Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Planar chiral [2.2]paracyclophane-based phosphine-phenols: Use in enantioselective [3+2] annulations of allenoates and *N*-tosylimines

Shinji Kitagaki,* Kento Nakamura, Chiharu Kawabata, Asuna Ishikawa, Naoko Takenaga and Keisuke Yoshida

Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.

Contents

(1)	General Information	S2
(2)	Effects of the substituent on the imine nitrogen atom	S 2
(3)	Preparation of catalyst (S_p) -1c	S 2
(4)	Determination of the absolute configuration for 5j and 5m	S4
(5)	¹ H and ¹³ C NMR Spectra	S5
(6)	HPLC Data	S29

(1) General Information

Melting point (mp) was measured by Yanaco melting point apparatus MP-500D and uncorrected. ¹H NMR and ¹³C NMR spectra were recorded by a Bruker Avance III 600 spectrometer operating at 600 MHz (150 MHz for ¹³C NMR) at 25 °C with tetramethylsilane ($\delta = 0.0$ ppm) as an internal standard. The data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, and coupling constant (Hz). ³¹P NMR spectra were recorded with 85% H₃PO₄ ($\delta = 0.0$ ppm) as an external standard. High resolution mass spectra were measured with a JEOL JMS-3000. Analytical thin-layer chromatography (TLC) was performed on MERCK silica gel, grade 60 F₂₅₄. The spots and bands were detected by UV light of irradiation (254 nm) and/or by staining with 5% phosphomolybdic acid followed by heating. Column chromatography for isolation of the products was carried out on KANTO Sillica Gel 60 (230-400 mesh). HPLC analyses were performed using Interigent UV/VIS Detector JASCO UV-7500. The chiral columns included CHIRALCEL OD-H and CHIRALPAK AD-H (Daicel Chemical Industries, Ltd., 0.46 $\Phi \times 25$ cm).

Materials Aldimines **3a–o** were prepared by using reported methods.¹ Allenoates **4b-d** were prepared from the appropriate phosphorane according to the literature.² Commercially available reagents were used throughout without purification unless otherwise stated. Catalysts (S_p)-**1a**³ and **1b**⁴ were prepared using reported method in our previous paper.

phosphine (5 mol%) ٨r toluene EtO HC 3 5 4a (S_p)-1a: Ar=3,5-Me₂C₆H₃ (S_p)-1c: Ar=3,5-t-Bu₂C₆H₃ Entry R R' Phosphine Temp. Yield $(\%)^b$ $Ee(\%)^{c}$ t 25 min 4-C1 Ts (S_p) -1a 96 40 1 rt (S_p)-1a 2 4-Cl Ms rt 40 min 95 37 3 90 39 4-C1 2-Naphthalene- $(S_{p})-1a$ 20 min rt sulfonyl 4 4-Cl DPP 48 h 10 37 (S_p) -1a rt 5 4-C1 -30 °C 7 h 99 80 Ts (S_p) -1c −30 °C 6 6 h 88 78 4-C1 Ms (S_p) -1c 7 4-C1 2-Naphthalene- $(S_{p})-1c$ -30 °C 6 h 99 73 sulfonyl

(2) Effects of the substituent on the imine nitrogen atom.^a

^{*a*} Reaction conditions: **3** (0.05 mmol), **4**a (0.11 mmol), catalyst (2.5×10^{-3} mmol) in toluene (0.5 mL) at room temperature. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase.

(3) Preparation of catalyst (S_p) -1c

1-Bromo-3-[bis(3,5-di-tert-butyl)phosphino]benzene (S3)

This reaction was carried out under Ar. To a solution of phosphine oxide $S1^5$ (2.03 g, 4.76 mmol), DPPP (176 mg, 0.426 mmol) and Pd(OAc)₂ (107 mg, 0.475 mmol) in DMSO (54.2 mL) were added 3-bromoiodobenzene (0.55 mL, 4.33 mL) and *i*-Pr₂NEt (2.28 mL 13.1 mmol). After being stirred for 10 h at 100 °C, the reaction mixture was quenched with 10% aqueous HCl (26.7 mL), and extracted with EtOAc (50 mL x 3). The combined extracts were washed with water (100 mL) and brine (100 mL), dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (EtOAc/hexane, 5:1) on silica gel to provide 1.73 g (65%) of S2 as a yellow oil.

