Supporting Information

Planar chiral [2.2]paracyclophane-based phosphine-phenols: Use in enantioselective [3+2] annulations of allenoates and N-tosylimines

Shinji Kitagaki,* Kento Nakamura, Chiharu Kawabata, Asuna Ishikawa, Naoko Takenaga and Keisuke Yoshida

Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.

Contents

(1) General Information S2
(2) Effects of the substituent on the imine nitrogen atom S2
(3) Preparation of catalyst $\left(S_{\mathrm{p}}\right)-\mathbf{1 c}$ S2
(4) Determination of the absolute configuration for $\mathbf{5 j}$ and $\mathbf{5 m}$ S4
(5) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S5
(6) HPLC Data S29

(1) General Information

Melting point (mp) was measured by Yanaco melting point apparatus MP-500D and uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded by a Bruker Avance III 600 spectrometer operating at $600 \mathrm{MHz}\left(150 \mathrm{MHz}\right.$ for ${ }^{13} \mathrm{C}$ NMR) at $25{ }^{\circ} \mathrm{C}$ with tetramethylsilane ($\delta=0.0 \mathrm{ppm}$) as an internal standard. The data are reported as follows: chemical shift in $\mathrm{ppm}(\delta)$, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), integration, and coupling constant $(\mathrm{Hz}) .{ }^{31} \mathrm{P}$ NMR spectra were recorded with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\delta=0.0 \mathrm{ppm})$ as an external standard. High resolution mass spectra were measured with a JEOL JMS-3000. Analytical thin-layer chromatography (TLC) was performed on MERCK silica gel, grade $60 \mathrm{~F}_{254}$. The spots and bands were detected by UV light of irradiation (254 nm) and/or by staining with 5% phosphomolybdic acid followed by heating. Column chromatography for isolation of the products was carried out on KANTO Sillica Gel 60 (230-400 mesh). HPLC analyses were performed using Interigent UV/VIS Detector JASCO UV-7500. The chiral columns included CHIRALCEL OD-H and CHIRALPAK AD-H (Daicel Chemical Industries, Ltd., $0.46 \Phi \times 25 \mathrm{~cm}$).

Materials Aldimines $\mathbf{3 a - o}$ were prepared by using reported methods. ${ }^{1}$ Allenoates $\mathbf{4 b} \mathbf{- d}$ were prepared from the appropriate phosphorane according to the literature. ${ }^{2}$ Commercially available reagents were used throughout without purification unless otherwise stated. Catalysts $\left(S_{\mathrm{p}}\right)-\mathbf{1 a}^{3}$ and $\mathbf{1 b}^{4}$ were prepared using reported method in our previous paper.
(2) Effects of the substituent on the imine nitrogen atom. ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{3}(0.05 \mathrm{mmol}), \mathbf{4 a}(0.11 \mathrm{mmol})$, catalyst $\left(2.5 \times 10^{-3} \mathrm{mmol}\right)$ in toluene $(0.5 \mathrm{~mL})$ at room temperature.
${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis using a chiral stationary phase.
(3) Preparation of catalyst $\left(S_{p}\right)$-1c

1-Bromo-3-[bis(3,5-di-tert-butyl)phosphino]benzene (S3)

This reaction was carried out under Ar. To a solution of phosphine oxide $\mathbf{S 1}^{5}$ ($2.03 \mathrm{~g}, 4.76 \mathrm{mmol}$), DPPP (176 mg , $0.426 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(107 \mathrm{mg}, 0.475 \mathrm{mmol})$ in DMSO $(54.2 \mathrm{~mL})$ were added 3-bromoiodobenzene (0.55 mL , 4.33 mL) and $i-\mathrm{Pr}_{2} \mathrm{NEt}(2.28 \mathrm{~mL} 13.1 \mathrm{mmol})$. After being stirred for 10 h at $100{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with 10% aqueous $\mathrm{HCl}(26.7 \mathrm{~mL})$, and extracted with $\mathrm{EtOAc}(50 \mathrm{~mL} \times 3)$. The combined extracts were washed with water $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness. The residue was purified by column chromatography (EtOAc/hexane, 5:1) on silica gel to provide 1.73 g (65%) of $\mathbf{S} \mathbf{2}$ as a yellow oil.

