Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting information

Eosin Y-Catalyzed, Visible-Light-Promoted Carbophosphinylation of Allylic Alcohols via Radical Neophyl Rearrangement

Yao Yin, Wei-Zhi Weng, Jian-Guo Sun, and Bo Zhang*

State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China

E-mail: zb3981444@cpu.edu.cn.

Table of contents

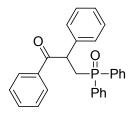
General	S2
General procedure for visible-light-promoted carbophosphinylation of allylic alcohols (GP)	S3
Physical data of the compounds	S3
Larger scale experiment	S16
Mechanistic studies	S17
Crystallographic data of 3la	S20
References	S21
NMR spectra	S22

General

All manipulations were conducted with a standard *Schlenk* tube under a nitrogen atmosphere. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Allylic alcohols **1a-1** were prepared according to a reported method.^[1] The P(O)H compounds **2b-g** were prepared according to a reported method.^[2] The P(O)H compound **2i** was prepared according to a reported method.^[3]

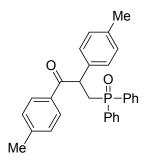
Flash column chromatography was carried out on silica gel (200-300 mesh). Thin layer chromatography (TLC) was performed using silica gel 60 F_{254} plates.

¹H NMR spectra were recorded on a *Bruker AV-300* spectrometer at room temperature. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). ³¹P NMR spectra were recorded on a *Bruker AV-300* spectrometer and using 85% H₃PO₄ as external standard. Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, br s = broad singlet), coupling constant (Hz) and integration. Data for ¹³C NMR are reported in terms of chemical shift and multiplicity where appropriate. Mass spectra were performed on an *Aglient 6530 Q-TOF* for HRMS. The yields were determined on a *METTLER TOLEDO ME 104* balance (accuracy: 0.1 mg).

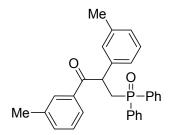

General procedure for visible-light-promoted carbophosphinylation of

allylic alcohols (GP):

Allylic alcohol 1 (0.2 mmol, 1.0 equiv), P(O)H compound 2 (0.5 mmol, 2.5 equiv), and eosin Y (0.02 mmol, 0.1 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then DMA (2.0 mL) was added. The reaction mixture was stirred and irradiated by 12 W blue LEDs (450 nm) at room temperature for 24 h. After the reaction was completed monitored by TLC, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash column chromatography on silica gel to afford the corresponding product.

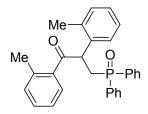

Physical data of the compounds

3-(Diphenylphosphoryl)-1,2-diphenylpropan-1-one (3aa)^[4]

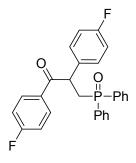

According to **GP** with 1,1-diphenylprop-2-en-1-ol **1a** (42.1 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.2 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.0 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3aa** as white solid (62.0 mg, 77%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.89-7.81 (m, 2H), 7.72-7.66 (m, 2H), 7.63-7.57 (m, 2H), 7.39-7.22 (m, 11H), 7.11-7.00 (m, 3H), 5.35-5.27 (m, 1H), 3.54-3.43 (m, 1H), 2.82-2.71 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 197.6 (d, *J* = 6.0 Hz), 138.3 (d, *J* = 7.1 Hz), 135.5, 133.2 (d, *J* = 40.1 Hz), 132.6, 131.8 (d, *J* = 40.1 Hz), 131.4 (d, *J* = 2.8 Hz), 131.1 (d, *J* = 2.8 Hz), 130.4 (dd, *J* = 10.7, 9.6 Hz), 128.6 (d, *J* = 9.4 Hz), 128.2 (d, *J* = 5.6 Hz), 128.1-128.0 (m), 127.0, 46.3 (d, *J* = 1.7 Hz), 33.6 (d, *J* = 70.4 Hz); ³¹**P NMR** (121.5 MHz, CDCl₃) δ 30.28; **HRMS** (ESI) calculated for C₂₇H₂₄O₂P [M+H]⁺ m/z 411.1508, found 411.1510.

3-(Diphenylphosphoryl)-1,2-di-p-tolylpropan-1-one (3ba)^[4]

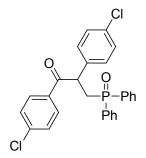
According to **GP** with 1,1-di-*p*-tolylprop-2-en-1-ol **1b** (47.9 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.5 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.5 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3ba** as white solid (55.0 mg, 63%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.72-7.65 (m, 2H), 7.60-7.54 (m, 2H), 7.41-7.26 (m, 6H), 7.09 (d, *J* = 7.8 Hz, 4H), 6.87 (d, *J* = 7.8 Hz, 2H), 5.28-5.20 (m, 1H), 3.46-3.36 (m, 1H), 2.81-2.71 (m, 1H), 2.29 (s, 3H), 2.16 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 197.5 (d, *J* = 7.1 Hz), 143.7, 136.8, 135.6 (d, *J* = 7.1 Hz), 133.5 (d, *J* = 52.7 Hz), 133.1, 132.2 (d, *J* = 53.3 Hz), 131.3 (dd, *J* = 40.1, 2.7 Hz), 130.7 (dd, *J* = 9.3, 5.5 Hz), 129.5, 129.0 (d, *J* = 3.8 Hz), 128.4, 128.2 (dd, *J* = 11.6, 2.8 Hz), 46.0 (d, *J* = 1.7 Hz), 33.8 (d, *J* = 71.0 Hz), 21.5, 20.8; ³¹**P NMR** (121.5 MHz, CDCl₃) δ 30.46; **HRMS** (ESI) calculated for C₂₉H₂₈O₂P [M+H]⁺ m/z 439.1821, found 439.1827.


3-(Diphenylphosphoryl)-1,2-di-*m*-tolylpropan-1-one (3ca)

According to **GP** with 1,1-di-*m*-tolylprop-2-en-1-ol **1c** (47.8 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.8 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.6 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3ca** as colourless oil (62.0 mg, 71%). ¹H **NMR** (300 MHz, CDCl₃) δ 7.72-7.56 (m, 6H), 7.37-7.27 (m, 6H), 7.20-7.12 (m, 2H), 7.06-6.95 (m, 3H), 6.81 (d, J = 7.2 Hz,

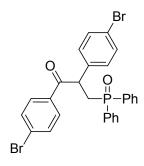

1H), 5.32-5.24 (m, 1H), 3.48-3.37 (m, 1H), 2.84-2.74 (m, 1H), 2.25 (s, 3H), 2.12 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.9 (d, J = 7.1 Hz), 138.2, 138.24, 138.21 (d, J = 7.1 Hz), 135.5, 133.5, 133.4 (d, J = 54.5 Hz), 132.0 (d, J = 53.9 Hz), 131.1 (dd, J = 22.0, 2.8 Hz), 130.4 (dd, J = 11.0, 9.3 Hz), 128.9 (d, J = 23.1 Hz), 128.4 (d, J = 23.6 Hz), 128.0 (d, J = 5.0 Hz), 129.9 (d, J = 6.1 Hz), 127.8, 125.8, 125.0, 46.3 (d, J = 1.7 Hz), 33.6 (d, J = 70.4 Hz), 21.0; ³¹P NMR (121.5 MHz, CDCl₃) δ 30.32; HRMS (ESI) calculated for C₂₉H₂₈O₂P [M+H]⁺ m/z 439.1821, found 439.1823.

3-(Diphenylphosphoryl)-1,2-di-*o*-tolylpropan-1-one (3da)

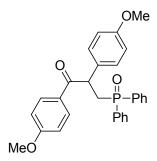

According to **GP** with 1,1-di-*o*-tolylprop-2-en-1-ol **1d** (47.7 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.5 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.8 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3da** as colourless oil (67.0 mg, 76%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.82-7.76 (m, 2H), 7.65-7.58 (m, 2H), 7.45-7.38 (m, 5H), 7.33-7.26 (m, 2H), 7.22-7.08 (m, 3H), 7.06-6.94 (m, 3H), 6.89 (d, *J* = 7.2 Hz, 1H), 5.29-5.21 (m, 1H), 3.67-3.56 (m, 1H), 2.69-2.59 (m, 1H), 2.13 (s, 3H), 2.10 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 201.8 (d, *J* = 6.6 Hz), 138.4, 137.4, 136.3, 136.0 (d, *J* = 7.7 Hz), 133.6 (d, *J* = 45.1 Hz), 132.3 (d, *J* = 44.6 Hz), 131.7 (d, *J* = 2.7 Hz), 131.4 (d, *J* = 2.2 Hz), 130.8 (dd, *J* = 23.1, 15.4 Hz), 130.6 (d, *J* = 2.2 Hz), 130.4, 128.4 (dd, *J* = 18.4, 11.8 Hz), 127.4, 127.3, 126.2, 125.2, 45.3 (d, *J* = 1.1 Hz), 32.8 (d, *J* = 70.3 Hz), 20.0, 19.6; ³¹**P NMR** (121.5 MHz, CDCl₃) δ 30.35; **HRMS** (ESI) calculated for C₂₉H₂₈O₂P [M+H]⁺ m/z 439.1821, found 439.1824.

3-(Diphenylphosphoryl)-1,2-bis(4-fluorophenyl)propan-1-one (3ea)^[4]

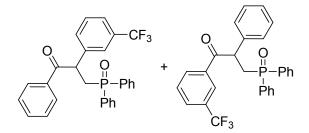
According to **GP** with 1,1-bis(4-fluorophenyl)prop-2-en-1-ol **1e** (49.5 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.5 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.2 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3ea** as white solid (44.5 mg, 50%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.90-7.86 (m, 2H), 7.72-7.65 (m, 2H), 7.60-7.54 (m, 2H), 7.46-7.28 (m, 6H), 7.20-7.16 (m, 2H), 7.03-6.97 (m, 2H), 6.80-6.74 (m, 2H), 5.30-5.22 (m, 1H), 3.41-3.31 (m, 1H), 2.84-2.73 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 196.3 (d, *J* = 7.7 Hz), 165.5 (d, *J* = 253.9 Hz), 161.8 (d, *J* = 245.0 Hz), 133.8 (dd, *J* = 6.6, 3.3 Hz), 133.7, 132.6 (d, *J* = 36.8 Hz), 131.7 (dd, *J* = 7.1, 2.8 Hz), 131.44 (d, *J* = 18.2 Hz), 131.42 (d, *J* = 9.9 Hz), 130.5 (dd, *J* = 9.6, 5.8 Hz), 139.9 (d, *J* = 8.3 Hz), 128.4 (dd, *J* = 14.7, 11.5 Hz), 115.6 (dd, *J* = 21.7, 16.8 Hz), 45.7 (d, *J* = 1.7 Hz), 33.8 (d, *J* = 70.4 Hz); ³¹**P NMR** (121.5 MHz, CDCl₃) δ 29.91; **HRMS** (ESI) calculated for C₂₇H₂₂F₂O₂P [M+H]⁺ m/z 447.1320, found 447.1323.


1,2-Bis(4-chlorophenyl)-3-(diphenylphosphoryl)propan-1-one (3fa)^[4]

According to **GP** with 1,1-bis(4-chlorophenyl)prop-2-en-1-ol **1f** (55.9 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.4 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.4 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3fa** as white solid (70.0 mg, 73%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.79 (d, *J*

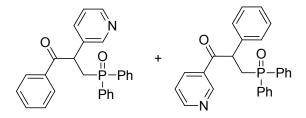

= 8.1 Hz, 2H), 7.73-7.66 (m, 2H), 7.60-7.53 (m, 2H), 7.39-7.27 (m, 8H), 7.13 (d, J = 8.1 Hz, 2H), 7.03 (d, J = 7.8 Hz, 2H), 5.28-5.21 (m, 1H), 3.42-3.31 (m, 1H), 2.84-2.74 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 196.3 (d, J = 7.7 Hz), 139.5, 136.3 (d, J = 6.6 Hz), 133.4 (d, J = 19.2 Hz), 132.4 (d, J = 29.6 Hz), 131.6 (d, J = 2.7 Hz), 131.3, 131.2 (d, J = 3.3 Hz), 130.4 (dd, J = 9.4, 3.3 Hz), 130.0, 129.6, 128.8 (d, J = 20.3 Hz), 128.3 (dd, J = 15.7, 11.8 Hz), 45.9 (d, J = 1.7 Hz), 33.5 (d, J = 70.3 Hz); ³¹P NMR (121.5 MHz, CDCl₃) δ 29.81; HRMS (ESI) calculated for C₂₇H₂₂Cl₂O₂P [M+H]⁺ m/z 479.0729, found 479.0732.

1,2-Bis(4-bromophenyl)-3-(diphenylphosphoryl)propan-1-one (3ga)^[4]


According to **GP** with 1,1-bis(4-bromophenyl)prop-2-en-1-ol **1g** (73.8 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.3 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.5 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3ga** as white solid (56.7 mg, 50%). **¹H NMR** (300 MHz, CDCl₃) δ 7.72-7.66 (m, 4H), 7.58-7.52 (m, 2H), 7.47-7.30 (m, 8H), 7.17 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 5.25-5.18 (m, 1H), 3.40-3.29 (m, 1H), 2.83-2.72 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 196.6 (d, J = 8.3 Hz), 136.8 (d, J = 6.5 H), 134.0, 133.1 (d, J = 74.2 H), 131.8 (d, J = 73.6 H), 132.3, 131.7, 131.3 (d, J = 2.8 Hz), 130.5 (dd, J = 9.6, 3.0 Hz), 130.2, 130.0, 128.4, 128.3 (dd, J = 12.4, 10.2 Hz), 121.6, 46.0 (d, J = 1.7 Hz), 33.5 (d, J = 70.3 Hz); ³¹P NMR (121.5 MHz, CDCl₃) δ 29.57; HRMS (ESI) calculated for C₂₇H₂₂Br₂O₂P [M+H]⁺ m/z 566.9719, found 566.9727.

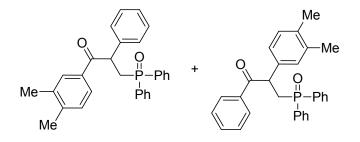
3-(Diphenylphosphoryl)-1,2-bis(4-methoxyphenyl)propan-1-one (3ha)^[4]

According to **GP** with 1,1-bis(4-methoxyphenyl)prop-2-en-1-ol **1h** (55.0 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.0 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.3 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 2/1) to afford the desired product **3ha** as white solid (57.8 mg, 61%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.71-7.65 (m, 2H), 7.60-7.54 (m, 2H), 7.43-7.27 (m, 6H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.59 (d, *J* = 8.4 Hz, 2H), 5.25-5.17 (m, 1H), 3.78 (s, 3H), 3.66 (s, 3H), 3.41-3.30 (m, 1H), 2.83-2.73 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 196.5 (d, *J* = 7.1 Hz), 163.2, 158.5, 131.5 (d, *J* = 2.2 Hz), 131.1, 131.0 (d, *J* = 2.2 Hz), 130.8, 130.6 (dd, *J* = 9.3, 3.8 Hz), 129.3, 128.5, 128.2 (dd, *J* = 13.2, 11.6 Hz), 114.1, 113.5, 55.3, 55.0, 45.3 (d, *J* = 1.7 Hz), 33.7 (d, *J* = 71.0 Hz); ³¹**P NMR** (121.5 MHz, CDCl₃) δ 30.45; **HRMS** (ESI) calculated for C₂₉H₂₈O₄P [M+H]⁺ m/z 471.1720, found 471.1726.

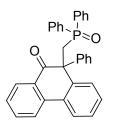

3-(Diphenylphosphoryl)-1-phenyl-2-(3-(trifluoromethyl)phenyl)propan-1-one (3ia) and 3-(diphenylphosphoryl)-2-phenyl-1-(3-(trifluoromethyl)phenyl)propan-1-one (3ia')^[4]

According to **GP** with 1-phenyl-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-ol **1i** (56.0 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.4 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.5 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to

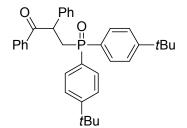
afford the desired product **3ia+3ia'** as colourless oil (55.0 mg, 57%, **3ia/3ia'** = 2.5:1). ¹**H NMR** (300 MHz, CDCl₃) δ **3ia**: 7.89 (d, J = 7.5 Hz, 2H), 7.73-7.05 (m, 17H), 5.49-5.41 (m, 1H), 3.44-3.31 (m, 1H), 2.94-2.84 (m, 1H); **3ia'**: 8.07 (s, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.73-7.05 (m, 17H), 5.33-5.25 (m, 1H), 3.59-3.48 (m, 1H), 2.82-2.74 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) **3ia+3ia'** CF₃-signal could not be assigned δ 197.3 (d, J = 8.8 Hz), 196.4 (d, J = 6.0 Hz), 138.8 (d, J = 6.0 Hz), 137.7 (d, J = 8.3Hz), 136.0, 135.0, 133.5, 133.1, 132.3 (d, J = 12.7 Hz), 131.9, 131.7, 131.3 (d, J = 2.7Hz), 131.2 (d, J = 2.8 Hz), 130.6, 130.5 (d, J = 3.8 Hz), 130.4 (d, J = 2.8 Hz), 130.3 (d, J = 4.4 Hz), 129.2, 128.9, 128.6, 128.4, 128.3, 128.2 (d, J = 2.7 Hz), 128.0 (d, J = 3.9Hz), 127.4, 125.3 (d, J = 3.7 Hz), 125.3, 124.9 (q, J = 3.7 Hz), 124.1 (q, J = 3.6 Hz), 121.6, 46.7 (d, J = 1.7 Hz), 46.0 (d, J = 1.7 Hz), 33.7 (d, J = 69.8 Hz), 33.5 (d, J =70.4 Hz); ³¹**P NMR** (121.5 MHz, CDCl₃) **3ia+3ia'** δ 30.07, 29.62; **HRMS** (ESI) calculated for C₂₈H₂₃F₃O₂P [M+H]⁺ m/z 479.1382, found 479.1385.


