Supporting Information

Relevance of the deletion of the *Tatri4* gene in the secondary metabolome of *Trichoderma arundinaceum* and its relation with the biocontrol of phytopathogen fungi.

Inmaculada Izquierdo-Bueno,¹ Javier Moraga,¹ Rosa E. Cardoza,³ L. Lindo,³ James R. Hanson,² Santiago Gutierrez³ and Isidro G. Collado^{1*}

¹Department of Organic Chemistry, Universidad de Cádiz, Faculty of Sciences, 11510, Puerto Real, Cádiz, Spain.² Department of Chemistry, University of Sussex, Brighton, Sussex, BN1 9QJ, United Kingdom.³ Area of Microbiology, Universitary School of Agricultural Engineers. University of León, Ponferrada, Spain.

Table of contents:

Spectroscopy constant Tables	S2-S10
Electronic Circular Dichroisms	S11-S12
¹ H and ¹³ C-NMR spectra	S13-S33

Position	Proton	δ _H (Hz)	δ ¹³ C	NOESY	HMBC
1	-		169.3		
2	H-2a	2.62 (1H, m)	27.6		
Z	H-2b	2.39 (1H, m)	27.0	H2, H3	
2	H-3a	2.34 (1H, m)	27.2		C4
3	H-3b	2.11 (1H, m)	27.5	H4, H2, H2′	
4	Η-4β	4.34 (1H, t, J = 5.3 Hz)	74.0	H6, H2, H3	
5	Η-5β	-	206.6		
(H-6	3.41 (1H, dd, <i>J</i> = 17.5, 10.5 Hz)	41.5	H4, H6′, H8	C5, C7, C8
0	H-6′	2.41 (1H, dd, <i>J</i> = 17.5, 3.3 Hz)		H6	C5, C7
7	Η-7α	5.64 (1H, dd, <i>J</i> = 11, 9.3 Hz)	69.7	Н9	
8	Η-8β	5.11 (1H, t, J = 9.8 Hz)	73.8	H6, H10	C7, C9
9	Η-9α	4.51 (1H, dq, <i>J</i> = 11.6, 6.1 Hz)	70.4	H7, H10	
10	H-10	1.19 (3H, d, J = 6.1 Hz)	17.0	H9, H8	C8, C9
1′	-	-	172.5		
2'	H-2′	2.3 (2H, m)	36.0		
3'	H-3′	1.63 (2H, sext, J = 7.3 Hz)	18.25		C1′, C4′,C2′
4′	H-4′	0.94 (3H, t, J = 7.3 Hz)	13.7		C2′, C3′
<u>CH</u> ₃ CO		1.98 (3H, s)	20.9		
CH ₃ COO			169.1		

Table S1. NMR Spectroscopic data of aspinolide H (12) (¹H at 500 MHz, ¹³C at 125 MHz).