To a cooled (0 °C) stirred solution of the phosphine oxide **S2** (1.73 g, 2.97 mmol) in toluene (26 mL) were added HSiCl₃ (3.0 mL, 30 mmol) and *i*-Pr₂NEt (10 mL, 57 mmol). After being stirred for 2 h at 80 °C, the mixture was quenched with 25% aqueous NaOH (70 mL). The precipitated solids were removed by filtration through a pad of Celite and washed well with EtOAc. The filtrate was extracted with EtOAc (30 mL × 3). The combined extracts were washed with water (100 mL) and saturated brine (100 mL), respectively. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexane only) to provide 1.44 g (86%) of **S3** as a colorless oil: ¹H NMR (600 MHz, CDCl₃): δ 1.25 (s, 36H), 7.14 (d, 2H, *J* = 1.8 Hz), 7.15 (d, 2H, *J* = 1.8 Hz), 7.16-7.21 (m, 2H), 7.39-7.41 (m, 2H), 7.42 (dt, 1H, *J* = 5.4, 1.8 Hz), 7.46 (dt, 1H, *J* = 6.6, 1.8 Hz); ¹³C NMR (150 MHz, CDCl₃): δ 31.4 (12C), 34.9 (4C), 122.7, 122.9 (4C), 128.2 (d, 4C, *J*_{c-p} = 21.0 Hz), 129.7 (d, *J*_{c-p} = 21.0 Hz), 131.2 (2C), 131.8 (d, *J*_{c-p} = 18.0 Hz), 135.4 (d, *J*_{c-p} = 9.0 Hz), 135.9 (d, *J*_{c-p} = 19.5 Hz), 142.0 (d, *J*_{c-p} = 16.5 Hz), 150.8 (d, 2C, *J*_{c-p} = 6.0 Hz). HRMS (MALDI) calcd for C₃₄H₄₇PBr [*M*+H]⁺: 565.2593, found: 565.2611.

Catalyst (S_p)-1c

Procedure for preparation of **S4** from **S3**: The following reaction was carried out under Ar. (**Step 1**) To a cooled (– 78 °C) solution of **S3** (200 mg, 0.354 mmol) in THF (2.1 mL) was slowly added *n*-BuLi (0.29 mL, 0.46 mmol, 1.6 M in hexane solution). After stirring for 30 min at -78 °C, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.22 mL, 1.1 mmol) was added to the mixture at that temperature. Then the reaction mixture was stirred for 14.3 h at room temperature, quenched with water, and extracted with CH₂Cl₂ (15 mL x 4). The combined extracts were washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (EtOAc/hexane, 1:80) on silica gel to provide 100.5 mg (46%) of borylated compound as white solids.

(Step 2) A stirred solution of the compound obtained in step 1 (135 mg, 0.221 mmol), FeCl₃.6H₂O (6.0 mg, 0.022 mmol), KSCN (10.8 mg, 0.111 mmol) and I₂ (cat. amount) in dry MeCN (2.4 mL) was heated at 80 °C with vigorous O₂ bubbling. After being stirred for 1 h at 80 °C, the mixture was cooled to room temperature, and concentrated under reduced pressure. The residue was extracted with EtOAc (40 mL \times 3). The combined extracts were washed with saturated aqueous Na₂S₂O₃ (30 mL), water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated to provide 140.9 mg (quant.) of S4 as light green solids.