3-(Diphenylphosphoryl)-1-phenyl-2-(pyridin-3-yl)propan-1-one (3ja) and 3-(diphenylphosphoryl)-2-phenyl-1-(pyridin-3-yl)propan-1-one (3ja')^[4]

According to **GP** with 1-phenyl-1-(pyridin-3-yl)prop-2-en-1-ol **1j** (42.5 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.5 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.2 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (dichloromethane/MeOH = 100/1) to afford the desired product **3ja+3ja'** as white solid (58.0 mg, 70%, **3ja/3ja'** = 2.9:1). ¹**H NMR** (300 MHz, CDCl₃) δ **3ja**: 8.52 (s, 1H), 8.28 (d, *J* = 4.2 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 2H), 7.74-7.67 (m, 3H), 7.69-7.29 (m, 9H), 7.25-7.21 (m, 1H), 7.17-7.09 (m, 1H), 7.00-6.96 (m, 1H), 5.40-5.33 (m, 1H), 3.46-3.35 (m, 1H), 2.89-2.79 (m, 1H); **3ja'**: 9.02 (s, 1H), 8.63 (d, *J* = 3.9 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.69-7.29 (m, 15H), 7.17-7.09 (m, 1H), 5.26-5.17 (m, 1H), 3.59-3.49 (m, 1H), 2.75-2.70 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) **3ja+3ja'** δ 197.3 (d, *J* = 7.7 Hz), 153.1, 150.0, 149.8, 148.6, 136.0, 135.6, 135.0, 134.0 (d, *J* = 6.6 Hz), 133.4, 132.6, 132.1, 131.8 (d, *J* = 2.8 Hz), 131.5 (d, *J* = 2.8 Hz), 130.8, 130.5 (dd, *J* = 9.3, 5.5 Hz), 130.6 (d, *J* = 9.4 Hz), 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 123.5, 123.2, 43.9 (d, *J* = 1.7 Hz), 33.5 (d, *J*

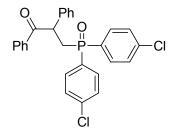

= 69.8 Hz); ³¹P NMR (121.5 MHz, CDCl₃) **3ja+3ja'** δ 30.10, 29.62; **HRMS** (ESI) calculated for C₂₆H₂₂NO₂PNa [M+Na]⁺ m/z 434.1280, found 434.1281.

1-(3,4-Dimethylphenyl)-3-(diphenylphosphoryl)-2-phenylpropan-1-one (3ka) and 2-(3,4-dimethylphenyl)-3-(diphenylphosphoryl)-1-phenylpropan-1-one (3ka')^[4]

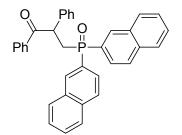

According to GP with 1-(3,4-dimethylphenyl)-1-phenylprop-2-en-1-ol 1k (48.0 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide 2a (101.4 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.4 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product 3ka+3ka' as white solid (60.0 mg, 68%, 3ka/3ka' = 3.3:1). ¹H NMR (300 MHz, CDCl₃) δ 3ka: 7.86-7.85 (m, 1H), 7.72-7.66 (m, 2H), 7.62-7.55 (m, 3H), 7.41-7.22 (m, 9H), 7.09-6.95 (m, 3H), 5.34-5.26 (m, 1H), 3.50-3.39 (m, 1H), 2.84-2.73 (m, 1H), 2.17 (s, 6H); 3ka': 7.72-7.66 (m, 2H), 7.62-7.55 (m, 3H), 7.41-7.22 (m, 9H), 7.09-6.95 (m, 3H), 6.84 (d, J = 7.5 Hz, 1H), 5.26–5.20 (m, 1H), 3.41– 3.34 (m, 1H), 2.84-2.73 (m, 1H), 2.04 (s, 3H), 2.02 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 3ka+3ka' δ 197.8 (d, J = 7.1 Hz), 197.6 (d, J = 7.1 Hz), 142.4, 138.7 (d, J = 6.6 Hz), 136.9, 136.5, 135.62 (d, J = 7.2 Hz), 135.55 (d, J = 8.8 Hz), 133.8, 133.4, 133.1 (d, J = 2.8 Hz), 132.7, 132.5, 131.4 (d, J = 2.7 Hz), 131.2 (d, J = 2.7 Hz), 130.7, 130.6 (d, J = 9.4 Hz), 130.5, 130.4, 129.8, 129.44, 129.42, 128.7, 128.4, 128.22, 128.20, 128.16, 128.1, 128.0, 127.9 (d, J = 11.6 Hz), 127.0, 126.5, 125.5, 46.2 (d, J =1.7 Hz), 46.1 (d, J = 2.2 Hz), 33.8 (d, J = 70.4 Hz), 33.6 (d, J = 70.3 Hz), 19.8, 19.54, 19.49, 19.1; ³¹P NMR (121.5 MHz, CDCl₃) 3ka+3ka' δ 30.4, 30.3; HRMS (ESI) calculated for $C_{29}H_{28}O_2P [M+H]^+ m/z 439.1821$, found 439.1827.

10-((Diphenylphosphoryl)methyl)-10-phenylphenanthren-9(10H)-one (3la)

According to **GP** with 9-(1-phenylvinyl)-9*H*-fluoren-9-ol **11** (57.1 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.2 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.2 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3la** as white solid (40.1 mg, 41%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.02-7.97 (m, 3H), 7.61-7.51 (m, 5H), 7.45-7.40 (m, 1H), 7.36-7.20 (m, 7H), 7.11-7.08 (m, 5H), 7.03 (d, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 1H), 4.61-4.53 (m, 1H), 3.45-3.37 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 197.7 (d, *J* = 1.1 Hz), 142.7, 142.5, 138.8 (d, *J* = 2.8 Hz), 136.9, 134.4 (d, *J* = 7.7 Hz), 134.2, 133.1 (d, *J* = 8.3 Hz), 131.2 (d, *J* = 2.8 Hz), 131.1 (d, *J* = 9.3 Hz), 130.8, 130.6 (d, *J* = 7.1 Hz), 128.5, 128.4 (d, *J* = 7.1 Hz), 128.2, 128.1 (d, *J* = 2.3 Hz), 128.0, 127.7, 127.2, 127.0, 123.4, 122.9, 56.3 (d, *J* = 2.7 Hz), 40.5 (d, *J* = 69.2 Hz); ³¹**P NMR** (121.5 MHz, CDCl₃) δ 26.66; **HRMS** (ESI) calculated for C₃₃H₂₆O₂P [M+H]⁺ m/z 485.1665, found 485.1668.

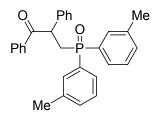

3-(Bis(4-(*tert*-butyl)phenyl)phosphoryl)-1,2-diphenylpropan-1-one (3ab)

According to **GP** with 1,1-diphenylprop-2-en-1-ol **1a** (42.3 mg, 0.2 mmol, 1.0 equiv), bis(4-(*tert*-butyl)phenyl)phosphine oxide **2b** (151.2 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.2 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 4/1) to afford the desired product **3ab** as white solid (80.1 mg, 77%). ¹H **NMR** (300 MHz, CDCl₃) δ 7.82 (d, *J* = 7.5 Hz, 2H), 7.66-7.50 (m, 4H), 7.41-7.21 (m, 9H), 7.09-6.98 (m, 3H), 5.34-5.26 (m, 1H), 3.49-3.38 (m, 1H), 2.82-2.70 (m, 1H), 1.27 (s, 9H), 1.23 (s, 9H); ¹³C **NMR** (75 MHz, CDCl₃) δ 197.9 (d, *J* = 6.6 Hz), 154.8 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 154.8 (d, *J* = 2.8 Hz), 154.8 (d, *J* = 2.8 Hz), 154.8 (d, *J* = 2.8 Hz), 154.9 (d, *J* = 2.8 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 138.5 (d, *J* = 7.2 Hz), 135.6, 132.7, 130.5 (dd, *J* = 16.2, 9.7 Hz), 130.0 (d, *J* = 2.8 Hz), 154.8 (d,

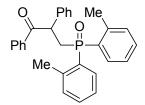

= 43.4 Hz), 128.7 (d, J = 44.0 Hz), 128.7, 128.2 (d, J = 7.2 Hz), 127.0, 124.7 (dd, J = 11.6, 7.1 Hz), 46.3 (d, J = 1.1 Hz), 34.7, 34.6, 34.1 (d, J = 70.4 Hz), 30.89, 30.86; ³¹P **NMR** (121.5 MHz, CDCl₃) δ 30.2; **HRMS** (ESI) calculated for C₃₅H₄₀O₂P [M+H]⁺ m/z 523.2760, found 523.2770.

3-(Bis(4-chlorophenyl)phosphoryl)-1,2-diphenylpropan-1-one (3ac)

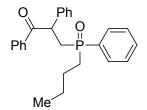
According to **GP** with 1,1-diphenylprop-2-en-1-ol **1a** (42.5 mg, 0.2 mmol, 1.0 equiv), bis(4-chlorophenyl)phosphine oxide **2c** (135.6 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.4 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3ac** as white solid (45.8 mg, 48%). ¹H **NMR** (300 MHz, CDCl₃) δ 7.84 (d, *J* = 7.8 Hz, 2H), 7.63-7.57 (m, 2H), 7.51-7.41 (m, 3H), 7.34-7.26 (m, 6H), 7.22 (d, *J* = 7.2 Hz, 2H), 7.13-7.05 (m, 3H), 5.32-5.24 (m, 1H), 3.45-3.34 (m, 1H), 2.82-2.72 (m, 1H); ¹³C **NMR** (75 MHz, CDCl₃) δ 197.7 (d, *J* = 7.1 Hz), 138.5 (d, *J* = 3.3 Hz), 138.11 (d, *J* = 3.3 Hz), 138.07 (d, *J* = 7.1 Hz), 135.4, 133.1, 132.0 (dd, *J* = 13.5, 10.2 Hz), 130.9 (d, *J* = 56.0 Hz), 129.0, 128.9, 128.8, 128.6, 128.3 (d, *J* = 8.8 Hz), 127.4, 46.4 (d, *J* = 1.7 Hz), 33.7 (d, *J* = 71.5 Hz); ³¹P **NMR** (121.5 MHz, CDCl₃) δ 29.4; **HRMS** (ESI) calculated for C₂₇H₂₁Cl₂O₂PNa [M+Na]⁺ m/z 501.0548, found 501.0553.


3-(Di(naphthalen-2-yl)phosphoryl)-1,2-diphenylpropan-1-one (3ad)

According to **GP** with 1,1-diphenylprop-2-en-1-ol **1a** (42.7 mg, 0.2 mmol, 1.0 equiv), di(naphthalen-2-yl)phosphine oxide **2d** (151.2 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.4 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash

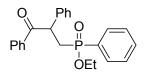

silica gel column chromatography (petroleum ether/EtOAc = 4/1) to afford the desired product **3ad** as white solid (50.2 mg, 49%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.36-8.25 (m, 2H), 7.83-7.74 (m, 8H), 7.68-7.44 (m, 6H), 7.38-7.17 (m, 5H), 7.05-7.01 (m, 2H), 6.95-6.90 (m, 1H), 5.42-5.34 (m, 1H), 3.71-3.61 (m, 1H), 3.00-2.90 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 197.9 (d, *J* = 6.6 Hz), 138.5 (d, *J* = 7.7 Hz), 135.5, 134.4 (d, *J* = 2.7 Hz), 134.3 (d, *J* = 2.2 Hz), 132.9, 132.8 (d, *J* = 3.8 Hz), 132.7 (d, *J* = 4.4 Hz), 132.4, 132.2, 130.5 (d, *J* = 35.7 Hz), 129.2 (d, *J* = 35.2 Hz), 128.83, 128.76, 128.7, 128.3, 128.2 (d, *J* = 9.9 Hz), 128.1, 128.0, 127.7, 127.6, 127.3, 126.7, 125.7 (d, *J* = 10.4 Hz), 125.5 (d, *J* = 11.0 Hz), 46.6 (d, *J* = 1.7 Hz), 33.8 (d, *J* = 70.4 Hz); ³¹**P NMR** (121.5 MHz, CDCl₃) δ 30.60; **HRMS** (ESI) calculated for C₃₅H₂₇O₂PNa [M+Na]⁺ m/z 533.1641, found 533.1644.

3-(Di-*m*-tolylphosphoryl)-1,2-diphenylpropan-1-one (3ae)

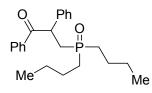

According to **GP** with 1,1-diphenylprop-2-en-1-ol **1a** (42.4 mg, 0.2 mmol, 1.0 equiv), di-*m*-tolylphosphine oxide **2e** (115.2 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.2 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3ae** as colourless oil (70.0 mg, 80%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.84 (d, *J* = 7.8 Hz, 2H), 7.54 (d, *J* = 12.0 Hz, 1H), 7.44-7.37 (m, 4H), 7.33-7.20 (m, 8H), 7.14-7.02 (m, 3H), 5.34-5.26 (m, 1H), 3.50-3.39 (m, 1H), 2.80-2.70 (m, 1H), 2.27 (s, 3H), 2.24 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 197.9 (d, *J* = 6.6 Hz), 138.6 (d, *J* = 7.7 Hz), 138.2 (d, *J* = 11.6 Hz), 138.1 (d, *J* = 11.6 Hz), 135.6, 133.2 (d, *J* = 47.3 Hz), 132.9, 132.2 (dd, *J* = 13.2, 2.8 Hz), 131.9 (d, *J* = 46.7 Hz), 131.2 (dd, *J* = 10.7, 9.1 Hz), 128.8, 128.3, 128.2 (dd, *J* = 12.7, 6.6 Hz), 127.6 (dd, *J* = 9.9, 7.8 Hz), 127.2, 46.4 (d, *J* = 1.6 Hz), 33.9 (d, *J* = 69.8 Hz), 21.2 (d, *J* = 2.8 Hz); ³¹**P NMR** (121.5 MHz, CDCl₃) δ 30.69; **HRMS** (ESI) calculated for C₂₉H₂₈O₂P [M+H]⁺ m/z 439.1821, found 439.1826.

3-(Di-o-tolylphosphoryl)-1,2-diphenylpropan-1-one (3af)

According to **GP** with 1,1-diphenylprop-2-en-1-ol **1a** (42.8 mg, 0.2 mmol, 1.0 equiv), di-*o*-tolylphosphine oxide **2f** (115.6 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.4 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3af** as colourless oil (72.6 mg, 83%). **¹H NMR** (300 MHz, CDCl₃) δ 7.86-7.68 (m, 4H), 7.43-7.38 (m, 1H), 7.35-7.26 (m, 6H), 7.23-7.13 (m, 4H), 7.11-7.06 (m, 3H), 5.35-5.26 (m, 1H), 3.81-3.70 (m, 1H), 2.85-2.75 (m, 1H), 2.21 (s, 3H), 2.16 (s, 3H); **¹³C NMR** (75 MHz, CDCl₃) δ 197.5 (d, *J* = 4.4 Hz), 141.3 (dd, *J* = 19.5, 9.1 Hz), 139.1 (d, *J* = 8.8 Hz), 135.6, 132.8, 132.4 (d, *J* = 9.8 Hz), 131.8-131.4 (m), 130.3 (d, *J* = 27.6 Hz), 128.9, 128.7, 128.2, 128.1, 127.2, 125.4 (dd, *J* = 11.6, 1.7 Hz), 46.0 (d, *J* = 1.1 Hz), 32.5 (d, *J* = 69.8 Hz), 21.1 (d, *J* = 4.4 Hz), 21.0 (d, *J* = 4.4 Hz); ^{**3**1}**P NMR** (121.5 MHz, CDCl₃) δ 30.58; **HRMS** (ESI) calculated for C₂₉H₂₈O₂P [M+H]⁺ m/z 439.1821, found 439.1827.

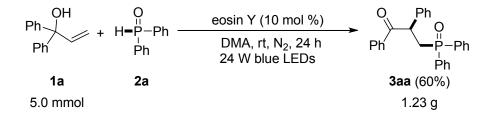

3-(Butyl(phenyl)phosphoryl)-1,2-diphenylpropan-1-one (3ag)

According to **GP** with 1,1-diphenylprop-2-en-1-ol **1a** (42.5 mg, 0.2 mmol, 1.0 equiv), butyl(phenyl)phosphine oxide **2g** (91.4 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.4 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3ag** as colourless oil (40.2 mg, 51%, d.r. = 1:1). ¹**H NMR** (300 MHz, CDCl₃) δ 7.98 (d, *J* = 7.8 Hz, 2H), 7.81 (d, *J* = 8.1 Hz, 2H), 7.68-7.62 (m, 2H), 7.55-7.49 (m, 2H), 7.43-7.28 (m, 14H), 7.22-7.15 (m, 4H), 7.08-6.97 (m, 4H), 5.28-5.18 (m, 2H), 3.18-3.07 (m, 1H), 3.04-2.93 (m, 1H), 2.55-2.47 (m, 1H), 2.44-2.34 (m, 1H), 1.97-1.78 (m, 2H), 1.65-1.43 (m, 4H), 1.19-1.23 (m, 6H), 0.79 (d, *J* = 6.9 Hz, 3H), 0.74 (d, *J* = 6.9 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 198.2 (d, *J* = 6.6 Hz), 197.7 (d, *J* = 7.2 Hz),


138.8 (d, J = 7.1 Hz), 138.2 (d, J = 7.7 Hz), 135.43, 135.37, 132.9, 132.8, 132.7, 131.7, 131.5, 131.2 (d, J = 2.7 Hz), 130.8 (d, J = 2.8 Hz), 130.2 (d, J = 8.8 Hz), 129.8 (d, J = 8.8 Hz), 129.8 (d, J = 8.8 Hz), 128.9, 128.7, 128.6, 128.5, 128.21, 128.18, 128.10, 128.0, 127.9, 127.3, 127.0, 46.6 (d, J = 2.2 Hz), 46.2 (d, J = 1.7 Hz), 33.9 (d, J = 65.9 Hz), 33.5 (d, J = 65.9 Hz), 30.6 (d, J = 68.2 Hz), 29.7 (d, J = 68.2 Hz), 23.62 (d, J = 14.8 Hz), 23.55 (d, J = 15.5 Hz), 23.11, 23.05, 13.2, 13.1; ³¹P NMR (121.5 MHz, CDCl₃) δ 39.25, 38.92; HRMS (ESI) calculated for C₂₅H₂₈O₂P [M+H]⁺ m/z 391.1821, found 391.1823.