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of the phosphine oxide $\mathbf{S 2}(1.73 \mathrm{~g}, 2.97 \mathrm{mmol})$ in toluene (26 mL) were added $\mathrm{HSiCl}_{3}(3.0 \mathrm{~mL}, 30 \mathrm{mmol})$ and $i-\operatorname{Pr} 2 \mathrm{NEt}(10 \mathrm{~mL}, 57 \mathrm{mmol})$. After being stirred for 2 h at $80^{\circ} \mathrm{C}$, the mixture was quenched with 25% aqueous $\mathrm{NaOH}(70 \mathrm{~mL})$. The precipitated solids were removed by filtration through a pad of Celite and washed well with EtOAc. The filtrate was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined extracts were washed with water $(100 \mathrm{~mL})$ and saturated brine $(100 \mathrm{~mL})$, respectively. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: hexane only) to provide $1.44 \mathrm{~g}(86 \%)$ of $\mathbf{S 3}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.25(\mathrm{~s}, 36 \mathrm{H}), 7.14(\mathrm{~d}$, $2 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.15(\mathrm{~d}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.16-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dt}, 1 \mathrm{H}, J=5.4,1.8 \mathrm{~Hz}$,), 7.46 (dt, 1H, $J=6.6,1.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.4$ (12C), 34.9 (4C), 122.7 , 122.9 (4C), 128.2 (d, 4C, $J_{\mathrm{c}-\mathrm{p}}$ $=21.0 \mathrm{~Hz}), 129.7\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=21.0 \mathrm{~Hz}\right), 131.2(2 \mathrm{C}), 131.8\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=18.0 \mathrm{~Hz}\right), 135.4\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=9.0 \mathrm{~Hz}\right), 135.9\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=\right.$ $19.5 \mathrm{~Hz}), 142.0\left(\mathrm{~d}, J_{c-\mathrm{p}}=16.5 \mathrm{~Hz}\right), 150.8\left(\mathrm{~d}, 2 \mathrm{C}, J_{\text {c-p }}=6.0 \mathrm{~Hz}\right) . \mathrm{HRMS}$ (MALDI) calcd for $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{PBr}[M+\mathrm{H}]^{+}$: 565.2593, found: 565.2611.

Catalyst $\left(S_{\mathrm{p}}\right)-1 \mathrm{c}$

S3

S4

S5 $100^{\circ} \mathrm{C}$, 18 h
$\mathrm{HSiCl}_{3}, i-\mathrm{Pr}_{2} \mathrm{NEt}$
toluene $100^{\circ} \mathrm{C}, 50 \mathrm{~min}$