PositionProton $\delta_{\rm H}$ (Hz)		$\delta^{13}C$	NOESY	HMBC	
1	-		169.2		
2	H-2	H-2 2.64 (1H, ddd, J = 17.9, 13.2, 3.3 Hz)			C1
	H-2′	2.38 (1H, m)	27.8		C1
2	Н-3	2.12 (1H, m)	27.2		C1, C4, C5
3	H-3′	2.00 (1H, m)	21.2		C2
4	Η-4β	4.36 (1H, d, <i>J</i> = 6.2 Hz)	74.0	H6, H6′,H2, H3	C2, C3, C5
5	Η-5β	-	206.7		
6	H-6	3.43 (1H, dd, <i>J</i> = 17.4, 10.5 Hz)	41.5	H6′, H8	C5, C7, C8
0	H-6′	2.41 (1H, dd, <i>J</i> = 17.4, 1.7 Hz)	41.5		C4, C5, C7, C8
7	Η-7α	5.73 (1H, ddd, <i>J</i> = 10.5, 9.8, 1.7 Hz)	69.2	Η9α, Η6΄	C5, CO-R, C8
8	Η-8β	5.2 (1H, t, $J = 9.8$ Hz)	73.8	H6, H10	C6, C7, C9, C10, C1′
9	Η-9α	4.55 (1H, dq, <i>J</i> = 10.1, 6.1 Hz)	70.6	Η7α, Η10	C1, C7, C8, C10
10	H-10	1.20 (3H, d, <i>J</i> = 6.1 Hz)	17.0	H8	C8, C9
1'	-	-	165.0		
2′	H-2′	5.82 (1H, dq, J = 15.5, 1.7 Hz)	121.6		C1′, C4′
3'	H-3′	7.02 (1H, dq, J = 15.5, 7.0 Hz)	146.8		C1′, C4′
4′	H-4′	1.90 (3H, dd, J = 7, 1.7 Hz)	18.21		C2′, C3′
CH ₃ CH ₂ CH=CH(C	H ₂)nCH ₂ CO	0.88 (3H, t, J = 6.5 Hz),	14.12		
R-CH=CH-(CH ₂)nCH ₂ CO-		1.54-1.21.	22.7, 24.8, 27.1, 28.9-30.		
	<u> </u>	,	31.9		
R-CH=CH-(CH ₂))n <u>CH2</u> O-	2.15 (2H, m)	34.31, 172.29		
R- <u>CH=CH-(</u> CH ₂))nCH ₂ CO-	5. 33 (2H, m)	130, 129.6		

Table S2. NMR Spectroscopic data of aspinolide I (13) (¹H at 500 MHz, ¹³C at 125 MHz).

Position	Proton	δ _H (Hz)	$\delta^{13}C$	NOESY	HMBC
1	-		176.4		
2	H-2	2.05 (1H, dd, J= 15.7, 11.7 Hz)	22.7	H2′	C1, C3, C4
Ζ	H-2′	2.45 (1H, ddd, J=15.7, 9.6, 1.4 Hz)	52.7	H2	C1, C3, C4
2	H-3	1.77 (1H, ddd, J=13.7, 9.6, 3.0 Hz)	27.4	H3′, H2	C1, C2, C5
5	H-3′	2.27 (1H, m)	27.4		C1, C2, C4, C5
4	Η-4β	3.63 (1H, dt, J= 11.2, 3.0 Hz)	75.6	H2 , H3, H5, H6	
5	Η-5β	4.51 (1H, s (br))	73.4	H4, H6	C3, C4, C6
6	Η-6β	5.55 (1H, dd, J=15.9, 1.9 Hz)	130.8	H4, H5, H8	C5, C7, C8
7	Η-7α	5.65 (1H, ddd, J= 15.9, 8.4, 2.5 Hz)	131.8		C5, C6
8	Η-8β	3.88 (1H, t, J=8.8 Hz)	79.3	H6, H10	C6, C9, C10
9	Η-9α	4.9 (1H, dq, J=8.8, 6.4 Hz)	74.7	H10	C1, C8
10	H-10	1.42 (3H, d, J=6.4 Hz)	16.8	H8, H9	C8, C9

Table S3. NMR Spectroscopic data of aspinolide J (14) (¹H at 600 MHz, ¹³C at 150 MHz).