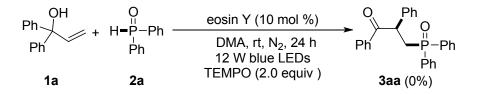
Ethyl (3-oxo-2,3-diphenylpropyl)(phenyl)phosphinate (3ah)^[4]

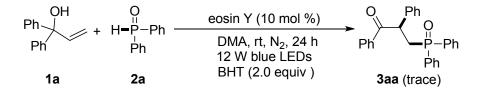
According to GP with 1,1-diphenylprop-2-en-1-ol 1a (42.4 mg, 0.2 mmol, 1.0 equiv), ethyl phenylphosphinate 2h (177.4 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.2 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 4/1) to afford the desired product **3ah** as colourless oil (60.0 mg, 79%, d.r. = 1:1). ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 7.5 Hz, 2H), 7.87 (d, J = 7.5 Hz, 2H), 7.74-7.64 (m, 4H), 7.50-7.23 (m, 18H), 7.19-7.03 (m, 4H), 5.26-5.20 (m, 2H), 3.96-3.84 (m, 2H), 3.79-3.65 (m, 2H), 3.25-3.12 (m, 1H), 3.07-2.95 (m, 1H), 2.52-2.32 (m, 2H), 1.10 (t, J = 7.4Hz, 3H), 1.05 (t, J= 7.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 197.8 (d, J = 6.6 Hz), 197.6 (d, J = 6.6 Hz), 138.9 (d, J = 9.9 Hz), 138.2 (d, J = 9.9 Hz), 135.9, 135.7, 132.9, 132.2 (d, J = 2.8 Hz), 132.0 (d, J = 2.8 Hz), 131.6, 131.5, 131.4, 129.8 (d, J = 19.3 Hz), 128.9, 128.8, 128.7, 128.7, 128.5, 128.4, 128.31, 128.27, 128.2, 127.3, 127.2, 60.43 (d, J = 6.6 Hz), 60.39 (d, J = 6.1 Hz), 46.9 (d, J = 1.1 Hz), 46.5 (d, J = 1.7 Hz), 34.0 (d, J = 98.9 Hz),33.8 (d, J = 98.9 Hz), 16.1 (d, J = 6.6 Hz), 16.0 (d, J = 6.6 Hz); ³¹P NMR (121.5 MHz, CDCl₃) δ 42.37, 42.07; **HRMS** (ESI) calculated for C₂₃H₂₄O₃P [M+H]⁺ m/z 379.1458, found 379.1458.


3-(Dipropylphosphoryl)-1,2-diphenylpropan-1-one (3ai)

According to GP with 1,1-diphenylprop-2-en-1-ol 1a (42.3 mg, 0.2 mmol, 1.0 equiv),

dipropylphosphine oxide **2i** (81.2 mg, 0.5 mmol, 2.5 equiv), and eosin Y (13.6 mg, 0.02 mmol, 0.1 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 4/1) to afford the desired product **3ai** as colourless oil (25.1 mg, 34%). ¹**H NMR** (300 MHz, CDCl₃) δ 8.01 (d, *J* = 7.8 Hz, 2H), 7.49-7.35 (m, 5H), 7.33-7.26 (m, 2H), 7.22-7.17 (m, 1H), 5.28-5.21 (m, 1H), 2.78-2.67 (m, 1H), 2.20-2.10 (m, 1H), 1.68-1.46 (m, 6H), 1.41-1.19 (m, 6H), 0.89 (d, *J* = 7.1 Hz, 3H), 0.80 (d, *J* = 6.9 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 198.3 (d, *J* = 6.6 Hz), 138.9 (d, *J* = 6.6 Hz), 135.4, 132.9, 128.9, 128.7, 128.24, 128.17, 127.3, 46.5 (d, J = 2.3 Hz), 31.0 (d, J = 63.2 Hz), 31.0 (d, J = 64.9 Hz), 23.1 (d, J = 64.3 Hz), 23.9 (d, J = 8.9 Hz), 23.7 (d, J = 8.8 Hz), 23.5 (d, J = 3.3 Hz), 23.3 (d, J = 3.8 Hz), 13.3, 13.2; ³¹**P NMR** (121.5 MHz, CDCl₃) δ 48.26; **HRMS** (ESI) calculated for C₂₃H₃₂O₂P [M+Na]⁺ m/z 371.2134, found 371.2134.

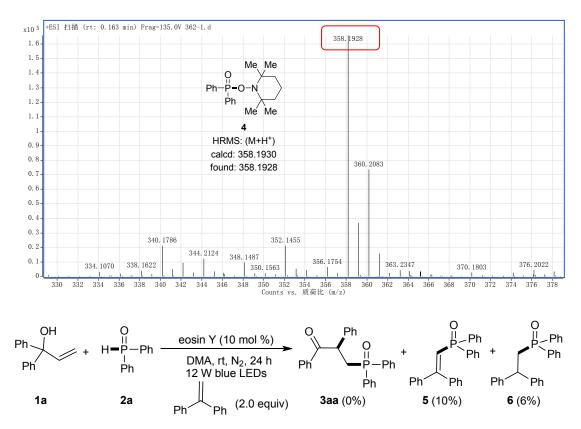

Larger scale experiment


1,1-Diphenylprop-2-en-1-ol **1a** (1.05 g, 5.0 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (2.50 g, 12.5 mmol, 2.5 equiv), and eosin Y (0.32 g, 0.5 mmol, 0.1 equiv) were placed in a dry 100 mL Schlenk tube under a nitrogen atmosphere. Then DMA (20.0 mL) was added. The reaction mixture was stirred and irradiated by 24 W blue LEDs (450 nm) at room temperature for 24 h. After the reaction was completed monitored by TLC, H₂O (50.0 mL) was added, and the mixture was extracted by EtOAc (3x50.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the desired product **3aa** (1.23g, 60%).

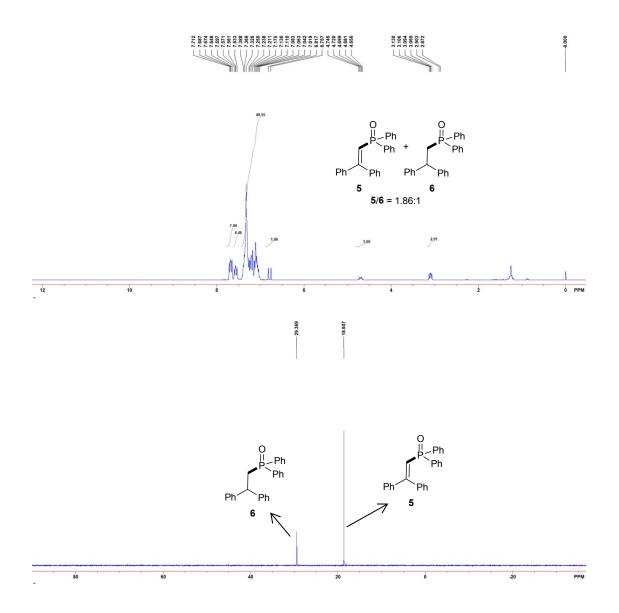
Mechanistic studies

Radical inhibition experiments:

1,1-Diphenylprop-2-en-1-ol **1a** (42.5 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.2 mg, 0.5 mmol, 2.5 equiv), eosin Y (13.1 mg, 0.02 mmol, 0.1 equiv), and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (62.4 mg, 0.4 mmol, 2.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then DMA (2.0 mL) was added. The reaction mixture was stirred and irradiated by 12 W blue LEDs (450 nm) at room temperature for 24 h. In this reaction, the formation of **3aa** was completely suppressed.


1,1-Diphenylprop-2-en-1-ol **1a** (43.0 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.3 mg, 0.5 mmol, 2.5 equiv), eosin Y (13.4 mg, 0.02 mmol, 0.1 equiv), and 2,6-di-*tert*-butyl-4-methylphenol (BHT) (88.1 mg, 0.6 mmol, 2.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then DMA (2.0 mL) was added. The reaction mixture was stirred and irradiated by 12 W blue LEDs (450 nm) at room temperature for 24 h. In this reaction, only traces of the desired product **3aa** were observed.

Radical trapping experiments:



1,1-Diphenylprop-2-en-1-ol 1a (42.6 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine

oxide **2a** (101.8 mg, 0.5 mmol, 2.5 equiv), eosin Y (13.2 mg, 0.02 mmol, 0.1 equiv), and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (62.5 mg, 0.4 mmol, 2.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then DMA (2.0 mL) was added. The reaction mixture was stirred and irradiated by 12 W blue LEDs (450 nm) at room temperature for 24 h. High-resolution mass spectra analysis of this reaction mixture showed that TEMPO-trapped product **4** was formed.

1,1-Diphenylprop-2-en-1-ol **1a** (42.5 mg, 0.2 mmol, 1.0 equiv), diphenylphosphine oxide **2a** (101.6 mg, 0.5 mmol, 2.5 equiv), eosin Y (13.5 mg, 0.02 mmol, 0.1 equiv), and ethene-1,1-diyldibenzene (71 μ L, 0.4 mmol, 2.0 equiv) were placed in a dry 10 mL Schlenk tube under a nitrogen atmosphere. Then DMA (2.0 mL) was added. The reaction mixture was stirred and irradiated by 12 W blue LEDs (450 nm) at room temperature for 24 h. After the reaction was completed monitored by TLC, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3/1) to afford the product **5** and **6** (24.0 mg, **5**/**6** = 1.86:1).^[5,6]

Crystallographic data of 3la (CCDC: 1811785)

Datableck me_20171213YKD_ZB_0m_a - ellipsoid plot

No syntax errors found. CIF dictionary

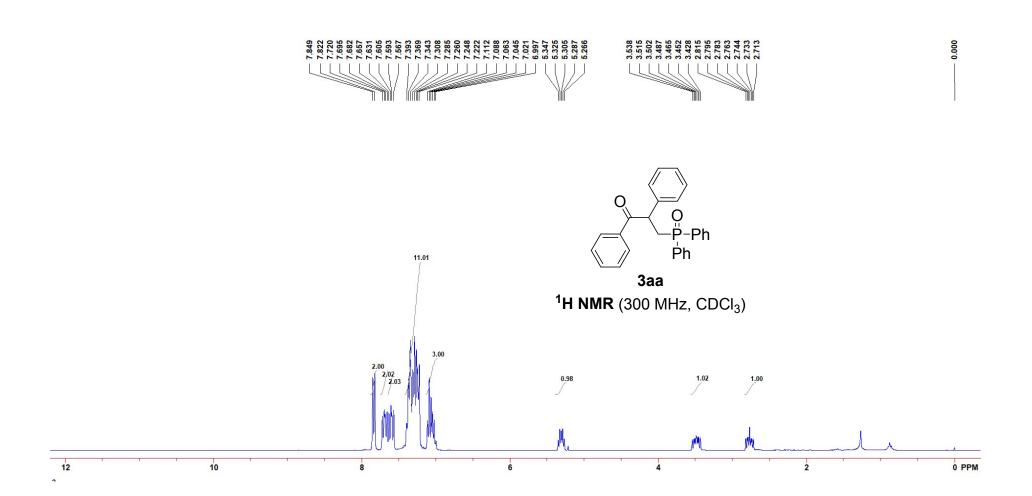
ary Interpreting this report

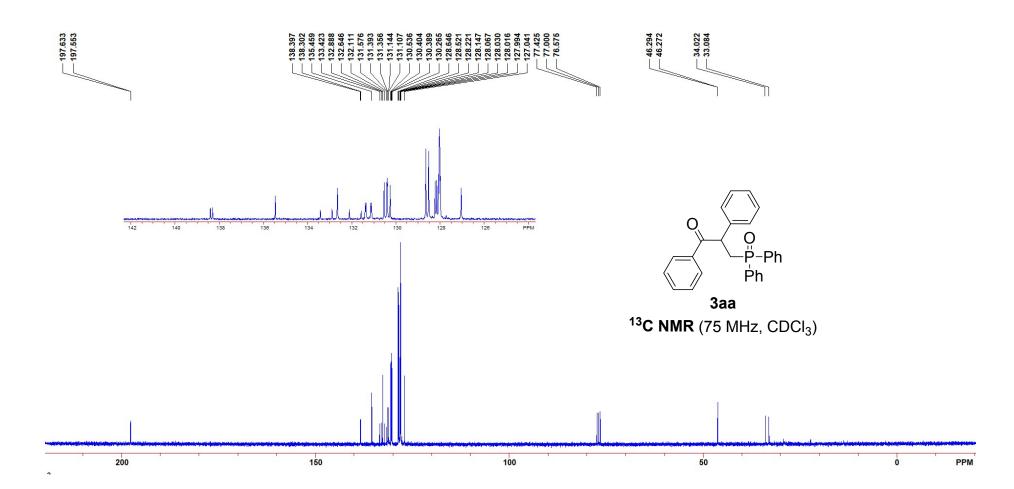
Datablock: mo_20171213YKD_ZB_0m_a

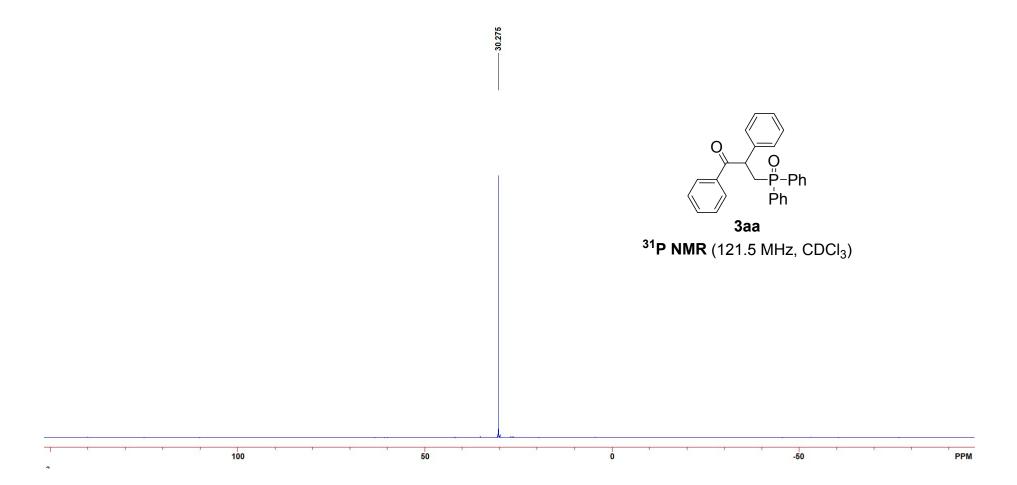
Bond precision:	C-C = 0.0062 A	Wavelength=0.71073		
Cell:		b=11.921(2)		
		beta=90	gamma=90	
Temperature:	296 K			
	Calculated	Report	ed	
Volume	2452.9(8)	2452.8(9)		
Space group		P 21 21 21		
Hall group	P 2ac 2ab	P 2ac 2ab		
Moiety formula		?		
Sum formula	C33 H25 O2 P	C33 H25 O2 P		
Mr	484.50	484.50		
Dx,g cm-3	1.312	1.312		
Z	4	4		
Mu (mm-1)	0.142	0.142		
F000	1016.0	1016.0		
F000'	1016.81			
h,k,lmax	13,14,21	13,14,21		
Nref	4335[2466]	4296		
Tmin, Tmax	0.969,0.975			
Tmin'	0.969			
Correction meth	od= Not given			
Data completeness= 1.74/0.99		Theta(max) = 25.010		
R(reflections) =	0.0459(3943)	wR2(reflection	s)= 0.1304(4296)	
S = 1.033	Npar= 325			

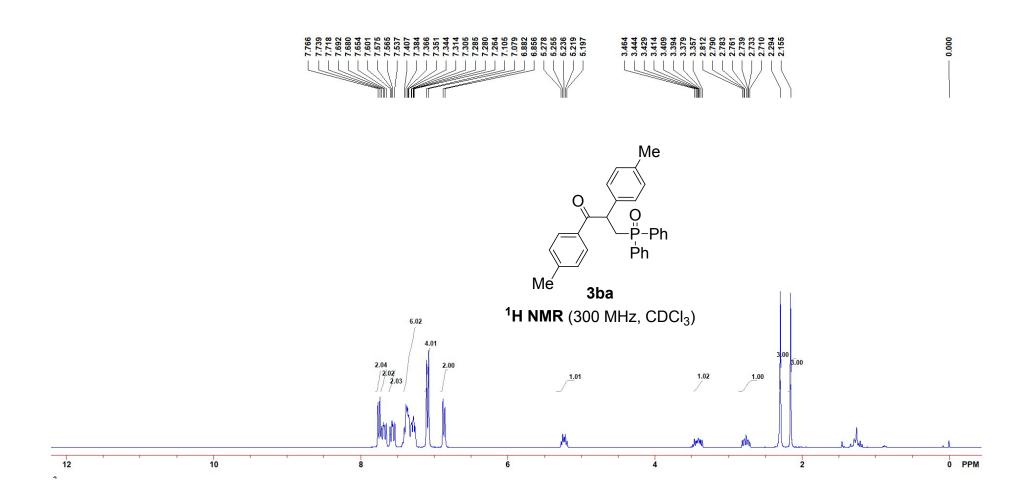
References:

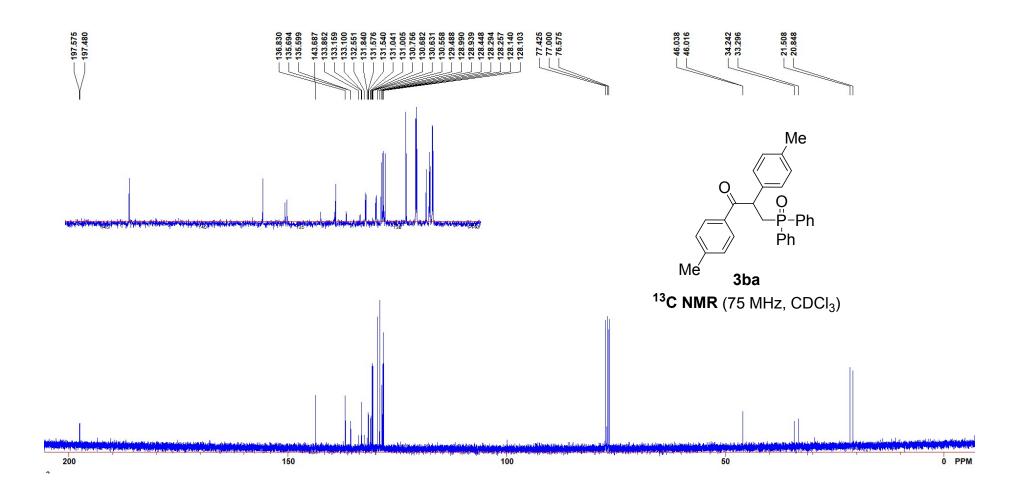
[1] Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem. Int. Ed. 2013, 52, 6962.