$\left(S_{p}\right)-1 c$

Procedure for preparation of $\mathbf{S 4}$ from S3: The following reaction was carried out under Ar. (Step 1) To a cooled ($78{ }^{\circ} \mathrm{C}$) solution of $\mathbf{S 3}(200 \mathrm{mg}, 0.354 \mathrm{mmol})$ in THF $(2.1 \mathrm{~mL})$ was slowly added $n-\mathrm{BuLi}(0.29 \mathrm{~mL}, 0.46 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane solution). After stirring for 30 min at $-78^{\circ} \mathrm{C}$, 2 -isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.22 $\mathrm{mL}, 1.1 \mathrm{mmol}$) was added to the mixture at that temperature. Then the reaction mixture was stirred for 14.3 h at room temperature, quenched with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \mathrm{x} 4)$. The combined extracts were washed with water (30 mL) and brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness. The residue was purified by column chromatography (EtOAc/hexane, 1:80) on silica gel to provide $100.5 \mathrm{mg}(46 \%)$ of borylated compound as white solids.
(Step 2) A stirred solution of the compound obtained in step $1(135 \mathrm{mg}, 0.221 \mathrm{mmol}), \mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{mg}, 0.022$ $\mathrm{mmol})$, $\mathrm{KSCN}(10.8 \mathrm{mg}, 0.111 \mathrm{mmol})$ and I_{2} (cat. amount) in dry $\mathrm{MeCN}(2.4 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ with vigorous O_{2} bubbling. After being stirred for 1 h at $80^{\circ} \mathrm{C}$, the mixture was cooled to room temperature, and concentrated under reduced pressure. The residue was extracted with EtOAc ($40 \mathrm{~mL} \times 3$). The combined extracts were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$, water (30 mL) and brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to provide 140.9 mg (quant.) of $\mathbf{S} 4$ as light green solids.
Procedure for preparation of $\left(S_{\mathrm{p}}\right)$-1 \mathbf{c} : To a solution of $\mathbf{S 4}(126 \mathrm{mg}, 0.200 \mathrm{mmol})$ in DMSO $(3.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.3$ mL) were added (S_{p})-12-bromo[2.2]paracyclophan-4-ol ($60.6 \mathrm{mg}, 0.200 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(63.6 \mathrm{mg}, 0.600 \mathrm{mmol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(26.3 \mathrm{mg}, 0.0228 \mathrm{mmol}, 11 \mathrm{~mol} \%)$. After being stirred for 18 h at $100{ }^{\circ} \mathrm{C}$, the mixture was diluted with water and extracted with EtOAc ($30 \mathrm{~mL} \times 2$). The combined extracts were washed with saturated brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} /\right.$ hexane, 2:1:4) to provide $\mathbf{S 5}(116 \mathrm{mg}, 80 \%)$ as yellow solids. To a solution of $\mathbf{S 5}(114 \mathrm{mg}$, $0.157 \mathrm{mmol})$ in toluene $(1.4 \mathrm{~mL})$ were added $\mathrm{HSiCl}_{3}(0.16 \mathrm{~mL}, 1.6 \mathrm{mmol})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.55 \mathrm{~mL}, 3.2 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 50 min at $100^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(9 \mathrm{~mL})$ and extracted with EtOAc ($40 \mathrm{~mL} \times 2$). The combined extracts were washed with saturated brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, $1: 20$) to provide $70.8 \mathrm{mg}(63 \%)$ of $\left(S_{\mathrm{p}}\right)-\mathbf{1 c}$ as colorless solids: $\mathrm{mp} 163-164^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+7.85(c=$ 0.46 in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24(\mathrm{~s}, 18 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.92$ $(\mathrm{m}, 2 \mathrm{H}), 2.85-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{t}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 3.25-3.39(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 6.18(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.8,1.2 \mathrm{~Hz}), 6.37(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=1.8$ $\mathrm{Hz}), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.20-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.38(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.8 \mathrm{~Hz}), 7.41-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.1,31.4(6 \mathrm{C}), 31.5(6 \mathrm{C}), 33.1,33.9,34.2,34.9(2 \mathrm{C}), 35.0$ $(2 \mathrm{C}), 118.0,123.0\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=18.0 \mathrm{~Hz}\right), 124.5,125.4,128.1,128.2,128.3,130.8,132.2,132.5,132.7\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=4.5 \mathrm{~Hz}\right)$, $135.1,135.3,135.8\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=9.0 \mathrm{~Hz}\right), 136.1,136.8\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=9.0 \mathrm{~Hz}\right), 138.9\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=12.0 \mathrm{~Hz}\right), 140.0,141.2,141.3$,
141.7, $151.0\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{p}}=7.5 \mathrm{~Hz}\right), 153.1 ;{ }^{31} \mathrm{P}$ NMR ($242 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-3.21$. HRMS (MALDI) calcd for $\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{OP}$ $[M+H]^{+}: 709.4528$, found: 709.4533.
(4) Determination of the absolute configuration for $\mathbf{5 j}$ and 5m