Procedure for preparation of (S_p) -1c: To a solution of S4 (126 mg, 0.200 mmol) in DMSO (3.0 mL) and H₂O (0.3 mL) were added (S_n) -12-bromo[2.2]paracyclophan-4-ol (60.6 mg, 0.200 mmol), Na₂CO₃ (63.6 mg, 0.600 mmol) and Pd(PPh₃)₄ (26.3 mg, 0.0228 mmol, 11 mol%). After being stirred for 18 h at 100 °C, the mixture was diluted with water and extracted with EtOAc (30 mL \times 2). The combined extracts were washed with saturated brine (30 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc/hexane, 2:1:4) to provide S5 (116 mg, 80%) as yellow solids. To a solution of S5 (114 mg, 0.157 mmol) in toluene (1.4 mL) were added HSiCl₃ (0.16 mL, 1.6 mmol) and *i*-Pr₂NEt (0.55 mL, 3.2 mmol) at 0 °C. After being stirred for 50 min at 100 °C, the reaction mixture was quenched with saturated aqueous NaHCO₃ (9 mL) and extracted with EtOAc (40 mL \times 2). The combined extracts were washed with saturated brine (40 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:20) to provide 70.8 mg (63%) of (S_p) -1c as colorless solids: mp 163-164 °C; $[\alpha]_{D}^{25} = +7.85$ (c = 0.46 in CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 1.24 (s, 18H), 1.26 (s, 18H), 2.26 (m, 1H), 2.56 (m, 1H), 2.70-2.92 (m, 2H), 2.85-2.95 (m, 2H), 3.03 (t, 1H, J = 11.4 Hz), 3.25-3.39 (m, 2H), 5.13 (d, 1H, J = 1.2 Hz), 6.18 (dd, 1H, J = 7.8, 1.2 Hz), 6.37 (dd, 1H, J = 7.8, 1.2 Hz), 6.40 (d, 1H, J = 7.8 Hz), 6.60 (d, 1H, J = 7.8 Hz), 6.78 (d, 1H, J = 1.8 Hz), 7.10 (d, 1H, J = 5.4 Hz), 7.20-7.25 (m, 4H), 7.34 (d, 1H, J = 7.8 Hz), 7.38 (td, 1H, J = 7.8, 1.8 Hz), 7.41-7.50 (m, 2H), 7.54 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 31.1, 31.4 (6C), 31.5 (6C), 33.1, 33.9, 34.2, 34.9 (2C), 35.0 (2C), 118.0, 123.0 (d, $J_{c-p} = 18.0 \text{ Hz}$), 124.5, 125.4, 128.1, 128.2, 128.3, 130.8, 132.2, 132.5, 132.7 (d, $J_{c-p} = 4.5 \text{ Hz}$), 135.1, 135.3, 135.8 (d, $J_{c-p} = 9.0$ Hz), 136.1, 136.8 (d, $J_{c-p} = 9.0$ Hz), 138.9 (d, $J_{c-p} = 12.0$ Hz), 140.0, 141.2, 141.3,

141.7, 151.0 (d, $J_{c-p} = 7.5$ Hz), 153.1; ³¹P NMR (242 MHz, CDCl₃): δ –3.21. HRMS (MALDI) calcd for C₅₀H₆₂OP [*M*+H]⁺: 709.4528, found: 709.4533.