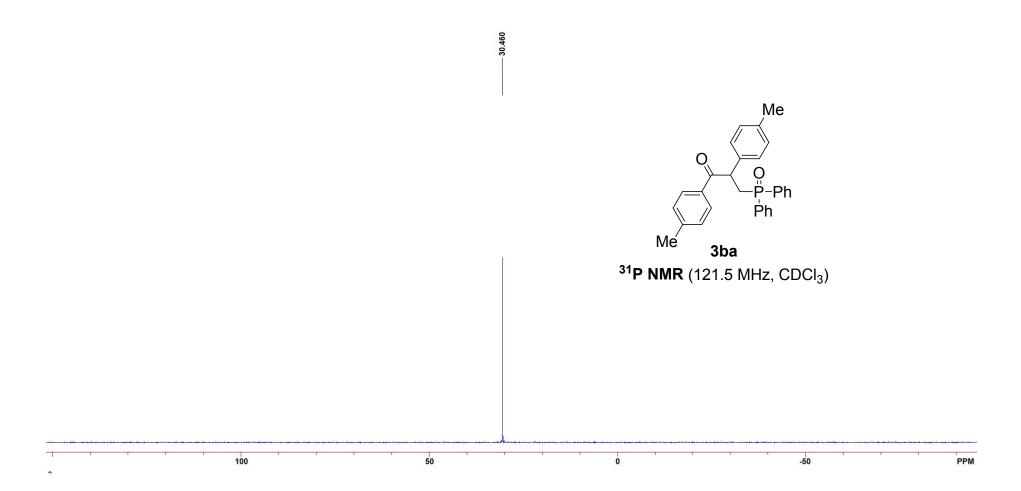

[2] Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad, N.; Hrapchak, M.; Latli, B.; Lee, H.; Sabila, P.; Saha, A.; Sarvestani, M.; Shen, S.; Varsolona, R.; Wei, X.; Senanayake, C. H. *Org. Lett.* **2005**, *7*, 4277.

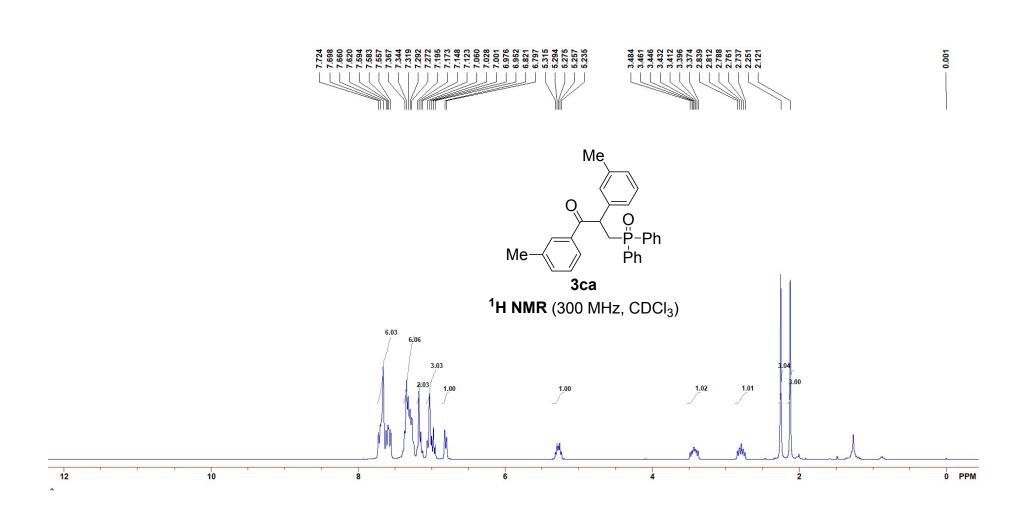

[3] Keglevich, G.; Jablonkai, E.; Balázs, L. B. RSC Adv. 2014, 4, 22808.

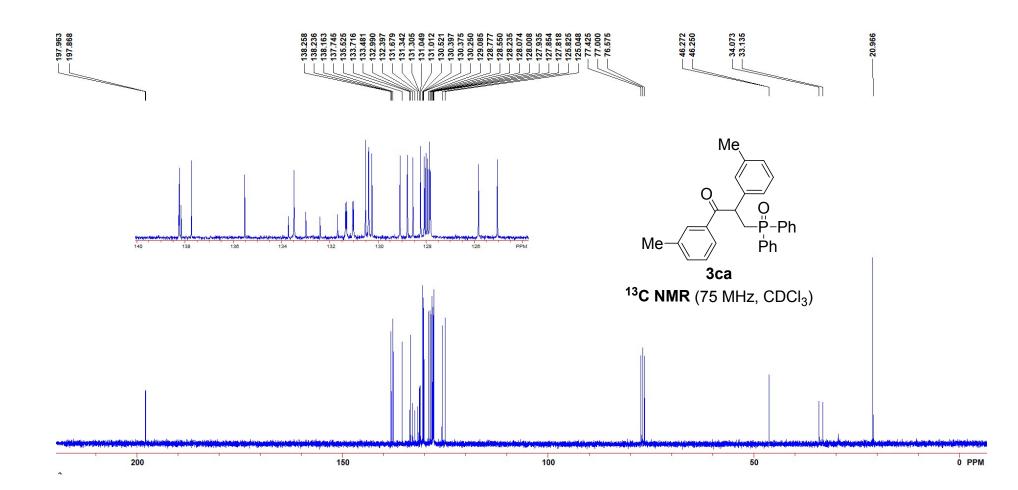

[4] Chu, X.-Q.; Zi, Y.; Meng, H.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2014, 50, 7642.

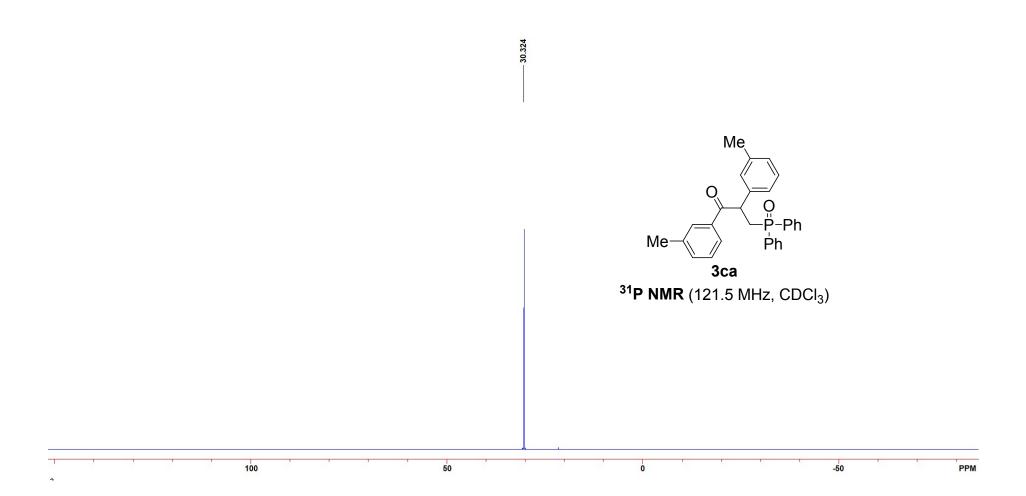

[5] Zhang, H.-Y.; Mao, L.-L.; Yang, B.; Yang, S.-D. Chem. Commun. 2015, 51, 4101.

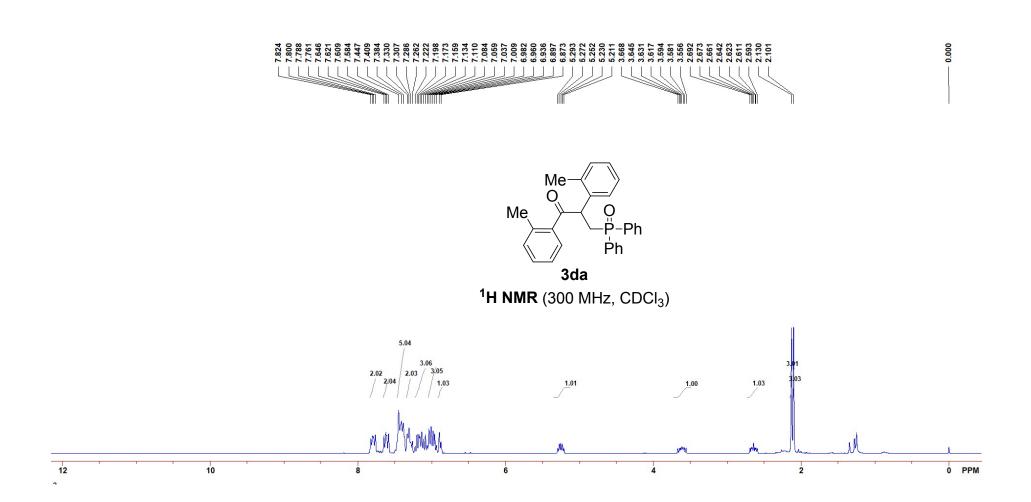

[6] Isley, N. A.; Linstadt, R. T. H.; Slack, E. D.; Lipshutz, B. H. Dalton Trans. 2014, 43, 13196.