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{5 j}(18.0 \mathrm{mg}, 0.0467 \mathrm{mmol}, 84 \% e e)$ in $\mathrm{THF}(0.9 \mathrm{~mL})$ and EtOH $(0.9 \mathrm{~mL})$ was added 1 M aqueous $\mathrm{LiOH}(0.9 \mathrm{~mL})$ slowly. After being stirred at room temperature for 1.5 h , the mixture was quenched with 2 M aqueous $\mathrm{HCl}(2 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(30 \mathrm{~mL} x 3)$. The combined extracts were washed with saturated brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to provide the crude product (18.3 mg), which was used in the next step without further purification. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of the crude product $(13.5 \mathrm{mg})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added $\mathrm{TMSCH}_{2} \mathrm{~N}_{2}(0.6 \mathrm{M}$ in hexane) ($0.38 \mathrm{~mL}, 0.23 \mathrm{mmol}$). After being stirred for 20 min at $0^{\circ} \mathrm{C}$, the mixture was concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide $9.9 \mathrm{mg}(70 \%)$ of $\mathbf{S 6}$ as a colorless oil: $[\alpha]^{26}{ }_{\mathrm{D}}=-120\left(c=0.49\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\left\{\right.$ ref. $6(S)-S 6 ;[\alpha]_{\mathrm{D}}^{\mathrm{rt}}=-157\left(c=1.02\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $\left.87 \% e e\right\} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 4.43-4.55(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{dt}, 1 \mathrm{H}, J=5.4,1.8 \mathrm{~Hz}), 6.77(\mathrm{q}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 7.10-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$.

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of $\mathbf{5 m}(15.8 \mathrm{mg}, 0.0389 \mathrm{mmol}, 90 \% e e)$ in $\mathrm{THF}(0.8 \mathrm{~mL})$ and $\mathrm{EtOH}(0.8 \mathrm{~mL})$ was added 1 M aqueous $\mathrm{LiOH}(0.8 \mathrm{~mL})$ slowly. After being stirred at room temperature for 1.5 h , the mixture was quenched with 2 M aqueous $\mathrm{HCl}(2 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(30 \mathrm{~mL} \times 3)$. The combined extracts were washed with saturated brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to provide the crude product $(18.1 \mathrm{mg})$, which was used in the next step without further purification. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of the crude product $(18.1 \mathrm{mg})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added $\mathrm{TMSCH}_{2} \mathrm{~N}_{2}(0.6 \mathrm{M}$ in hexane) $(0.38 \mathrm{~mL}, 0.23 \mathrm{mmol})$. After being stirred for 20 min at $0^{\circ} \mathrm{C}$, the mixture was concentrated under reduced pressure. The residue was purified by PTLC (EtOAc/hexane, 1:2) to provide $10.5 \mathrm{mg}(68 \%)$ of $\mathbf{S 7}$ as a colorless oil: $[\alpha]^{26}=-240\left(c=0.51 \mathrm{in} \mathrm{CHCl}_{3}\right)$; $\left\{\right.$ ref. $6(S)-S 7 ;[\alpha]_{\mathrm{D}}^{\mathrm{tt}}=-206\left(c=0.98\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $\left.83 \% e e\right\} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}$, $3 \mathrm{H}), 4.43-4.55(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{q}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.13-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.30(\mathrm{~m}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$