(4) Determination of the absolute configuration for 5j and 5m

To a cooled (0 °C) stirred solution of **5j** (18.0 mg, 0.0467 mmol, 84% *ee*) in THF (0.9 mL) and EtOH (0.9 mL) was added 1M aqueous LiOH (0.9 mL) slowly. After being stirred at room temperature for 1.5 h, the mixture was quenched with 2M aqueous HCl (2 mL) and extracted with EtOAc (30 mL x 3). The combined extracts were washed with saturated brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure to provide the crude product (18.3 mg), which was used in the next step without further purification. To a cooled (0 °C) stirred solution of the crude product (13.5 mg) in MeOH (0.5 mL) was added TMSCH₂N₂ (0.6 M in hexane) (0.38 mL, 0.23 mmol). After being stirred for 20 min at 0 °C, the mixture was concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide 9.9 mg (70%) of **S6** as a colorless oil: $[\alpha]_{D}^{26} = -120$ (*c* = 0.49 in CHCl₃); {ref. 6 (*S*)-**S6**; $[\alpha]_{D}^{n} = -157$ (*c* = 1.02 in CHCl₃) for 87% *ee*}. ¹H NMR (600 MHz, CDCl₃): δ 2.23 (s, 3H), 2.37 (s, 3H), 3.59 (s, 3H), 4.43-4.55 (m, 2H), 5.70 (dt, 1H, *J* = 5.4, 1.8 Hz), 6.77 (q, 1H, *J* = 1.8 Hz), 6.90 (s, 1H), 7.03 (d, 2H, *J* = 7.8 Hz), 7.10-7.15 (m, 3H), 7.60 (d, 2H, *J* = 7.8 Hz).

To a cooled (0 °C) stirred solution of **5m** (15.8 mg, 0.0389 mmol, 90% *ee*) in THF (0.8 mL) and EtOH (0.8 mL) was added 1M aqueous LiOH (0.8 mL) slowly. After being stirred at room temperature for 1.5 h, the mixture was quenched with 2M aqueous HCl (2 mL) and extracted with EtOAc (30 mL × 3). The combined extracts were washed with saturated brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure to provide the crude product (18.1 mg), which was used in the next step without further purification. To a cooled (0 °C) stirred solution of the crude product (18.1 mg) in MeOH (0.5 mL) was added TMSCH₂N₂ (0.6 M in hexane) (0.38 mL, 0.23 mmol). After being stirred for 20 min at 0 °C, the mixture was concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide 10.5 mg (68%) of **S7** as a colorless oil: $[\alpha]_{D}^{26} = -240$ (*c* = 0.51 in CHCl₃); {ref. 6 (*S*)-**S7**; $[\alpha]_{D}^{n} = -206$ (*c* = 0.98 in CHCl₃) for 83% *ee*}. ¹H NMR (600 MHz, CDCl₃): δ 2.39 (s, 3H), 3.57 (s, 3H), 4.43-4.55 (m, 2H), 6.14 (m, 1H), 6.79 (q, 1H, *J* = 1.8 Hz), 7.13-7.19 (m, 3H), 7.21 (d, 2H, *J* = 8.4 Hz), 7.30 (m, 1H), 7.60 (d, 2H, *J* = 8.4 Hz)

References

1. a) D. Huang, X. Wang, X. Wang, W. Chen, X. Wang, Y. Hu, Org. Lett. 2016, 18, 604. b) S. Morales,

F. G. Guijarro, J. L. G. Ruano, M. B. Cid, *J. Am. Chem. Soc.* **2014**, *136*, 1082. c) Z. Li, X. Ren, P. Wei, H. Wan, Y. Shi, P. Ouyang, *Green Chem.* **2006**, *8*, 433. d) J. L. G. Ruano, J. Alemán, M. B. Cid, A. Parrad, *Org. Lett.* **2005**, *7*, 179. e) B. E. Love, P. S. Raje, T. C. Williams II, Synlett, **1994**, 493.

2. a) G. Wang, X. Liu, Y. Chen, J. Yang, J. Li, L. Lin, X. Feng, ACS Catal. 2016, 6, 2482. b) B. J. Cowen, L. B.

Saunders, S. J. Miller, J. Am. Chem. Soc. 2009, 131, 6105. c) C.-Y. Li, X.-B. Wang, X.-L. Sun, Y. Tang, J.-C. Zheng, Z.-H. Xu, Y.-G. Zhou, L.-X. Dai, J. Am. Chem. Soc. 2007, 129, 1494.

3. S. Kitagaki, Y. Ohta, R. Takahashi, M. Komizu, C. Mukai, Tetrahedron Lett. 2013, 54, 384.

4. N. Takenaga, S. Adachi, A. Furusawa, K. Nakamura, N. Suzuki, Y. Ohta, M. Komizu, C. Mukai, S. Kitagaki, *Tetrahedron* **2016**, *54*, 384.

