Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

CONTENTS

- 1. General information
- 2. Optimization of the Reaction Condition
- **3. General Procedure**
- 4. Spectroscopic Data of Products
- 5. References
- 6. Copy of ¹H and ¹³C NMR Spectra of Products

1. General information

Except for the substituted quinoline N-oxides, all reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques, and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60~90 °C) and ethyl acetate as eluent. ¹H and ¹³C NMR spectra were taken on 400 MHz instruments and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and CDCl₃ or DMSO- d_6 as solvent. Mass spectra (MS) were measured on spectrometer by direct inlet at 70 eV.

The substituted quinoline N-oxides used here were synthesized according to the reported methods.^[1]

Entry	DIAD (eq.)	Oxidant	Additives (10 eq.)	Temp. (°C)	$\operatorname{Yield}^{b}(\%)$
1	2.0	$K_2S_2O_8$	MeOH	120	44
2	2.0	$K_2S_2O_8$	ⁱ PrOH	120	34
3	2.0	$K_2S_2O_8$	H ₂ O	120	47
4	2.0	DTBP	H ₂ O	120	62
5	2.0	BQ	H_2O	120	56
6	2.0	O ₂	H_2O	120	50
7	2.0	N_2	H_2O	120	55
8°	2.0	-	H_2O	120	71
9 <i>c</i> , <i>d</i>	2.0	-	H_2O	120	57
10 ^{<i>c</i>,<i>e</i>}	2.0	-	-	120	trace
11°	2.0	-	H_2O	90	83
12 ^c	2.0	-	H_2O	60	68
13 ^{c,f}	2.0	_	H_2O	90	88
14 ^c	2.2	-	H ₂ O	90	90

2.Optimization tables

^aReaction condition: quinoline N-oxide (0.5 mmol), DIAD (1.0 mmol), oxidant (1.0 mmol), additives (5.0 mmol), PdCl2 (10 mol%), solvent (2 mL), 120 °C, 16 h.

^{*b*}Isolated yield. ^{*c*}The reaction was performed in air condition. ^{*d*}2.5 mmol H_2O was added. ^{*e*}Without H_2O . ^{*f*}Solvent (1 mL).

Optimization of Reaction Conditions with the solvents

	$K_2S_2O_8$ CH ₃ OH PdCl ₂ (10 mol%)	
N O O	Solvents 120 °C 16 h H	Õ
Entry ^a	Solvent	Yield[%] ^b
1	DCE	22
2	Toluene	30
3	dioxane	35
4	AcOH	trace
5	MeCN	45
6	DMF	trace
7	DMSO	trace
8	THF	35

^aReaction conditions: quinoline N-oxide (0.5 mmol), DIAD (1 mmol), K₂S₂O₈ (1 mmol), MeOH (5 mmol), PdCl₂ (10 mol%), solvent 2 mL, 120 °C, 16 h. ^bIsolated yield.

Optimization of Reaction Conditions with the palladium catalyst

+ DIAD	K ₂ S ₂ O ₈ CH ₃ OH [Pd] (10 mol%) MeCN 120 °C 16 h	0
Entry ^a	[Pd]	Yield[%] ^b
1	Pd(OAc) ₂	43
2	Pd/C	25
3	$(PPh_3)_2PdCl_2$	43
4	[PdCl ₂ (cinnamyl)] ₂	33
5	Pd(TFA) ₂	19
6	Pd ₂ dba ₃	10
7	PdBr ₂	26
8	Pd(PPh ₃) ₄	27

^aReaction conditions: quinoline N-oxide (0.5 mmol), DIAD (1 mmol), K₂S₂O₈ (1 mmol), MeOH (5 mmol), [Pd] (10 mol%), MeCN 2 mL, 120 °C, 16 h. ^bIsolated yield.

Optimization of Reaction Conditions with the metal-based oxidant

+ DIAD	$\begin{array}{c} \text{Oxidant} \\ \text{H}_2\text{O} \\ \hline \text{PdCl}_2 (10 \text{ mol}\%) \\ \hline \text{MeCN} \\ 120 ^{\circ}\text{C} 16 \text{ h} \\ \end{array} $	
Entry ^a	Oxidant	Yield[%] ^b
1	Ag ₂ CO ₃	<5
2	Cu(AcO) ₂	<5
3	Mn(AcO) ₃ ·2H ₂ O	trace

^aReaction conditions: quinoline N-oxide (0.5 mmol), DIAD (1 mmol), Oxidant (1 mmol), H₂O (5 mmol), PdCl₂ (10 mol%), MeCN 2 mL, 120 °C, 16 h. ^bIsolated yield.