References

1. a) D. Huang, X. Wang, X. Wang, W. Chen, X. Wang, Y. Hu, Org. Lett. 2016, 18, 604. b) S. Morales,
F. G. Guijarro, J. L. G. Ruano, M. B. Cid, J. Am. Chem. Soc. 2014, 136, 1082. c) Z. Li, X. Ren, P. Wei, H. Wan, Y. Shi, P. Ouyang, Green Chem. 2006, 8, 433. d) J. L. G. Ruano, J. Alemán, M. B. Cid, A. Parrad, Org. Lett. 2005, 7, 179. e) B. E. Love, P. S. Raje, T. C. Williams II, Synlett, 1994, 493.
2. a) G. Wang, X. Liu, Y. Chen, J. Yang, J. Li, L. Lin, X. Feng, ACS Catal. 2016, 6, 2482. b) B. J. Cowen, L. B. Saunders, S. J. Miller, J. Am. Chem. Soc. 2009, 131, 6105. c) C.-Y. Li, X.-B. Wang, X.-L. Sun, Y. Tang, J.-C. Zheng, Z.-H. Xu, Y.-G. Zhou, L.-X. Dai, J. Am. Chem. Soc. 2007, 129, 1494.
3. S. Kitagaki, Y. Ohta, R. Takahashi, M. Komizu, C. Mukai, Tetrahedron Lett. 2013, 54, 384.
4. N. Takenaga, S. Adachi, A. Furusawa, K. Nakamura, N. Suzuki, Y. Ohta, M. Komizu, C. Mukai, S. Kitagaki, Tetrahedron 2016, 54, 384.
5. P. Dotta, A. Magistrato, U. Rothlisberger, P. S. Pregosin, A. Albinati, Organometallics 2002, 21, 3033.
6. W. Sun, X. Ma, L. Hong, R. Wang, J. Org. Chem. 2011, 76, 7826.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

(${ }^{13} \mathrm{C}$ NMR, 150 MHz
Solvent: CDCL_{3})

(${ }^{1} \mathrm{H}$ NMR, 600 MHz Solvent: CDCL_{3})

$\left({ }^{13} \mathrm{C}\right.$ NMR, 150 MHz

(${ }^{1} \mathrm{H}$ NMR, 600 MHz
Solvent: CDCL_{3})

$55^{\circ} 59 \mathrm{~T}=$

(${ }^{1} \mathrm{H}$ NMR, 600 MHz
Solvent: CDCL_{3})

$9 \varepsilon^{*}$ T9T

$58^{\circ} 797 \longrightarrow$

(${ }^{1} \mathrm{H}$ NMR, 600 MHz Solvent: CDCL_{3})

$\angle \angle \cdot \varepsilon \tau=$
$25 \cdot \tau ะ-$

(${ }^{1} \mathrm{H}$ NMR, 600 MHz
Solvent: CDCL_{3})

$68^{\circ} \mathrm{\varepsilon t}=$
$89^{\circ} \mathrm{T}$ _
$86^{\circ} 95$ ع6.09
$6 b \cdot \angle 9=$
sG'T9T

 （ ${ }^{1} \mathrm{H}$ NMR， 600 MHz Solvent： CDCL_{3} ）

Abstract

\qquad
$88^{\circ} 97$
E6.9E

\＃ヒーク名	CH	tR［min］		商ざ［uV］	面稓碞	高部：	定严倠	NTP	分	シメトリス	回
1 Unknown	1	15.850	1576787	52565	50.122	52.867	N／A	6532	2.482	1.225	
2 Unknown	1	17．900	1569115	48863	49.878	47.133	N／A	6745	N／A	1.194	

世－ク名	CH		，	，		高ざ可		NTP		政納	
1 Unknown	1	15.608	365024	13389	10.156	11.641	N／A	7352	2.393	1.016	
2 Unkno	1	17.48	322912	101629	89.8	88.359	N／A	688	N／A	120	

1	Unknown	1	18.017	2302351	63978	49.707	50.645	N／A 3994

\＃セーク名	CH	R［min	80		标	高浐	定量倠	NTP		アメメアフ係奴	
1 Unknown	1	18.367	907849	20829	11.554	12.799	N／A	4497	2.329	1.624	
2 Unkn	1	21.0	69495	419	88.446	87.201	N／A	4649	N／A	1.793	