5. P. Dotta, A. Magistrato, U. Rothlisberger, P. S. Pregosin, A. Albinati, Organometallics 2002, 21, 3033.

6. W. Sun, X. Ma, L. Hong, R. Wang, J. Org. Chem. 2011, 76, 7826.

				mqq
06°ET				2
SP.12				8
				30
				- 6
				20
18.32				- 00
\$2.89 <u> </u>				
]	2
				8
				- 6
				18
				110
£5.521				120
24.461 27.621 80.721 80.721				130
142.02 135.05 135.05				140
81,841 20,441				150
96.191				160
	N			20
	DCL3)	5		0
	Eto- NMR,			1
	O ₂ N			190
		2 1 1	1	F -

			-1	mdd
₽8°ET				2
89°TZ				8
				8
				- 6
				- 0
84.22				0
6₽.7a		-		9
			Į	2
				8
				6
				10
				110
01.421				120
22.021 129.24 129.75				30
135.88 734.70 73.62 73.62 73.68				40 1
09.541				1
				4
99°T9T ——				160
	N			170
	Ts Ts JCL ₃)			180
	Eto Eto Bankara Bankar			190
	õ 🗁			Ł

		H H H H
6 2. 51 ——		 ₽
09.12		
		30
		40
09.66		 20
21.15 SS.15		
		10
-		8
		- 6
		100
		110
48.721 48.64		120
21.621 57.021 57.021 57.051		 130
20'96T 20'96T 20'96T		 140
£9.8⊧t ——		150
82°T9T ——		160
	Ν	170
	NO2 DCL3)	180
	Eto- (1 ³ C NMR Solvent: C	

S24

	
	8
	8
	- 6
58° bG	20
	- 9
	- 2
	- 8
	- 8
	- 5
	110
61.921	120
77.921 00.921 P+P.721	130
134.28	140
	150
	- 160
	12
CDCL3) CDH	180
HO Solvent: 4	190

			- udd
			- 9
85.12			 8-
88.25			3 - 1
86,85			 - 6
\$9°2\$		 	 20
₽Z.88 			- 09
90*99			 - 2
] - 8
			- 8
			- 8
			10
28.ISI		 	 120
28.821 68.821 68.721	 	 	
21.261			 40
S7.8A1			 20
6T.ÞST ——			
			2
	0MHz -3)		0
	MR, 15(It: CDCI		0 18
	(¹³ C N Solver		10
			e 🛏

HPLC Data

0					
0.0	5.0	10.0 Retention Time [min]	15.0	20.0	22.0

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さが	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	15.608	365024	13389	10.156	11.641	N/A	7352	2.393	1.016	- andere
2	Unknown	1	17.483	3229124	101629	89.844	88.359	N/A	6884	N/A	1.201	

#	ピーク名	CH	tR [min]	面積 [µV·sac]	高さ〔µV〕	面積%	高さな	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	18.367	907849	20829	11.554	12.799	N/A	4497	2.329	1.624	
2	Unknown	1	21.075	6949577	141913	88.446	87.201	N/A	4649	N/A	1.793	

#	ビーク名	CH	tR [min]	面積 [pV:sec]	A に ()	面積%	高部	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	26.917	6196298	127472	30.192	31.941	N/A	7525	1.900	1.111	
2	Unknown	1	29.375	14326452	271617	69.808	68.059	N/A	7543	N/A	1.098	

#	ビーク名	CH	tR [min]	面積 [µV:sec]	高さ「山V」	面積%	高さな	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	12.367	917537	45905	12.248	16.568	N/A	9253	7.492	1.038	
2	Unknown	1	17.017	6573872	231168	87.752	83.432	N/A	8683	N/A	1.055	