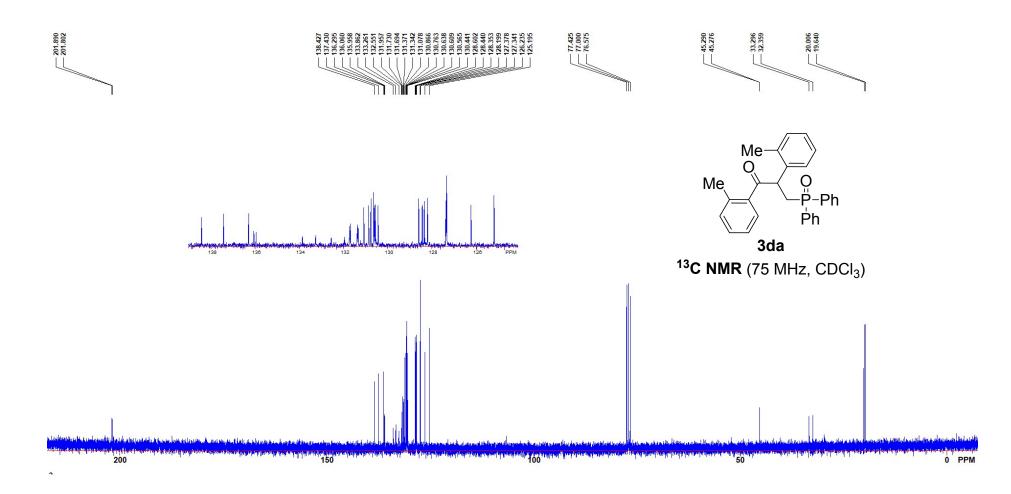


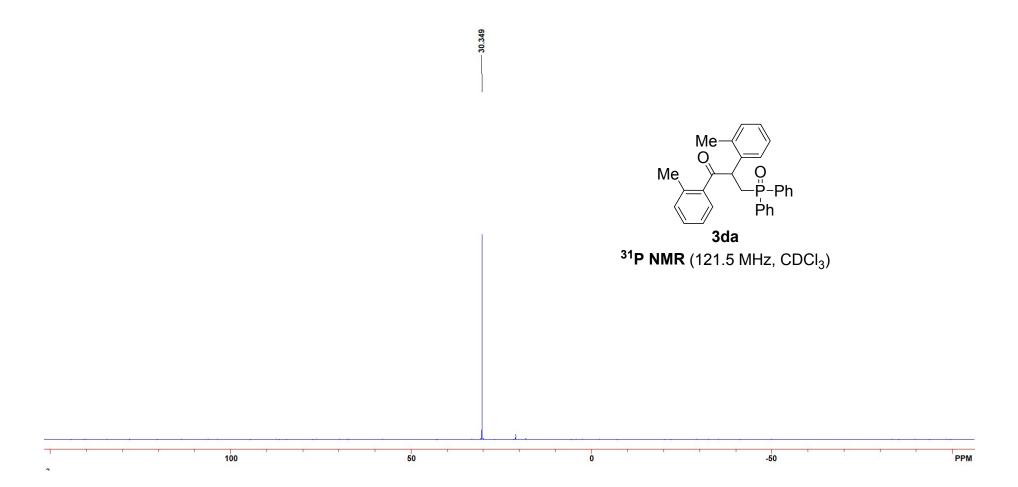


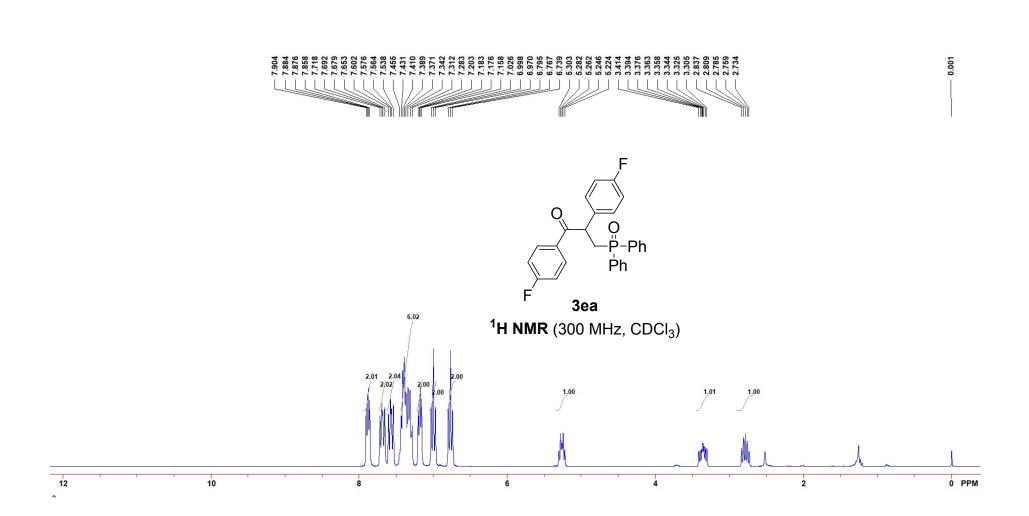


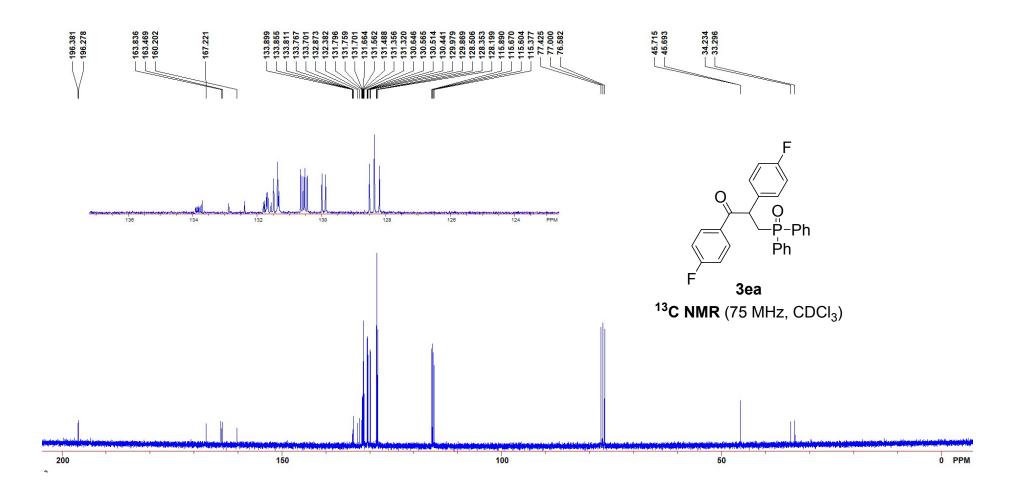


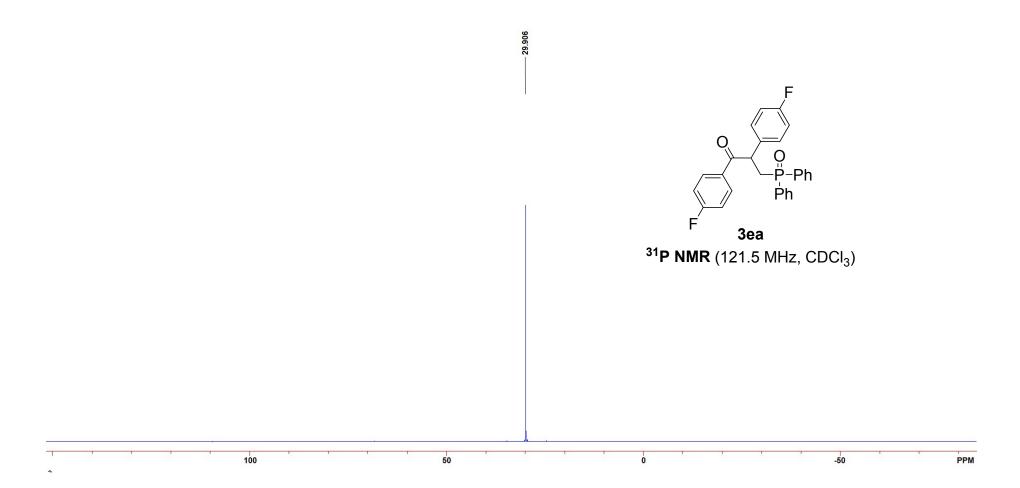


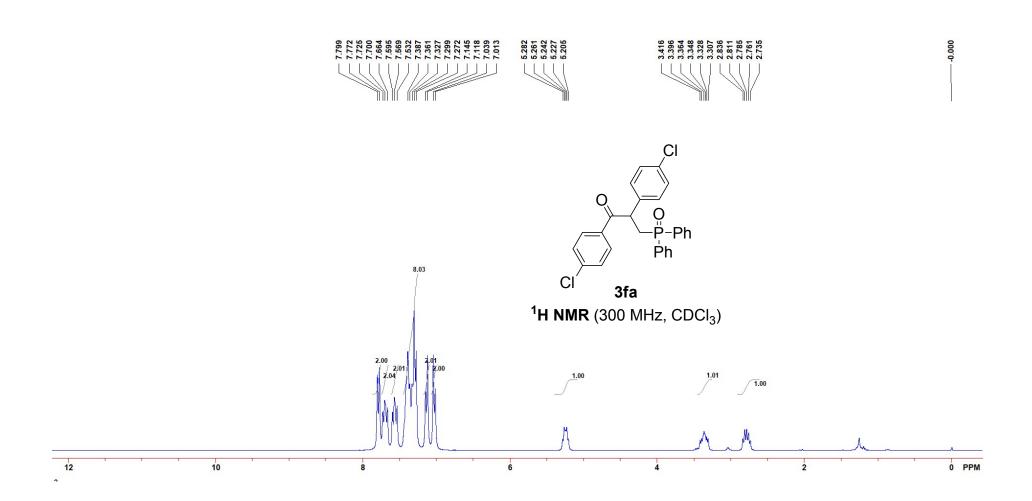


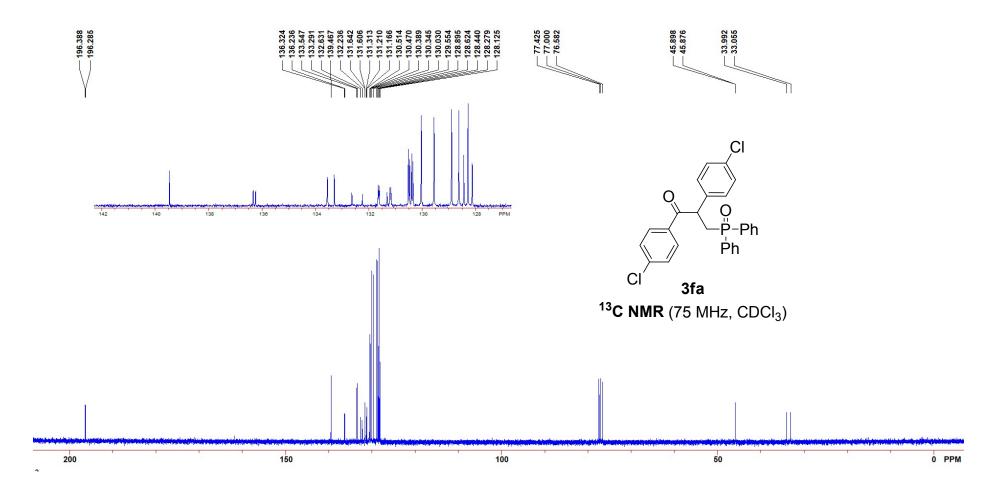


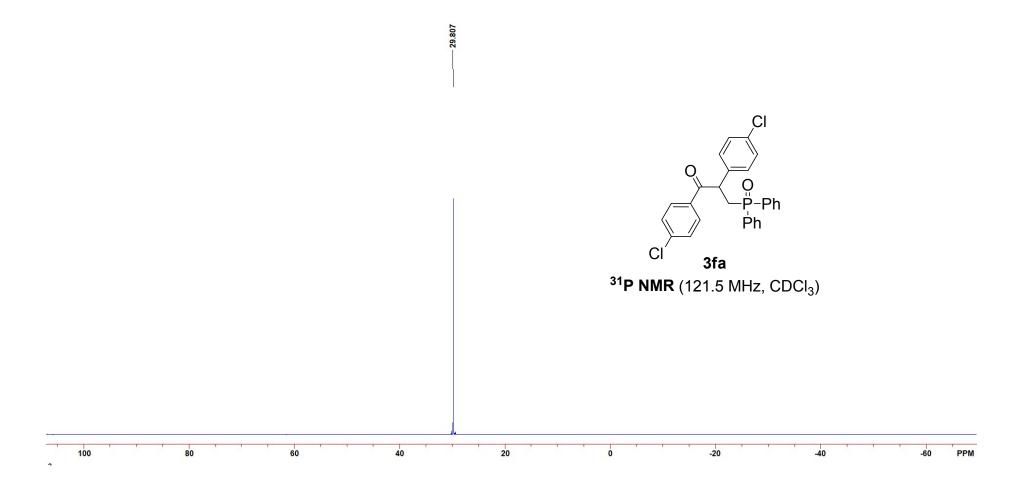


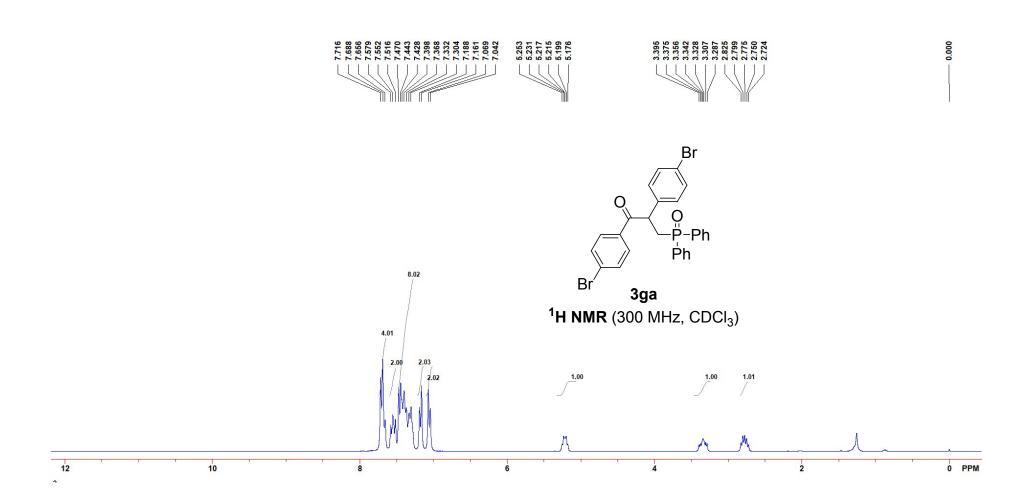


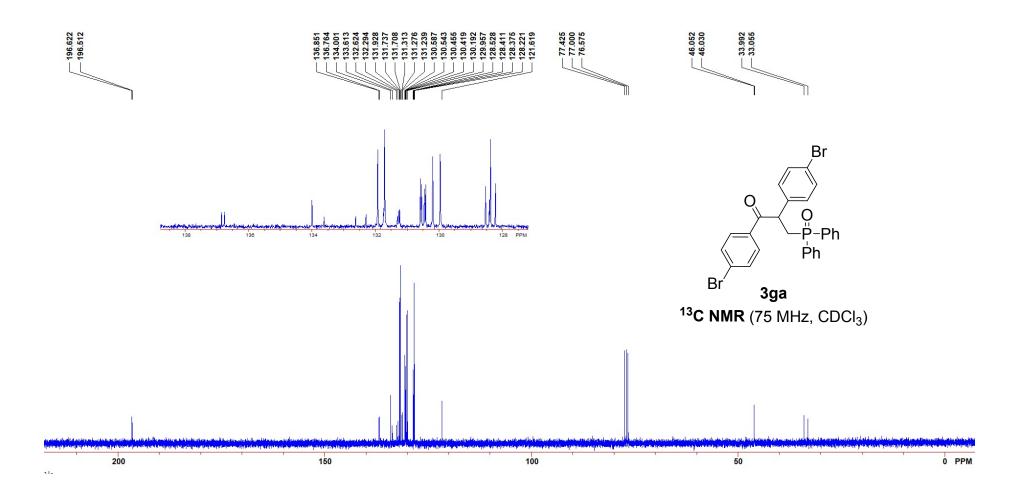


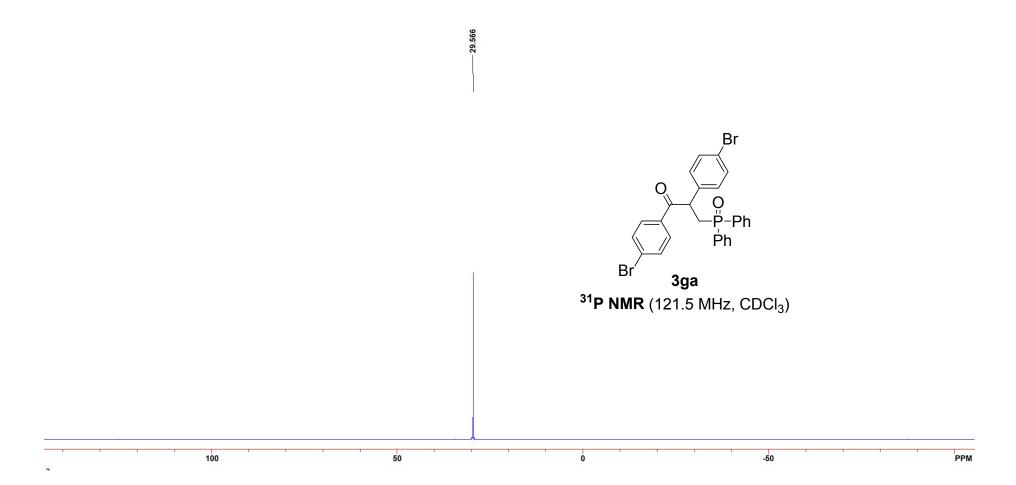


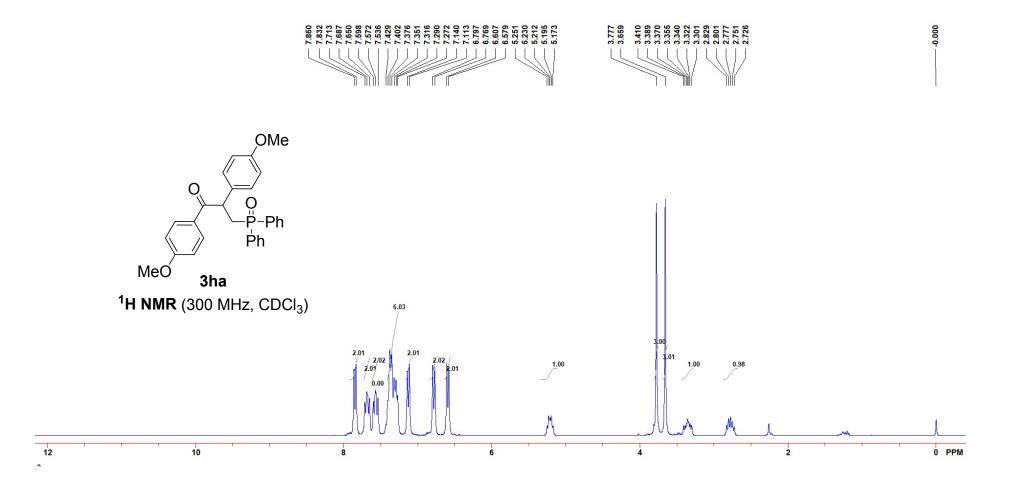