\＃	ヒーク名	CH	tR．［min］	面积［ $4 \mathrm{~V} / \mathrm{P}$ 800］	离さ［可V		高ざ行	定量衙	NTP．	分弶	シンメトリー你顛	
1	Unknown	1	26.475	9924848	207892	49.815	51.686	N／A	7483	1.898	1.049	
2	Unknown	1	28.875	9998334	194330	50.185	48.314	N／A	7748	N／A	1.074	

边－名	OH	，	－	告	面积罥	高边				シンメトリー係坆	
1 Unknown	1	26.917	6188298	127472	30.192	31.941	N／A	7525	1.900	1.111	
2 Unknown	1	29.37	1432	271	69．808	68.059	N／A	7543	N／A	1098	

2 Unknown	1	17.925	6025084	214435	50.203	41.390	$\mathrm{~N} / \mathrm{A}$	9850	$\mathrm{~N} / \mathrm{A}$

\＃	ヒ－ク名	CH	tR［min］		离ざ［иV］	面积员	高边	定量偯	NTP		シンメリアー絲敏	吾
1	Unknown	1	12.367	917537	45905	12.248	16．568	N／A	9253	7.492	1.038	
2	Unknown	1	17.017	6573872	231168	87.752	83.432	N／A	8883	N／A	1.055	

1	Unknown	1	9.158	3509253	239086	50.093	53.457	N/A	8806	3.288
2	Unknown	1	10.475	3498180	208163	49.807	46.543	N/A	9529	N/A

1	Unknown	1	9.067	631288	43662	13.088	14.888	N/A	9611	3.260	1.034
2	Unknown	1	10.367	4191844	249619	86.912	85.112	N/A	9307	N/A	1.007

1	Unknown	1	13.175	5319440	234301	50.089	52.253	N/A	8450	2.241
2	Unknown	1	14.517	5304816	214086	49.931	47.747	N/A	8565	N/A

\#	0	(1)	-			ch:		NTP		-	洏
1.1 Unknown	1	13.292	3549396	151978	17.686	19.019	N/A	8107	2.335	1.082	
2. Unkno	1	14.7	16507	6471	82.304	80.981	N/A	8280	N/A	0.917	

\＃	CH	tR［min］			面稜沕	高ざ妾	定量健	NTP	分醮	ジメスリ可係双	浩
1 Unknown	1	22.117	4310372	113060	50.098	53.860	N／A	8158	3.773	1.147	
2 Unknown	1	26.108	4293512	96467	49．802	46.040	N／A	8361	N／A	1.097	

1	Unknown	1	22.042	642925	18997	8.004	9.462	N／A	8016	3.786	1.172
2	Unknown	1	26.100	7389528	162645	91.996	90.538	N／A	8034	N／A	

1	Unknown	1	19.033	5320905	150414	49.962	64.405	N/A	7152	10.705	1.218
2	Unknown	1	32.642	5328980	83130	50.038	35.595	N/A	6270	N/A	1.281

1	Unknown	1	19.367	1339881	37800	9.980	17.169	N/A	7364	10.398	1.159
2	Unknown	1	32.875	12072191	182365	80.010	82.831	N/A	5869	N/A	1.411

		CH	tR［min］	面棌［ $[\overline{\mathrm{L}} \mathrm{V}: \mathrm{sec}$ ］		面楼䍃	高ざ浢	定箩倞	9NTP：	分醀蜑		登窝
1	Unknown	1	15.108	3829515	172732	49.953	53.958	N／A	10752	3.846	1.119	
2	Unknown	1	17．542	3836741	147393	50.047	48.042	N／A	10468	N／A	1.122	

\＃：	OH	（	［ ${ }_{\text {Nisec }}$	．	淘积		宣	NTP：		シアメトリア	
1.14	1	15.025	1078761	49570	9.018	10.542	N／A	11015	3.745	1.083	
2 Unkn	1	17．36	1088389	420854	80.98	89.4	N／A	10399	N／A	1.171	