Optimization of Reaction Conditions with the amount of DIAD

+ DIAD	H ₂ O PdCl ₂ (10 mol%) MeCN 90 °C 16 h)
Entry ^a	Amount of DIAD	Yield[%] ^b
1	1.8 eq.	79
2	2.2 eq.	90
3	2.5 eq.	86
4	3.0 eq.	82
5	4.0 eq.	65
6	5.0 eq.	28
7 ^{c,d}	2.0 eq.	68
8	0 eq.	0

^aReaction conditions: quinoline N-oxide (0.5 mmol), DIAD, H₂O (5 mmol), PdCl₂ (10 mol%), MeCN 2 mL, 90 °C, 16 h.

^bIsolated yield. ^cRoom temperature. ^d36 h.

Optimization of Reaction Conditions with the amount of PdCl₂

^aReaction conditions: quinoline N-oxide (0.5 mmol), DIAD (1.1 mmol), H₂O (5 mmol), PdCl₂,

MeCN 2 mL, 90 °C, 16 h. ^bIsolated yield.

3. General Procedure

PdCl₂ (8.9 mg, 10 mol%), H₂O (90 mg, 5 mmol), substituted quinoline N-oxides (0.5 mmol), DIAD (216 μ L, 1.1 mmol) were transferred into an oven-dried tube. MeCN (1.5 mL) was added to the reaction tube. Then sealed the tube and the mixture was stirred at 90 °C for 16 h. After the reaction finished, The crude product was filtered and concentrated under vacuum and was purified by column chromatography on silica gel column EtOAc/petroleum ether (1:4 to 1:2, v/v) to give the desired product.

4.Spectroscopic Data of Products

Following General Procedure, using quinoline 1-oxide (72.6 mg, 0.5 mmol), compound **2a** (65 mg, 90% yield) was obtained. **2a** was an off-white powder.

¹**H NMR (400 MHz, CDCl₃)** δ 12.86 (s, 1H), 7.84 (d, *J* = 9.5 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.27 – 7.18 (t, 1H), 6.75 (d, *J* = 9.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.81, 141.11, 138.53, 130.68, 127.72, 122.70, 121.29, 119.92, 116.32.

8-methylquinolin-2(1H)-one, 2b, 67% yield

Following General Procedure, using 8-methylquinoline 1-oxide (79.6 mg, 0.5 mmol), compound (53.5 mg, 67% yield) was obtained. **2b** was a light yellow powder.

¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 7.78 (dd, J = 9.5, 1.7 Hz, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 7.3 Hz, 1H), 7.14 (td, J = 7.6, 1.7 Hz, 1H), 6.69 (dd, J = 9.5, 1.6 Hz, 1H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.50, 141.30, 136.91, 131.82, 126.06, 123.29, 122.24, 121.40, 119.69, 16.89.

5-methoxyquinolin-2(1H)-one, 2c, 73% yield

Following General Procedure, using 5-methoxyquinoline 1-oxide (87.6 mg, 0.5 mmol), compound **2c** (63.7 mg, 73% yield) was obtained. **2c** was a gray powder.

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.75 (s, 1H), 8.01 (d, *J* = 9.6 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 7.7 Hz, 1H), 6.42 (d, *J* = 9.6 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 162.38, 155.98, 140.54, 134.54, 131.80, 120.89, 109.75, 108.23, 103.10, 56.25.

Following General Procedure, using 7-fluoroquinoline 1-oxide (81.6 mg, 0.5 mmol), compound **2d** (68.2 mg, 84% yield) was obtained. **2d** was a brown powder.

¹**H NMR (400 MHz, DMSO-***d***₆)** δ 11.83 (s, 1H), 7.87 (t, *J* = 7.4 Hz, 1H), 7.53 (dt, *J* = 6.5, 3.0 Hz, 1H), 7.36 (ddd, *J* = 24.8, 8.9, 4.1 Hz, 2H), 6.56 (t, *J* = 7.2 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ 162.08, 158.51, 156.14, 139.86, 136.05, 123.65, 120.23, 120.14, 118.91, 118.67, 117.38, 117.30, 113.18, 112.96.