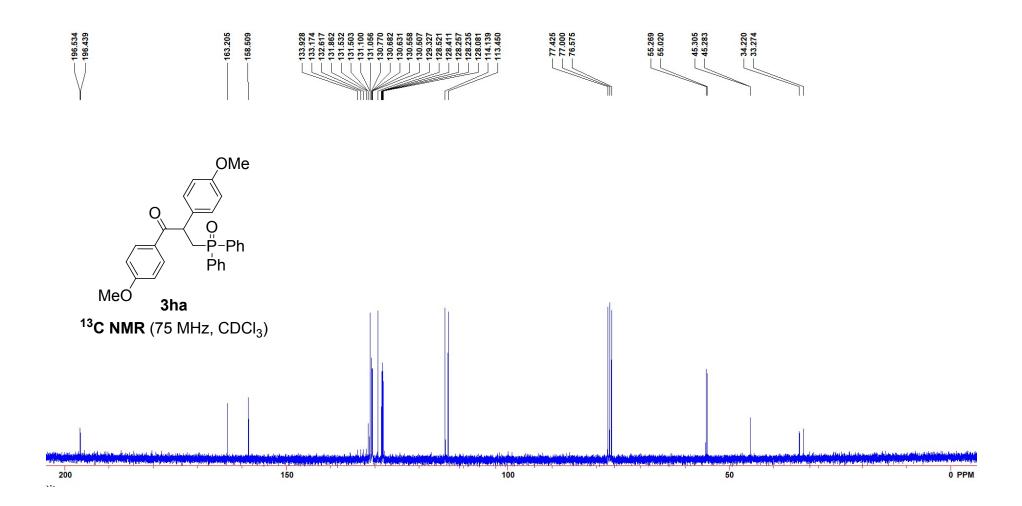


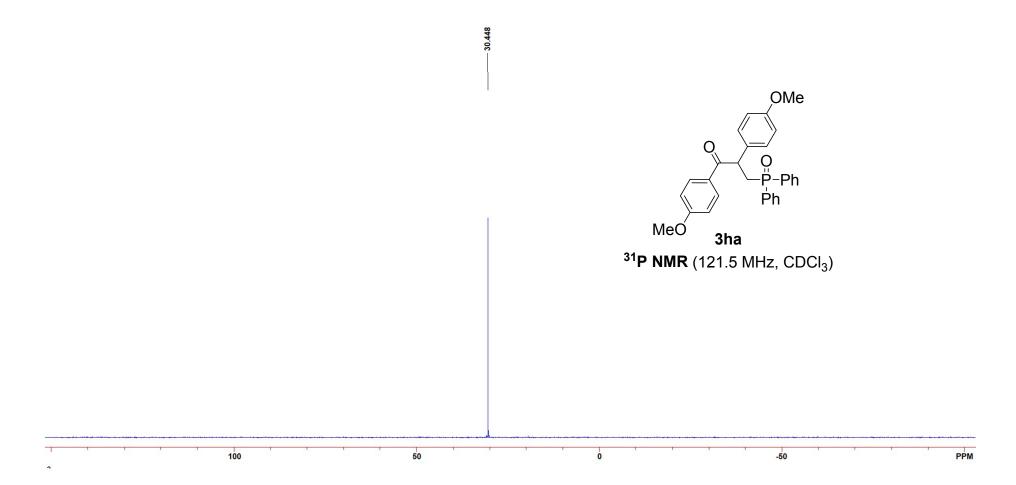


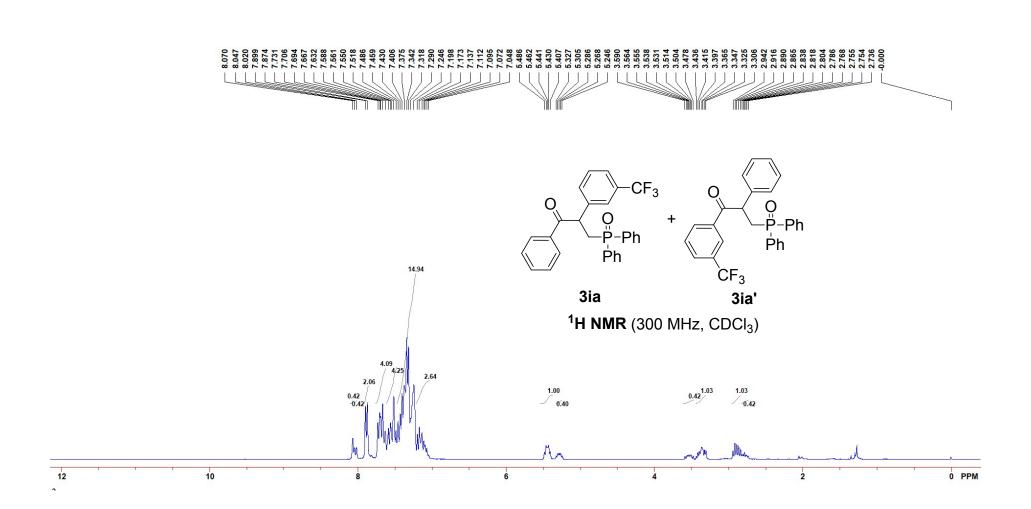


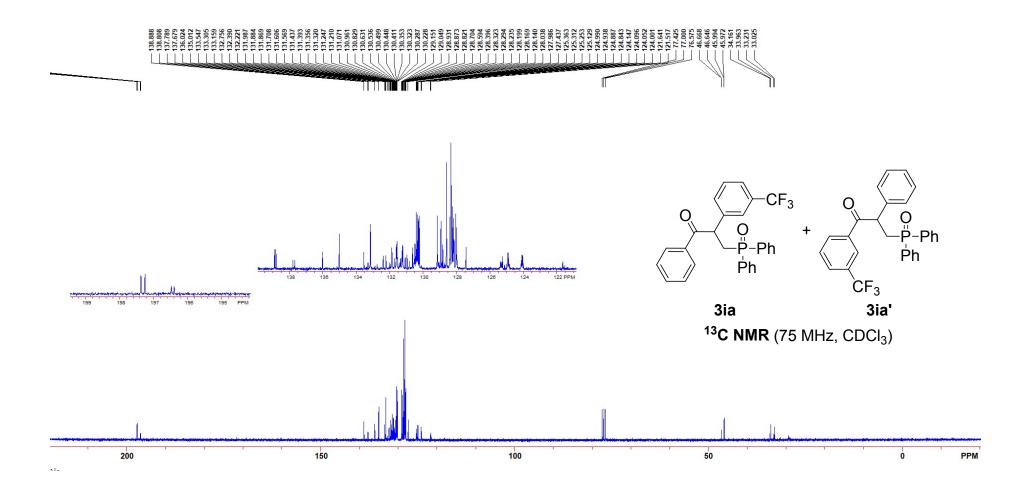


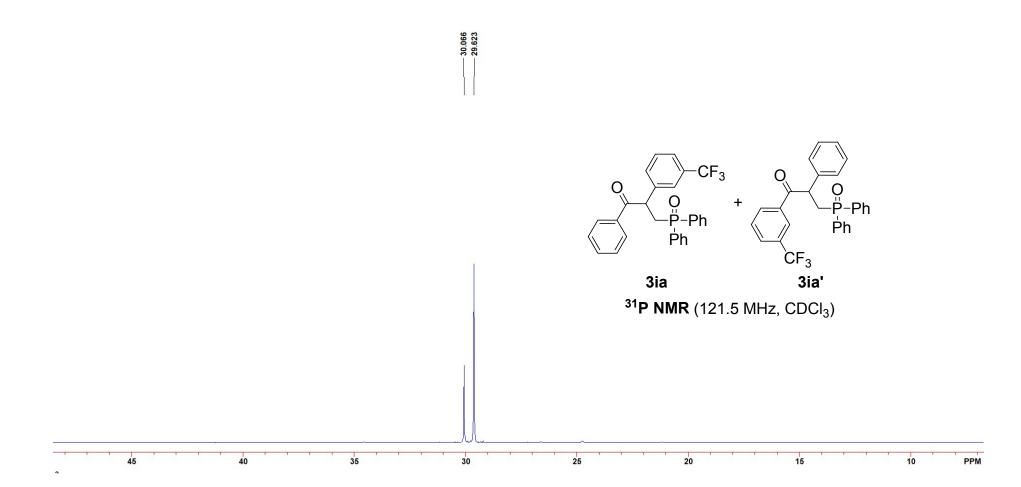


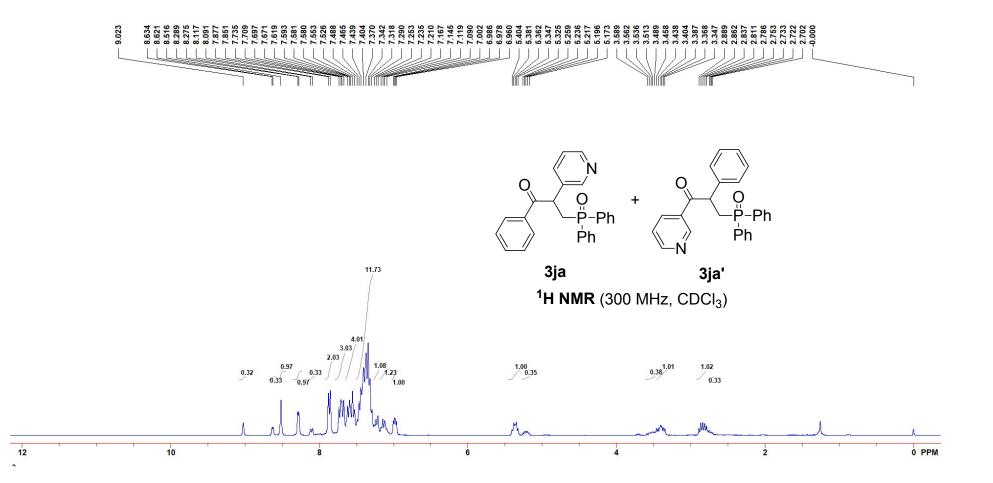


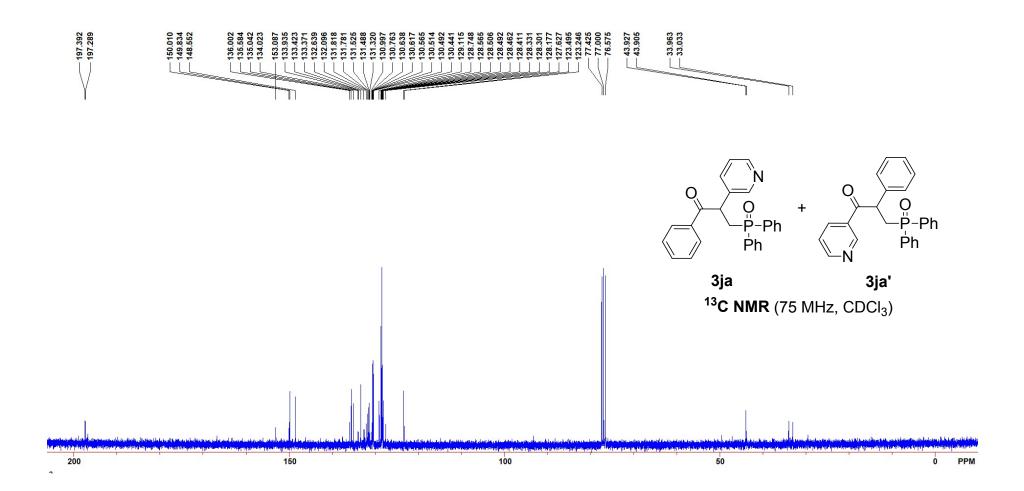


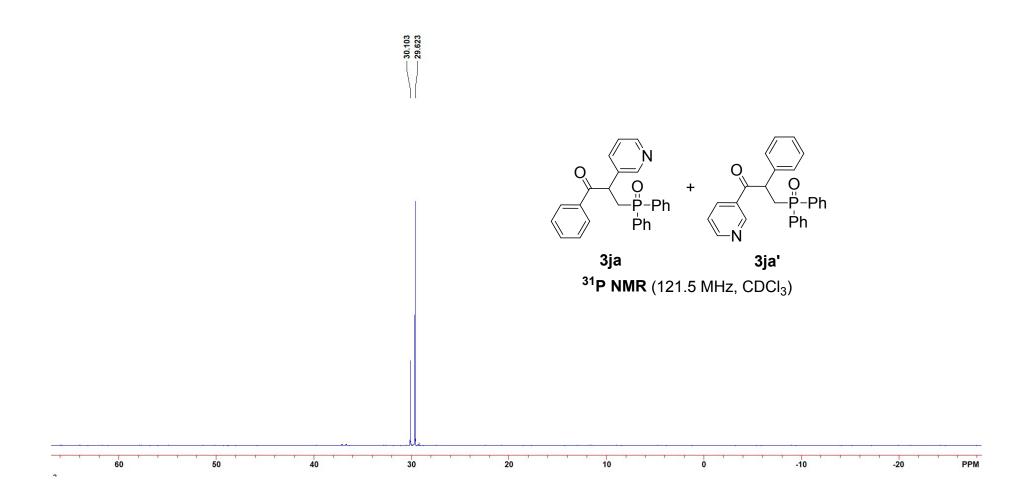


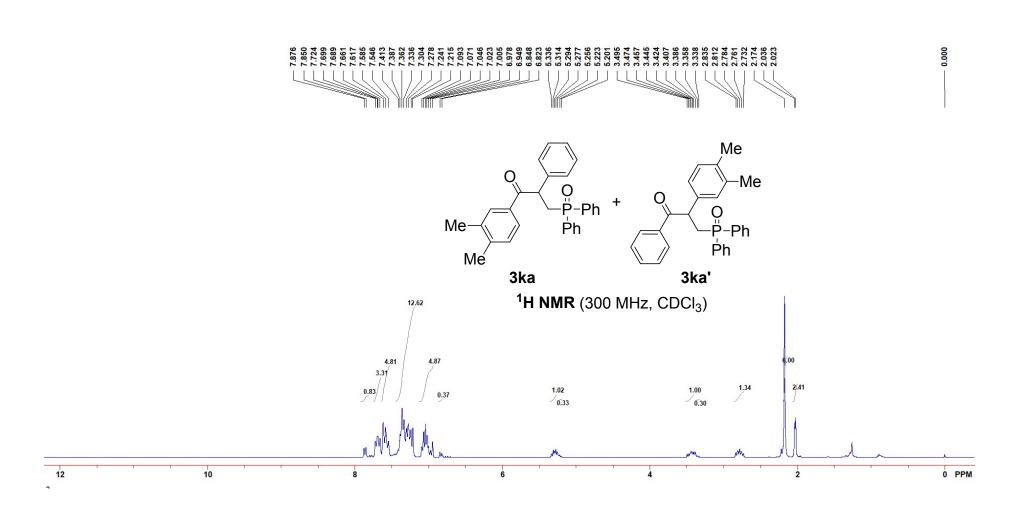


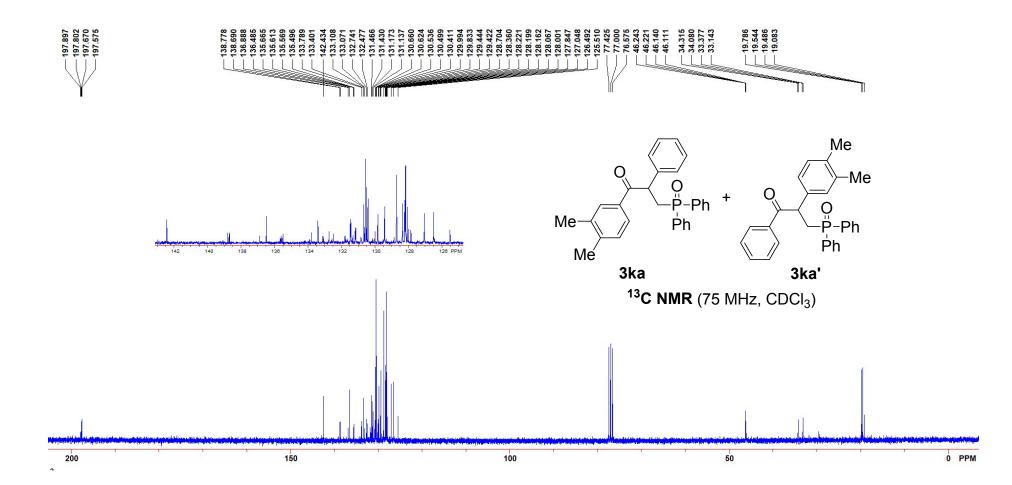


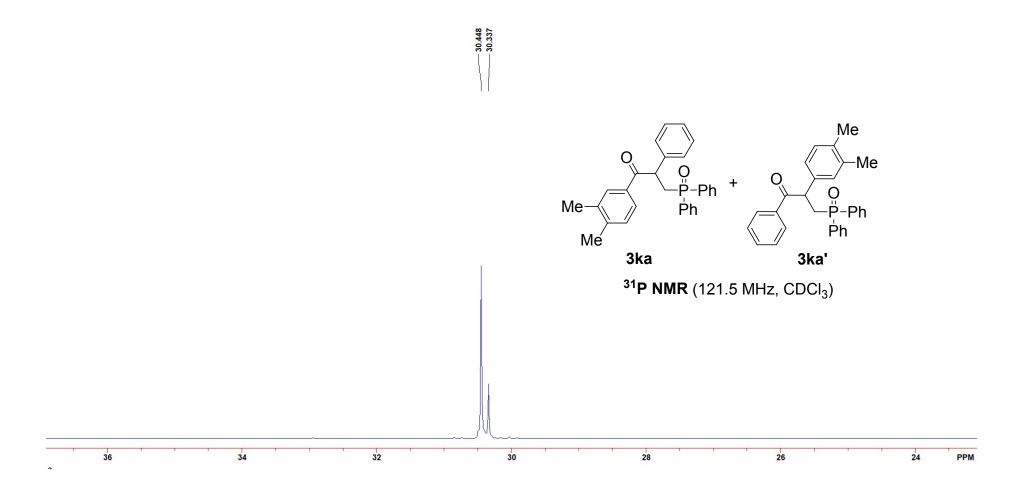


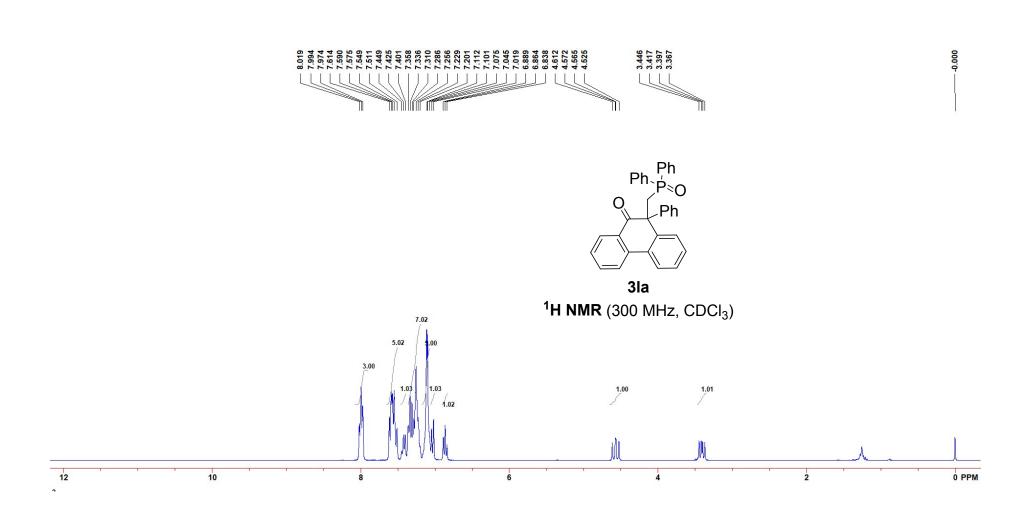