Position	Proton	δ _H (Hz)	δ ¹³ C	NOESY	HMBC
1	-	-	177.3		
2	Η-2α	2.60 (1H, ddd, <i>J</i> = 18, 10.1, 6 Hz)	29.4		C-1, C3, C4
2	Η-2β	2.48 (1H, ddd, <i>J</i> = 18, 10.1, 7.6 Hz)	28.4		C1, C3, C4
2	Η-3α	2.21 (1H, m)	21.0		C1, C2, C4, C5
5	Η-3β	2.12 (1H, m)	21.0		C1, C4, C5
4	Η-4α	4.51 (1H, m)	81.5		
5	Η-5α	4.54 (1H, m)	71.7		
6	H-6	5.75 (1H, ddd, <i>J</i> = 15.7, 5, 1.2 Hz)	131.2	H8, H5	C5, C7, C8
7	H-7	5.96 (1H, ddd, <i>J</i> = 15.7, 7, 1.5 Hz	127.7	H8, H5	C5, C6, C8
8	H-8	5.24 (1H, ddt, J = 7, 3.9, 0.9 Hz)	77.2	H6, H7, H9, H10	C1′, C6, C7, C10
9	H-9	3.98 (1H, qd, <i>J</i> = 6.5, 3.9 Hz)	69.0	H8, H10	C7, C10
10	H-10	1.18 (3H, d, J = 6.5 Hz)	18.3	H8, H9	C8, C9
1′	-	-	165.6		
2'	H-2′	5.88 (1H, dq, J = 15.6, 1.7 Hz	122.3	H4′	C1′
3'	H-3′	7.02 (1H, dq, J = 15.6, 6.9 Hz)	145.9	H2′, H4′	C1', C4'
4'	H-4′	1.90 (3H, dd, J = 6.9, 1.7 Hz)	18.1		C1', C2', C3'

Table S4. NMR Spectroscopic data of arundinolide A (15) (¹H at 500 MHz, ¹³C at 125 MHz).

Position	Proton	$\delta_{\rm H}$ (Hz)	δ ¹³ C	NOESY	HMBC
1	-		177.2		
2	Η-2α	2.61 (1H, ddd, J = 18.0, 10.1, 6 Hz)	20.5		C-1, C-4
2	Η-2β	2.50 (1H, ddd, J = 18.0, 10.1, 7.7 Hz)	28.5		C-1
2	Η-3α	2.22 (1H, m)	21.0		
3	Η-3β	2.14 (1H, m)	21.0		
4	Η-4α	4.52 (1H, m)	81.6		
5	Η-5α	4.55 (1H, m)	71.8		
6	Н-6	5.78 (1H, ddd, <i>J</i> = 15.5, 5.1, 1.4 Hz)	129.0		C-5, C-7, C-8
7	H-7	5.91 (1H, ddd, <i>J</i> = 15.5, 5.7, 1.4 Hz)	131.1		C-5, C-6, C-8
8	H-8	4.28 (1H, m)	73.9		
9	H-9	4.99 (1H, qd, J = 6.5, 3.2 Hz	73.2		
10	H-10	1.21 (3H, d, <i>J</i> = 6.5 Hz)	14.6		C-8, C-9
1′	-	-	173.6		
2'	H-2′	2.31 (2H, t, <i>J</i> = 7.4 Hz)	36.3		C-3', C-4'
3'	H-3′	1.66 (2H, sext, J = 7.4 Hz)	18.5		C-2′, C-4′
4′	H-4′	0.96 (3H, t, J = 7.4 Hz)	13.6		C-3′, C-2′

Table S5. NMR Spectroscopic data of arundinolide B (16) (¹H at 500 MHz, ¹³C at 125 MHz).