#	ピーク名	CH	tR [min]	面積 [µV:sec]	高さ〔いく〕	面積%	高さな	定量使	NTP.	分離度	シンメトリー係数	警告
1	Unknown	1	9.067	631288	43662	13.088	14.888	N/A	9611	3.260	1.034	
2	Unknown	1	10.367	4191944	249619	86.912	85.112	N/A	9307	N/A	1.007	

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さな	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	13.175	5319440	234301	50.089	52.253	N/A	8450	2.241	1.031	
2	Unknown	1	14.517	5304816	214096	49.931	47.747	N/A	8565	N/A	0.995	

#	ピーク名	CH	tR [min]	面積 [µV·seo]	高さ印の	面積%	あさる	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	13.292	3549396	151978	17.696	19.019	N/A	8107	2.335	1.062	
2	Unknown	1	14.733	16507969	647122	82.304	80.981	N/A	8280	N/A	0.917	

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さい	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	22.117	4310372	113060	50.098	53.960	N/A	8158	3.773	1.147	
2	Unknown	1	26.108	4293512	96467	49.902	46.040	N/A	8361	N/A	1.097	

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さる	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	22.042	642925	16997	8.004	9.462	N/A	8016	3.786	1.172	
2	Unknown	1	26.100	7389528	162645	91.996	90.538	N/A	8034	N/A	1.075	

#	ピーク名	CH	tR [min]	面積 [µV:sec]	高さ[uV] さ高	面積%	高さる	定量值	NTP.	分離度	シンメトリー係数	警告
1	Unknown	1	19.033	5320905	150414	49.962	64.405	N/A	7152	10.705	1.218	
2	Unknown	1	32.642	5328980	83130	50.038	35.595	N/A	6270	N/A	1.281	

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ「レイ」	面積%	高さ¥	定量值	NTP.	分離度	シンメトリー係数	警告
4	Unknown	1	19.367	1339881	37800	9.990	17.169	N/A	7364	10.398	1.159	
2	Unknown	1	32.975	12072191	182365	80.010	82.831	N/A	5869	N/A	1.411	

#	ピーク名	OH	tR [min]	面積 [µV:sec]	高さ〔山公〕	面積%	高さな	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	15.025	1078761	49570	9.018	10.542	N/A	11015	3.745	1.083	_
2	Unknown	1	17.367	10883897	420854	80.982	89.458	N/A	10399	N/A	1.171	

#	ビーり名	CH	tR [min]	面積 [µV:sec]	高さ[山V]	面積%	高さい	定量值	NTP	分離度	シンメトリー係数	著告
1	Unknown	1	24.408	8566828	147383	94.922	96.382	N/A	4403	7.394	2.087	
2	Unknown	1	37.933	458263	5532	5.078	3.618	N/A	4770	N/A	1.468	

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さた	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	19.867	7275855	242980	88.010	91.362	N/A	10229	9.305	1,123	
2	Unknown	1	28.800	991180	22974	11.990	8.638	N/A	10221	N/A	1.106	

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さしい	面積紫	· あさX	定量值	NTP.	分離度	シンメトリー係数	警告
1	Unknown	1	18.108	10157053	240529	93.779	95.329	N/A	4555	5.723	1.951	
2	Unknown	1	25.433	673833	11787	6.221	4.671	N/A	4641	N/A	1.456	2

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[uV]	面積%	高さ	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	30.067	1932979	39200	50.179	52.732	N/A	8852	1.977	1.049	
2	Unknown	1	32.725	1919220	35137	49.821	47.268	N/A	8516	N/A	1.113	

#	ピーク名	CH	tR (min)	面積 [µV·sec]	高さ [uV]	面積%	高さ¥.	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	30.917	412636	8511	5.421	6.463	N/A	9208	1.938	1.012	
2	Unknown	1	33.617	7199635	123177	94.579	93.537	N/A	7983	N/A	1.174	

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さが	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	1	21.275	573945	17336	4.089	4.783	N/A	9571	2.595	1.084	
2	Unknown	1	23.725	13529906	345133	95.931	95.217	N/A	8594	N/A	1.198	