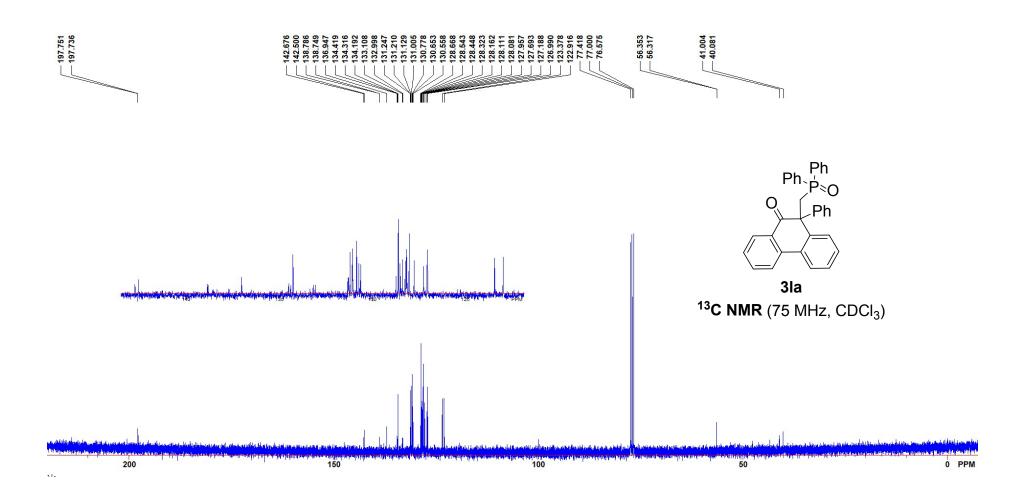


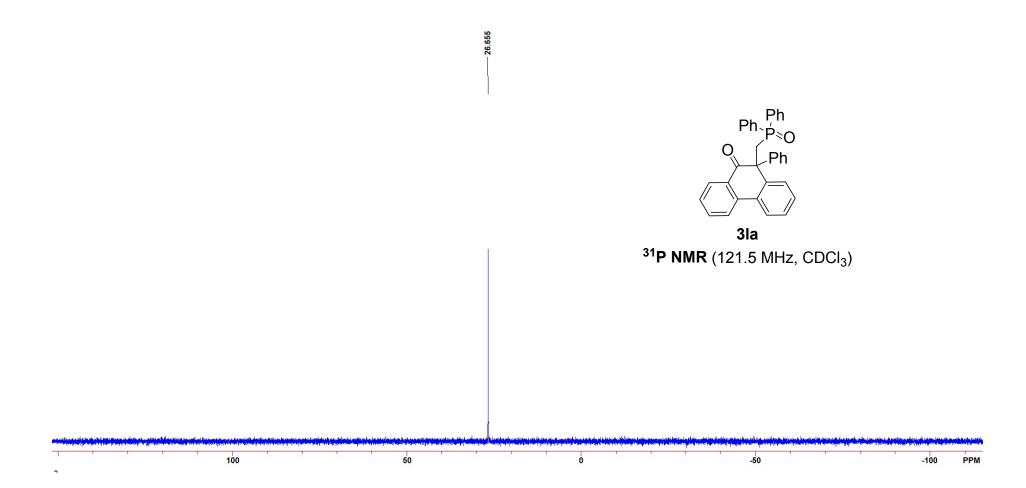


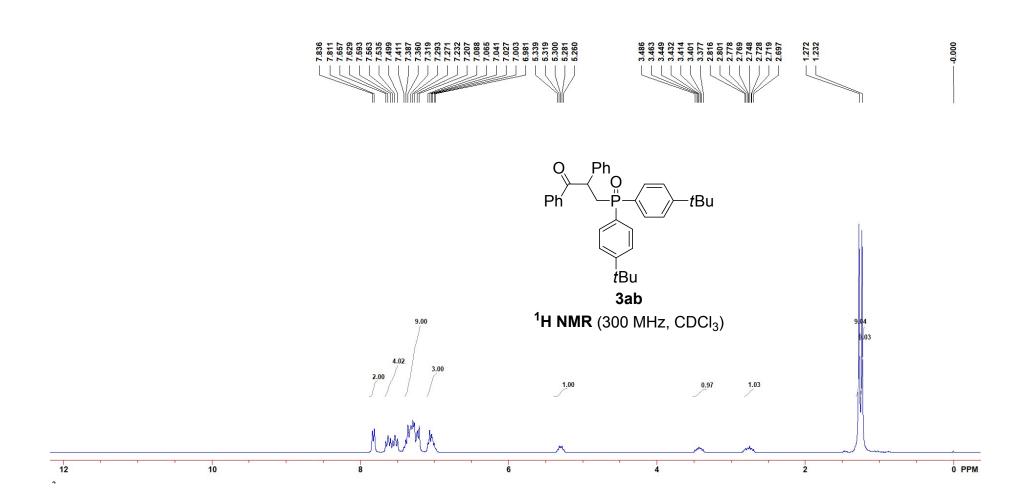


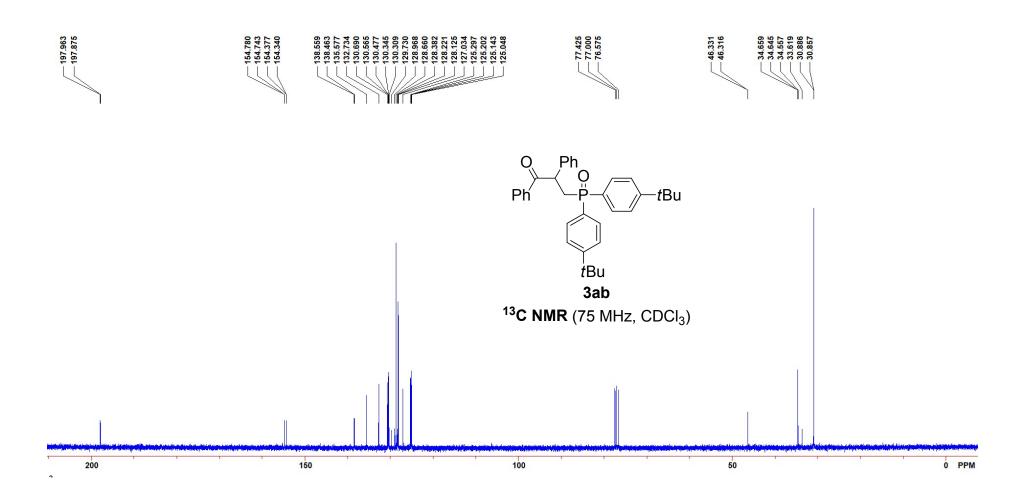


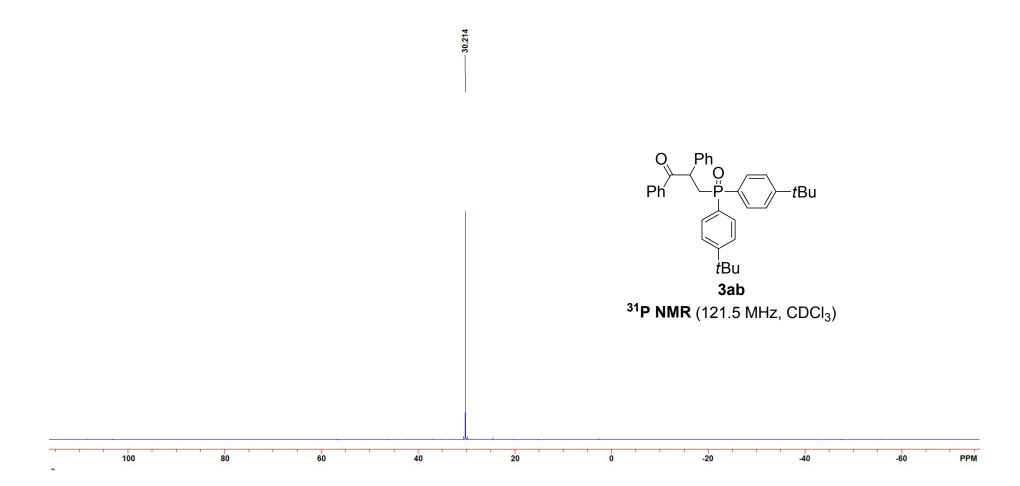


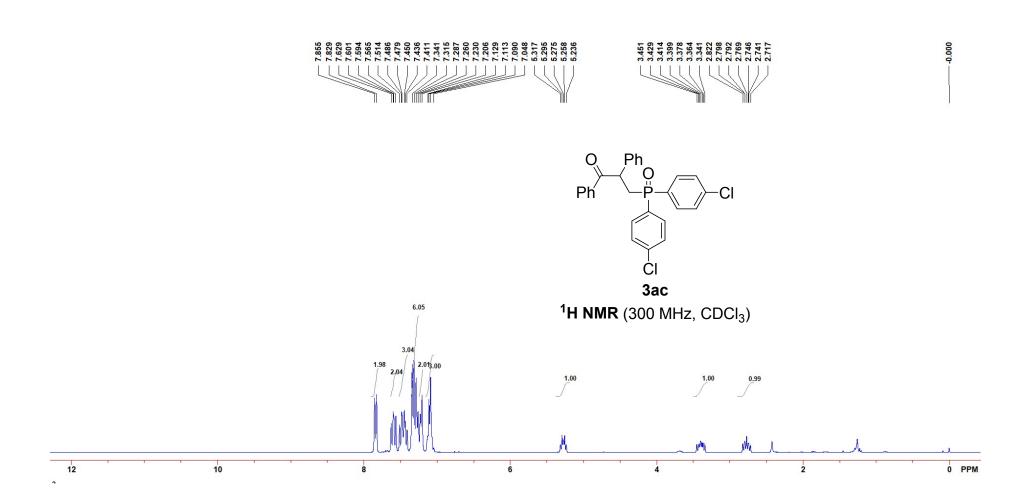


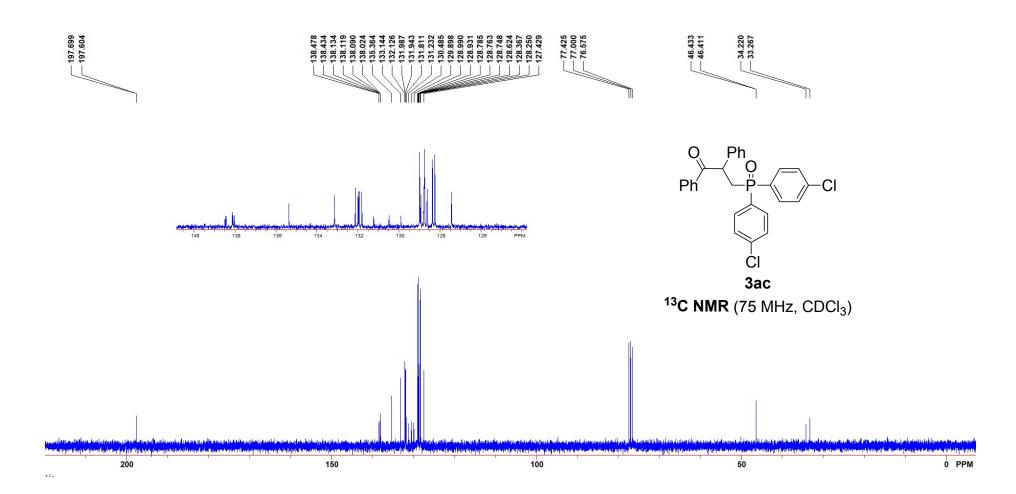


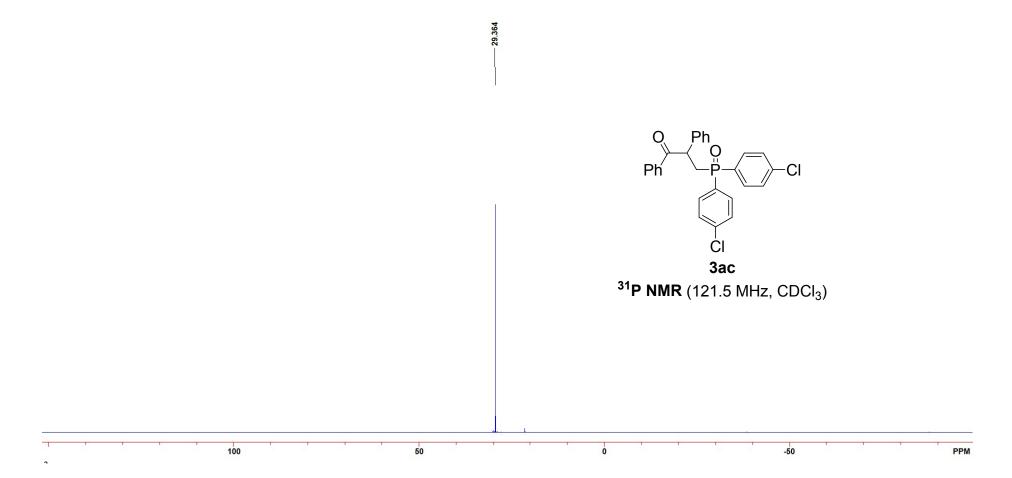


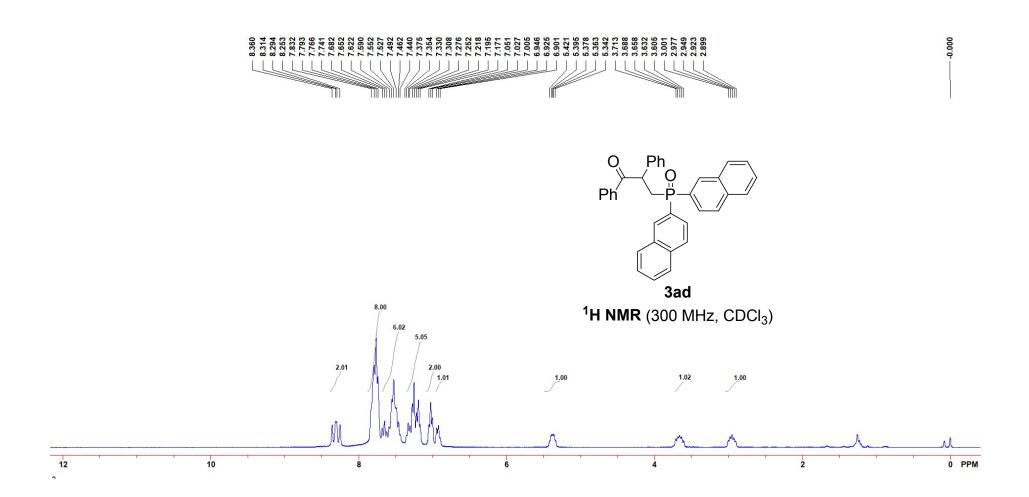




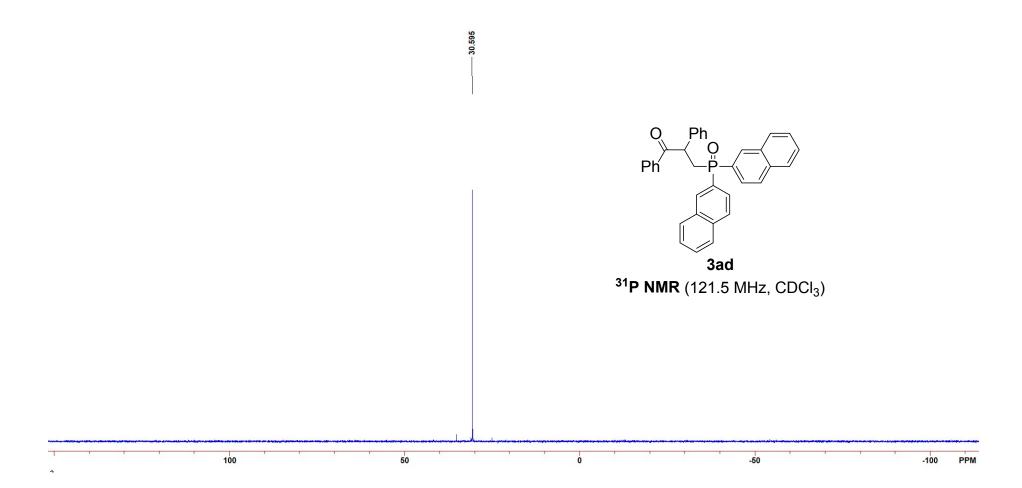


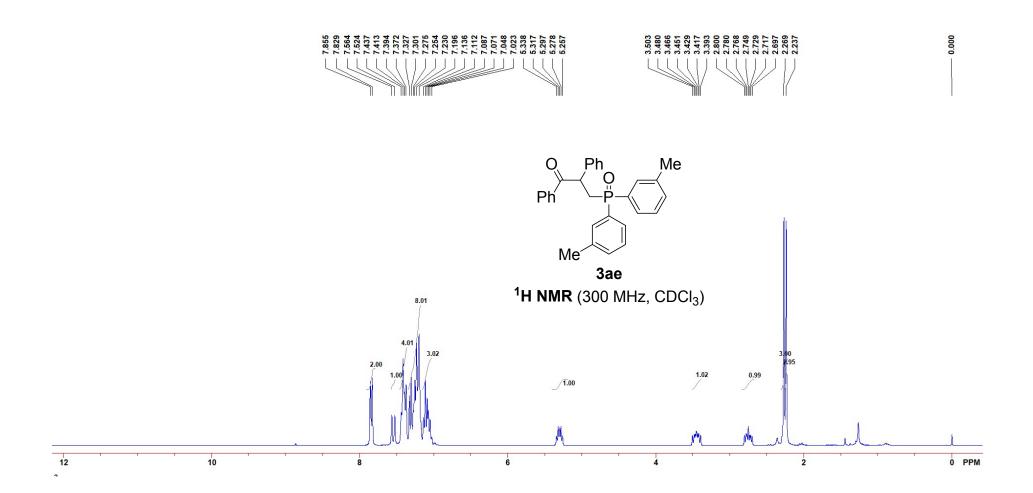




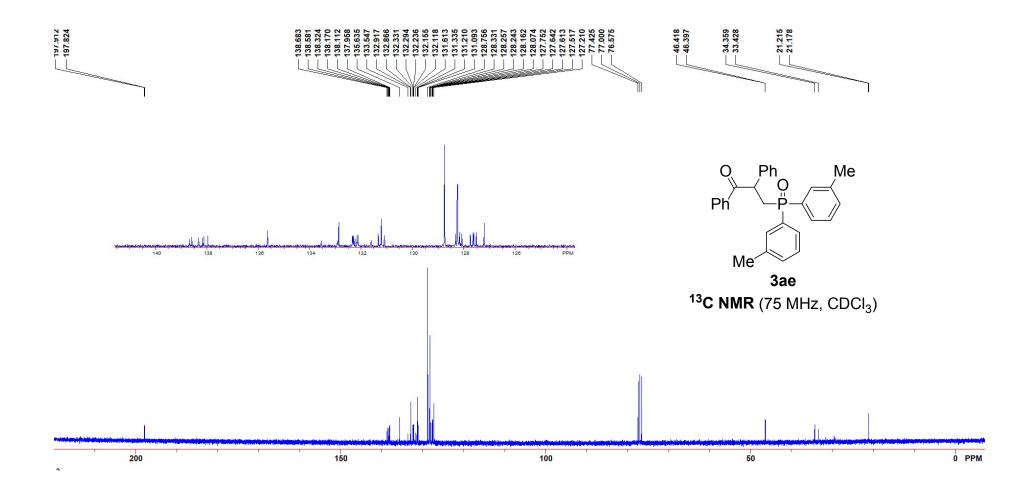