Position	Proton	δ _H (Hz)	δ ¹³ C	NOESY	HMBC
1	-		95.8		C1-O <u>H</u> , H-2, H-3, H-5, H-6, H-7, H-9
2	Η-2α	1.77 (1H, m (superimposed))	26.1		C1, C3
2	Η-2β	1.64 (1H, m)	30.1		
2	Η-3α	1.85 (1H, m (superimposed))	26.2		C1, C2
5	Η-3β	1.78 (1H, m (superimposed))	20.3		C1, C2
4	Η-4β	3.64 (1H, m)	70.9	H2, H3, H5, H6	
5	Η-5β	3.74 (1H, dt, J = 6.1, 2.9 Hz)	72.9	Η4, Η7β, Η6	C1, C3, C4, C6, C7
6	Η-6β	1.76 (1H, ddd, 13.5, 4.6, 2.9 Hz)	42.2		C1
7	Η-7α	2.08 (1H, ddd, <i>J</i> = 13.5, 12.2, 11.1 Hz)	27.5		C1, C6, C8, C9
	Η-7β	1.92 (1H, m (superimposed))			C1, C6, C8, C9
8	Η-8β	4.58 (1H, ddd, <i>J</i> = 11.1, 9.8, 4.9 Hz)	73.3	Η7β, Η6, Η10	C1′, C9, C10
9	Η-9α	4.12 (1H, dq, <i>J</i> = 9.8, 6.2 Hz)	68.2	С1-ОН, Н7а, Н10	C-1, C7, C8
10	H-10	1,15 (3H, d, J = 6.2 Hz)	17.9	H9, H8	C8, C9
1′	-		165.7		
2′	H-2′	5.84 (1H, dq, <i>J</i> = 15.5, 1.7 Hz)	122.5	H4′	C4′
3'	H-3′	6.99 (1H, dq, <i>J</i> = 15.5, 7 Hz)	145.3	H2′, H4′	C1', C4'
4′	H-4′	1.89 (3H, dd, <i>J</i> = 7, 1.7 Hz)	18.0		C2', C3'
C1-O <u>H</u>		3.22 (1H, s)	-		C-1, C-6
С5-О <u>Н</u>		3.19 (1H, d, J = 7.0 Hz)	-		C-5, C-6

Table S6. NMR Spectroscopic data of trichoarundinal A (17) (¹H at 500 MHz, ¹³C at 125 MHz).

Position	Proton	δ _H (Hz)	$\delta^{13}C$	NOE	HMBC
1	_		96.6		
2	H-2	2.09 (1H, tt, <i>J</i> = 14.2, 3.8 Hz)	22.0		
Δ	H-2	1.77 (1H, m)	22.9		
3	H-3	3.67 (1 H, t, J = 2.9 Hz)	72.0	H-2, H2′, H-5	C1, C4
4	H-4	1.64 (1H, m)	27.4		
4	H-4	1.96 (1H, m)	27.4		
5	Η-5β	3.91 (1H, s(br))	70.5	Η-3, Η4, Η6β, Η7β	C1, C6
6	Η-6β	2.19 (1H, ddd, 13.5, 3.8, 2.5 Hz)	37.6		
7	Η-7α	2.01 (1H, ddd, <i>J</i> = 13.5, 12, 11 Hz)	27.2		C1
/	Η-7β	1.93 (1H, m (superimposed))	21.2		C1
8	Η-8β	4.59 (1H, ddd, <i>J</i> = 11, 9.8, 5 Hz)	73.4	Η-6, Η7β, Η10	C1′, C10, C9
9	Η-9α	4.13 (1H, dq, <i>J</i> = 9.8, 6.2 Hz)	68.4	H7α, H10, <u>H</u> O- C1	C8
10	H-10	1,17 (3H, d, <i>J</i> = 6.2 Hz)	17.9		
1′	-		165.7		
2′	H-2′	5.84 (1H, dq, J = 15.5, 1.7 Hz)	122.5		C1′, C4′
3'	H-3′	6.99 (1H, dq, <i>J</i> = 15.5, 7 Hz)	145.3		C1', C4'
4′	H-4′	1.89 (3H, dd, J = 7, 1.7 Hz)	18.0	H3',H2'	
C1-O <u>H</u>		3.91 (1H, s)	-		
С3-О <u>Н</u>		2.27 (1H, s(br))			
С5-О <u>Н</u>		2.31(1H, s(br))	-		

Table S7. NMR Spectroscopic data of trichoarundinal B (18) (¹H at 500 MHz, ¹³C at 125 MHz).