\＃セ－ク名	OH	tR：［min］	面积［ 4 V Vioec］	高を［［山以］	面枟采	原さ	定監衙	NTR．	分䪵	シンメトリー係	空兽
1 Unknown	1	25.175	4458177	78056	50.014	62.443	N／A	4784	6.348	1.809	
2. Unknown	1	37.400	4455756	46949	49.986	37.557	N／A	3883	N／A	2.407	

\＃	C					高ざ可	定量倠	NTP．		シアメトリ云絲数	
1 Unknown	1	24.408	8586828	147383	94.922	98．382	N／A	4403	7.394	2.087	
2 Unknown	1	37.933	4582	55	5.0	3.6	N／A	4770	N／A	1.488	

\#E:
 $\begin{array}{r}1.022 \\ \hline 1.092\end{array}$

1 Unknown	1	14.300	291841	14830	5.635	6.617	N/A	12013	3.484	1.008
2 Unknown	1	16.275	4888769	209272	94.365	93.383	N/A	11209	N/A	1.103

1	Unknown	1	18.592	6557252	223460	49.835	59.168	$\mathrm{~N} / \mathrm{A}$	10312	8.191	1.124
2	Unknown	1	28.292	6600622	154208	50.165	40.832	$\mathrm{~N} / \mathrm{A}$	10092	$\mathrm{~N} / \mathrm{A}$	

1	Unknown	1	19.867	7275855	242980	88.010	91.362	N/A	10229	9.305	1.123
2 Unknown	1	28.800	991180	22974	11.950	8.638	$\mathrm{~N} / \mathrm{A}$	10221	$\mathrm{~N} / \mathrm{A}$	1.106	

	ヒ－万名	CH	YR［min］	面缃［ $[\mathrm{FV} \cdot \mathrm{sec}$ ］	高さ［¢0］	面积絯	离を\％	－	Nin	．	，	
1	Unknown	1	18.092	2365356	58951	50.227	59.561	N／A	4884	5.321	1.551	
	Unknown	1	24.800	2343997	40026	49.71	40.43	N／A	4388	N／A	1.783	

\＃	R－ク名星	OH	ERi［min］	面梅．［ $\mu \mathrm{V} \mathrm{V}_{\text {－3ec }}$ ］		面积茧		定量的	NTP		－	
1	Unknown	1	18.108	10157053	240529	93.779	85.329	N／A	4555	5.723	1.951	
2	Unknown	1	25.433	673833	11787	6.221	4.671	N／A	4841	N／A	1.458	

\＃

1	Unknown	1	30.067	1932979	39200	50.179	52.732	$\mathrm{~N} / \mathrm{A}$	8852	1.877
2	Unknown	1	32.725	1919220	35137	49.821	47.268	$\mathrm{~N} / \mathrm{A}$	8516	$\mathrm{~N} / \mathrm{A}$

	セ－ク名	CH	tR ［min］	－	c．und	浐积采	嗗边：	定量值	NTP	分雄唐	シアメアリー係欯	管
	Unknown	1	30.917	412636	8511	5.421	6.463	N／A	9208	1.938	1.012	
	Unknown	1	33.617	7199635	123177	94.579	93．537	N／A	7983	N／A	1.174	

\＃	ヒーク名	CH	tR［min］			面槠品	高さ\％	定㗐值	NTP	分碓庭	スメ｜	豈
1	Unknown	1	23.175	2602269	70837	50.051	52.940	N／A	9394	2.536	1.093	
2	Unknown	1	25.742	2596929	62969	48.949	47.080	N／A	9200	N／A	1.133	

\＃	ए－万名	CH	tR［min］	面稓［ $[\mathrm{V} \cdot \mathrm{sec}$ ］	高ざいV］	面积教	気ざ		NTP．	分就度	シンメリアー係數	3空
1	Unknown	1	21.275	573945	17336	4.089	4.783	N／A	9571	2.595	1.084	
2	Unknown	1	23.725	13529808	345133	95.931	95.217	N／A	8594	N／A	1.198	