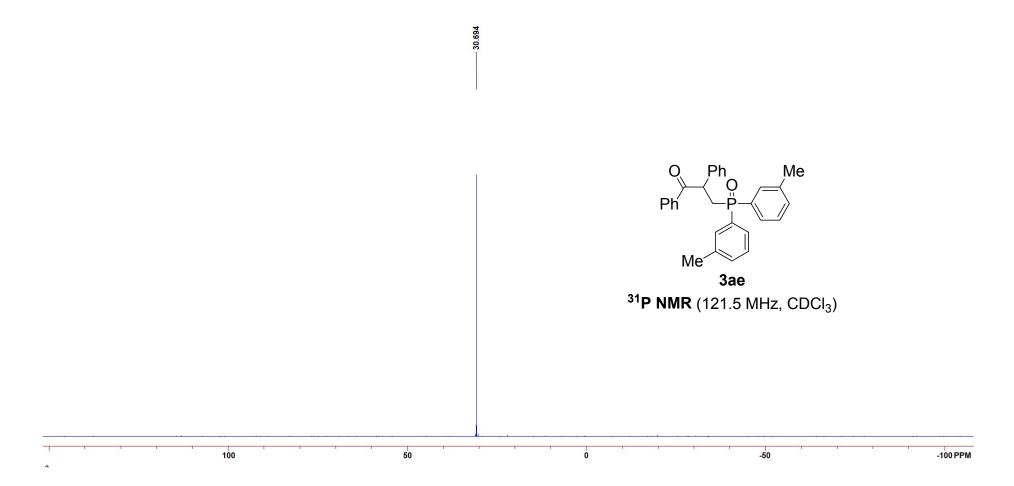


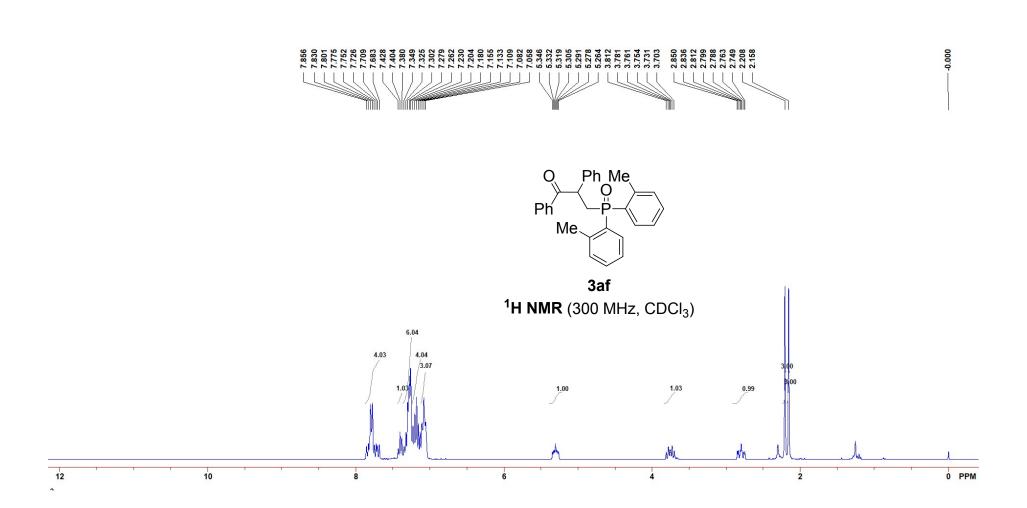


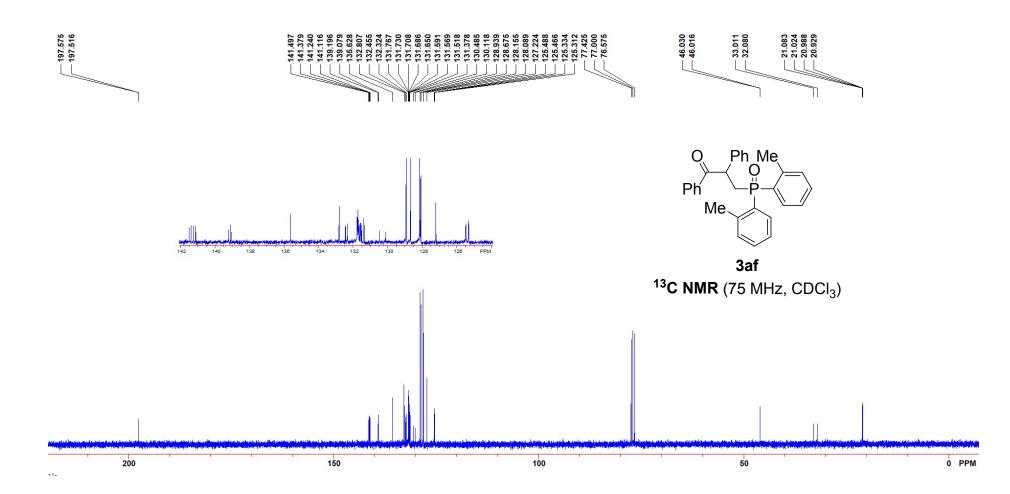


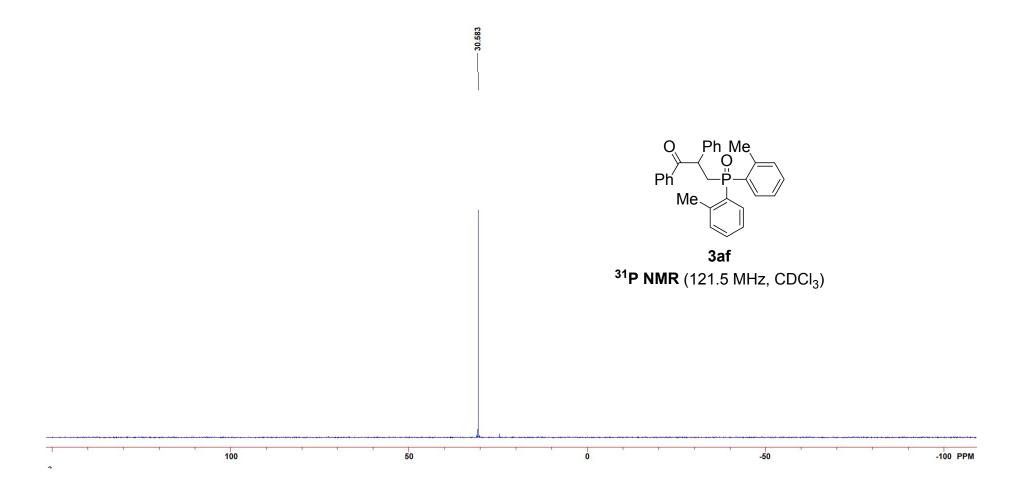
S63

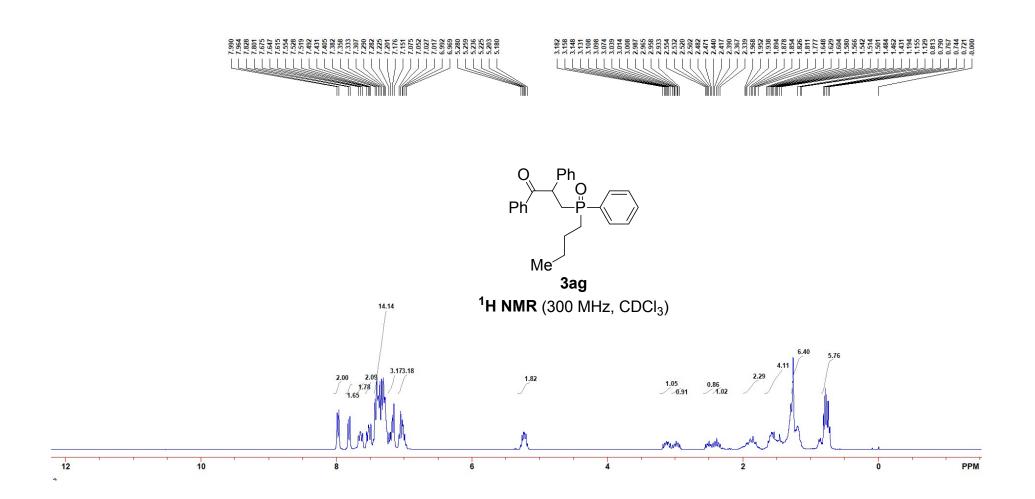


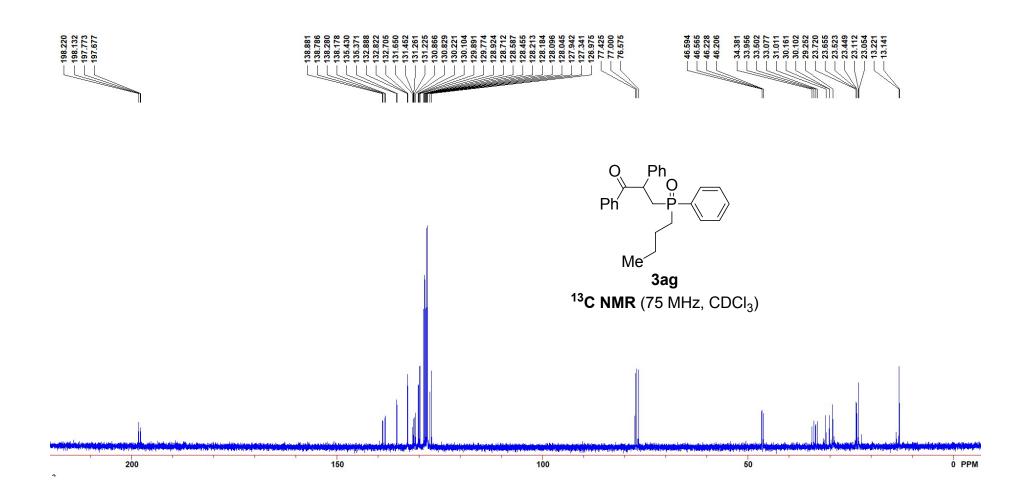


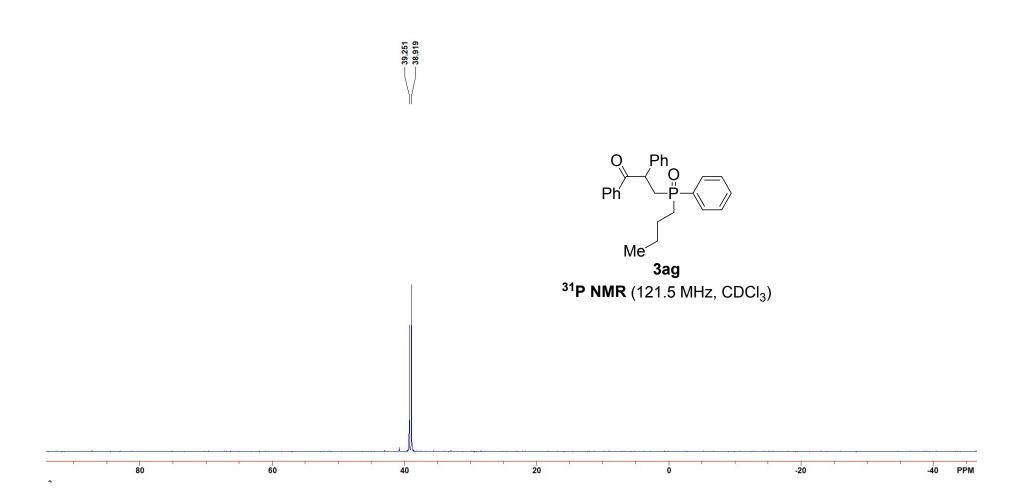


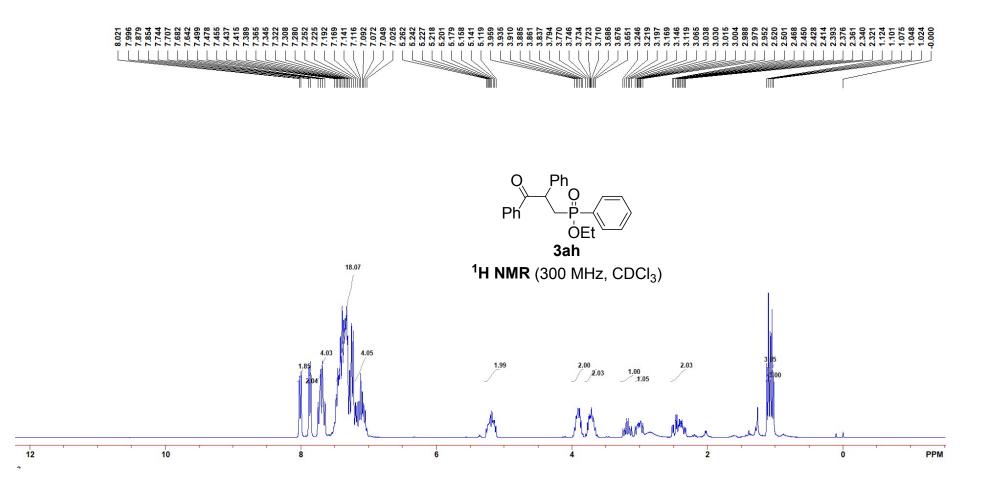


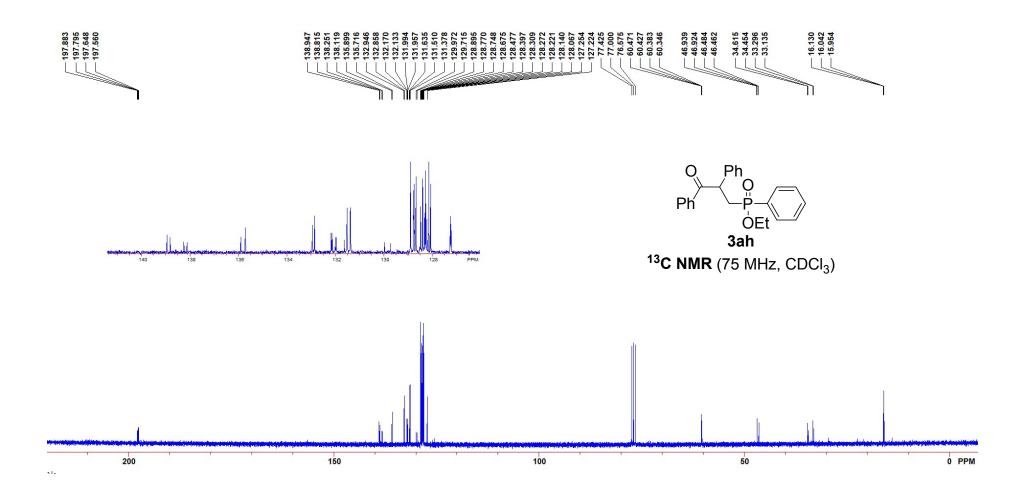

S67

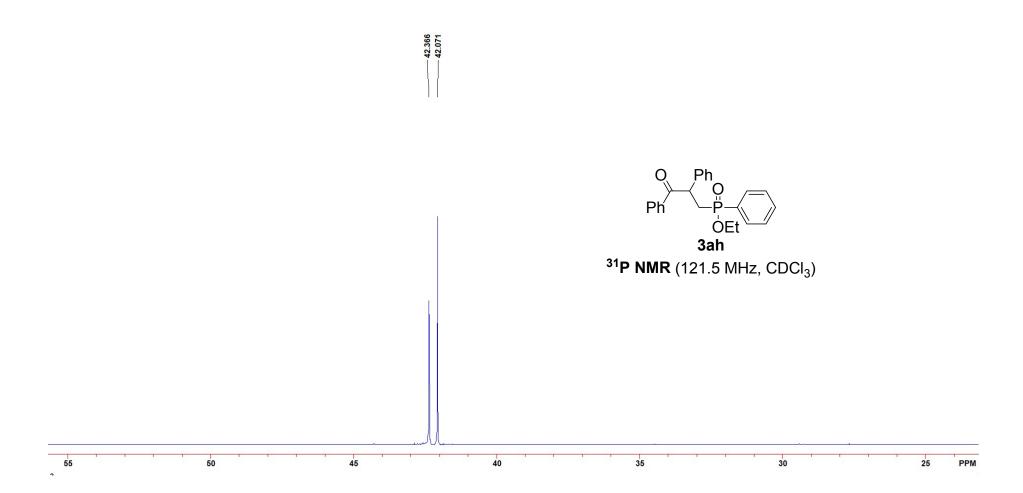


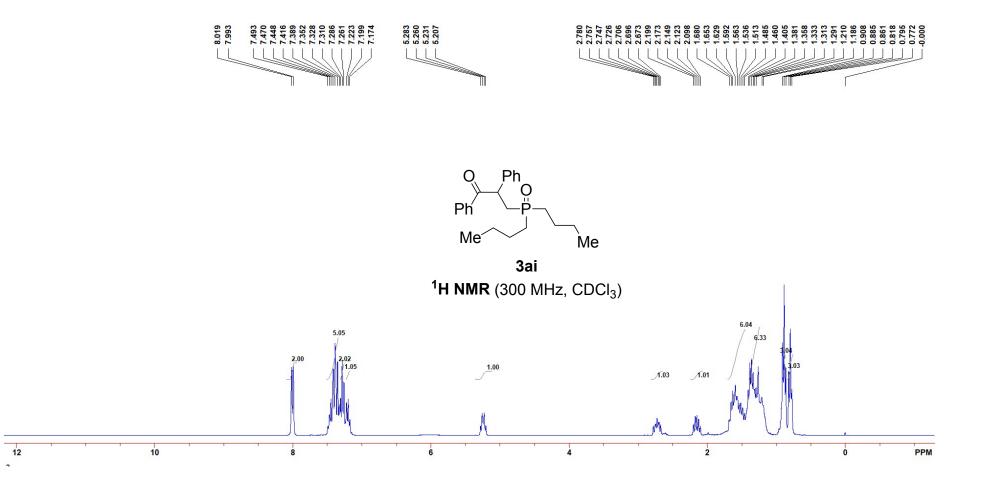


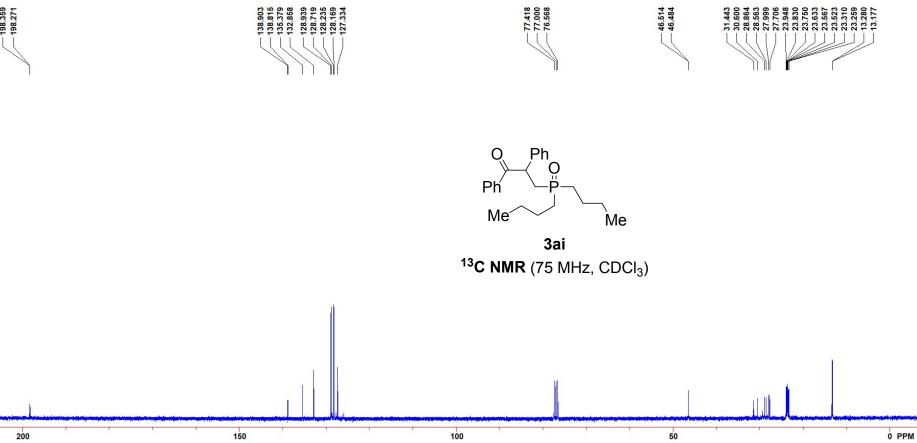












n

S80