7-methylquinolin-2(1H)-one, 2e, 87% yield

Following General Procedure, using 7-methylquinoline 1-oxide (79.6 mg, 0.5 mmol), compound **2e** (69.4 mg, 87% yield) was obtained. **2e** was a light yellow powder.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 11.69 (s, 1H), 7.83 (d, *J* = 9.4 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.20 - 6.93 (m, 2H), 6.41 (d, *J* = 9.0 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (101 MHz, DMSO) δ 162.57, 140.87, 140.49, 139.46, 128.13, 123.62, 121.18, 117.46, 115.33, 21.82.

Following General Procedure, using 5-nitroquinoline 1-oxide (95 mg, 0.5 mmol), compound **2f** (61.2 mg, 65% yield) was obtained. **2f** was a khaki powder.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 12.30 (s, 1H), 8.26 (d, *J* = 9.1 Hz, 1H), 7.89 (s, 1H), 7.70 (d, *J* = 19.1 Hz, 2H), 6.77 (d, *J* = 9.1 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ 161.28, 146.72, 140.71, 134.67, 130.56, 125.81, 121.49, 118.96, 111.95.

H 6-methylquinolin-2(*1H*)-one, 2g, 80% yield

Following General Procedure, using 6-methylquinoline 1-oxide (79.6 mg, 0.5 mmol), compound

2g (63.3 mg, 80% yield) was obtained. 2g was a brown powder.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 11.68 (s, 1H), 7.82 (d, *J* = 8.9 Hz, 1H), 7.42 (s, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.21 (d, *J* = 7.4 Hz, 1H), 6.47 (d, *J* = 8.9 Hz, 1H), 2.32 (s, 3H).

¹³C NMR (101 MHz, DMSO) δ 162.30, 140.41, 137.31, 131.98, 131.11, 127.80, 122.31, 119.50, 115.48, 20.80.

2-oxo-1,2-dihydroquinolin-8-yl benzoate, 2h, 36% yield

Following General Procedure, using 8-(benzoyloxy)quinoline 1-oxide (133 mg, 0.5 mmol), compound **2h** (48 mg, 36% yield) was obtained. **2h** was a white powder.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 10.29 (s, 1H), 8.34 – 8.29 (m, 2H), 7.80 – 7.73 (m, 2H), 7.61 (t, *J* = 7.7 Hz, 2H), 7.50 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.46 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.27 (d, *J* = 7.8 Hz, 1H), 6.41 (d, *J* = 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.58, 162.56, 140.41, 136.84, 134.11, 131.13, 130.58, 128.76, 128.72, 125.36, 123.62, 122.48, 122.18, 121.22.

3-bromoquinolin-2(1H)-one, 2i, 61% yield

Following General Procedure, using 3-bromoquinoline 1-oxide (112 mg, 0.5 mmol), compound **2i** (69 mg, 61% yield) was obtained. **2i** was a khaki powder.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 12.27 (s, 1H), 8.48 (s, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ 158.13, 142.13, 138.60, 131.16, 127.75, 122.74, 119.83, 117.54, 115.67.

7-bromoquinolin-2(1H)-one, 2j, 71% yield

Following General Procedure, using 7-bromoquinoline 1-oxide (112 mg, 0.5 mmol), compound **2j** (80 mg, 71% yield) was obtained. **2j** was a brown powder.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 10.64 (s, 1H), 6.73 (d, *J* = 8.7 Hz, 1H), 6.44 (d, *J* = 7.0 Hz, 1H), 6.30 (s, 1H), 6.16 (d, *J* = 6.4 Hz, 1H), 5.36 (d, *J* = 8.1 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ 166.90, 145.17, 145.00, 135.01, 129.87, 128.63, 127.62, 123.40, 122.59.

6-methoxyquinolin-2(*1H*)-one, 2k, 58% yield

Following General Procedure, using 6-methoxyquinoline 1-oxide (87.5 mg, 0.5 mmol), compound **2k** (50.7 mg, 58% yield) was obtained. **2k** was a khaki powder.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 11.64 (s, 1H), 7.85 (d, *J* = 9.5 Hz, 1H), 7.28 – 7.19 (m, 2H), 7.16 (d, *J* = 2.8 Hz, 1H), 6.49 (d, *J* = 9.5 Hz, 1H), 3.78 (s, 3H).

¹³C NMR (101 MHz, DMSO) δ 166.71, 159.30, 144.99, 138.56, 127.53, 124.88, 124.70, 121.58, 114.53, 60.65.

5.References

[1]. Allyn T. Londregan, Kristen Burford, Edward L. Conn, and Kevin D. Hesp, *Org. Lett.* **2014**, 16, 3336.

6.Copy of ¹H and ¹³C NMR Spectra of Products