Position	Proton	$\delta_{\rm H}$ (Hz)	δ ¹³ C	NOESY	HMBC
1	-				
2	H-2	5.90 (1H, dq, <i>J</i> = 15.5, 1.7 Hz)			
3	H-3	7.04 (1H, dq, $J = 15.5$, 7.0 Hz)			
4	H-4	1.89 (3H, dd, J = 7.0, 1.7 Hz)		H2, H3	
1'	H-1′a	3.91 (1H, dd, <i>J</i> = 12.2, 5.0 Hz)		H2′, H4′	
1	Н-1′Ъ	3.83 (1H, dd, <i>J</i> = 12.2, 3.8 Hz)			
2'	Η-2΄β	4.8 (1H, td, <i>J</i> = 5.0, 3.8 Hz)		H4′	
3′	H-3′	4.1 (1H, qd, <i>J</i> = 6.5, 5.0 Hz)		H4′	
4′	H-4′	1.24 (3H, d, J = 6.5 Hz)		H2′, H3′	

Table S8. NMR Spectroscopic data of compound (19) (¹H at 500 MHz, ¹³C at 125 MHz).

Table S9. NMR Spectroscopic data of compound (20) (¹H at 500 MHz, ¹³C at 125 MHz).

Position	Proton	δ _H (Hz)	δ ¹³ C	NOE	HMBC
1	-		165.4		
2	H-2	5.86 (1H, dq, <i>J</i> = 15.5, 1.7 Hz)	122.1		C1, C4
3	H-3	7.01 (1H, dq, <i>J</i> = 15.5, 7.0 Hz)	145.9		C1, C4
4	H-4	1.90 (3H, dd, J = 7.0, 1.7 Hz)	18.1	H2, H3	C2, C3
1'	H-1′a	4.28 (1H, dd, <i>J</i> = 12.0, 3.5 Hz)	(2.1	H2′	C2', C3', <u>C</u> OCH ₃
1	Н-1′Ъ	4.20 (1H, dd, <i>J</i> = 12.0, 6.7 Hz)	02.1	H2′	C2′, C3′, <u>C</u> OCH ₃
2'	Η-2΄β	5.21 (1H, ddd, <i>J</i> = 6.7, 5.0, 3.5 Hz)	72.0	H1′, H4′	C1, C1′, C3′, C4′
3'	H-3′	5.11 (1H, qd, <i>J</i> = 6.5, 5.0 Hz)	68.7	H4′	C1', C2', C4', <u>C</u> OCH ₃
4′	H-4′	1.27 (3H, d, J = 6.5 Hz)	15.8	H3′	C2′, C3′
<u>CH</u> ₃ CO	C <u>H</u> ₃	2.04 (6H, s)	21.1, 20.7		
CH ₃ CO	-		170.7, 170.0		

Position	Proton	$\delta_{\rm H}$ (Hz)	δ ¹³ C	NOE	HMBC
1	-		167.1		
2	H-2	5.90 (1H, dq, <i>J</i> = 15.5, 1.7 Hz)	145.3		C1, C4
3	H-3	7.03 (1H, dq, $J = 15.5$, 7.0 Hz)	146.1		C1, C2, C4
4	H-4	1.89 (3H, dd, <i>J</i> = 7.0, 1.7 Hz)	18.06	H2, H3	C2, C3
1'	H-1′a H-1′b	4.28 (2H, d(br), $J = 5.0$ Hz)	65.2	H2′, H3′, H4′	C1, C2′, C3′
2'	Η-2΄β	3.75 (1H, q, J = 5.0 Hz)	73.8	H4′, H1′	C1′, C3′, C4′
3'	H-3′	3.84 (1H, dq, J = 6.4, 5.0 Hz)	68.4	H4′	C1′, C2′, C4′
4′	H-4′	1.23 (3H, d, J = 6.4 Hz)	18.1	H1′,H2′, H3′	C2′, C3′

Table S10. NMR Spectroscopic data of compound (21) (¹H at 500 MHz, ¹³C at 125 MHz).

Table S11. NMR Spectroscopic data of compound (22) (¹H at 500 MHz, ¹³C at 125 MHz).

