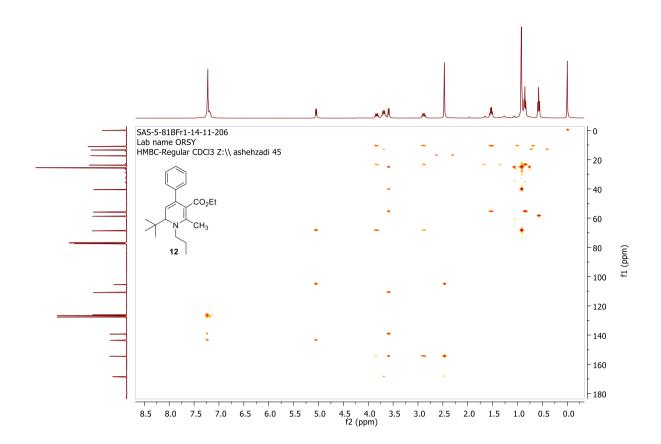


Figure 36. HMQC and HMBC spectra of 12 in CDCl₃.

5. References

1. S. Aaliya Shehzadi, Aamer Saeed, F. Lemière, B. U. W. Maes and K. Abbaspour Tehrani, *Eur. J. Org. Chem.*, 2018, 78.