Position	Proton	δ _H (Hz)	$\delta^{13}C$	NOE	HMBC
1	-		174.2		
2	H-2	2.35 (1H, t, J = 7.4 Hz)	36.0		
3	H-3	1.67 (1H, sext, J = 7.4 Hz)	18.4		
4	H-4	0.96 (3H, t, J = 7.4 Hz)	13.6		C2, C3
1'	H-1′a H-1′b	4.25 (1H, dd, <i>J</i> = 11.6, 4.0 Hz) 4.21 (1H, dd, <i>J</i> = 11.6, 6 Hz)	65.3	H2′, H4′	C1, C2′, C3′
2'	Η-2΄β	3.75 (1H, q, <i>J</i> = 5.0 Hz)	73.7	H1′, H4′	C1', C3', C4'
3′	H-3′	3.85 (1H, q, J = 5.0 Hz)	68.2	H4′	C1', C2', C4'
4′	H-4′	1.24 (3H, d, J = 6.5 Hz)	18.12	H2′, H3′	C2′, C3′

Figure S1. Electronic Circular Dichroism spectra for compounds 6 and 14 in MeOH

Figure S2. Electronic Circular Dichroism spectra for compounds 6 and 15 in MeOH

Figure S3. ¹H NMR Spectrum of aspinolide H (12) (CDCl₃ at 500 MHz)

Figure S4. ¹H NMR Spectrum of aspinolide H (12) (CDCl₃ at 500 MHz)

Figure S5. ¹*H NMR Spectrum of aspinolide I (13) (CDCl₃ at 500 MHz)*

Figure S6. ¹³C NMR Spectrum of aspinolide I (13) (CDCl₃ at 500 MHz)

Figure S7. ¹*H NMR Spectrum of aspinolide J* (14) (CDCl₃ at 500 MHz)

Figure S8. ¹³C NMR Spectrum of aspinolide J (14) (CDCl₃ at 500 MHz)

Figure S9. ¹H NMR Spectrum of arundinolide A (15) (CDCl₃ at 500 MHz)

Figure S10. ¹³C NMR Spectrum of arundinolide A (15) (CDCl₃ at 500 MHz)

Figure S11. ¹H NMR Spectrum of arundinolide B (16) (CDCl₃ at 500 MHz)

Figure S12. ¹³C NMR Spectrum of arundinolide B (16) (CDCl₃ at 500 MHz)

Figure S13. ¹*H NMR Spectrum of trichoarundinal A* (17) (*CDCl*₃ at 500 *MHz*)

Figure S14. ¹³C NMR Spectrum of trichoarundinal A (17) (CDCl₃ at 500 MHz)

Figure S15. ¹H NMR Spectrum of trichoarundinal B (18) (CDCl₃ at 500 MHz)

Figure S16. ¹³C NMR Spectrum of trichoarundinal B (18) (CDCl₃ at 500 MHz)

Figure 17. ¹*H NMR Spectrum of (E)-(2S,3R)-1,3-dihydroxybutan-2-yl but-2-enoate (19) (CDCl₃ at 500 MHz)*

Figure 18. ¹*H NMR Spectrum of diacetyl derivative (20)) (CDCl₃ at 500 MHz)*

Figure 19. ¹³C NMR Spectrum of diacetyl derivative (20)) (CDCl₃ at 500 MHz)

Figure 20. ¹*H NMR Spectrum of (E)-(2S,3R)-2',3'-dihydroxybutyl but-2-enoate (21) (CDCl₃ at 500 MHz)*

Figure 21. ¹³C NMR Spectrum of (E)-(2S,3R)-2',3'-dihydroxybutyl but-2-enoate (21) (CDCl₃ at 500 MHz)

Figure 22. ¹*H NMR Spectrum of (2S,3R)-2',3'-dihydroxybutyl butyrate (22) (CDCl₃ at 500 MHz)*

Figure 23. ¹³C NMR Spectrum of (2S,3R)-2',3'-dihydroxybutyl butyrate (22) (CDCl₃ at 500 MHz)