Supporting Information

Direct C4-H Phosphonation of 8-Hydroxyquinoline Derivatives

Employing Photoredox Catalysis and Silver Catalysis

Xiaoxue Su,^a Fan Yang,^{*,a} Yusheng Wu,^{*,b} and Yangjie Wu^{*,a}

^a The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, PR China

E-mail: yangf@zzu.edu.cn; wyj@zzu.edu.cn

^b Tetranov Biopharm, LLC. & Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450052, PR China

E-mail: yusheng.wu@tetranovglobal.com

Table of Contents

1. General Information	S2
2. Preparation of Substrates	S2
3. Optimization of Reaction Conditions	S2
4. Typical Procedure for the Products	S4
5. Characterization Data of the Products	S4
6. References	S14
7. The Single Crystal X-ray Diffraction Study of 3aa	S15
8. The Experiment of Trapping the Phosphonyl Radical	S16
9. Copies of ¹ H, ¹³ C, ³¹ P and ¹⁹ F NMR Spectra for the	Products
S16	

1. General Information

¹H, ¹³C and ³¹P NMR spectra were recorded on a Bruker DPX-400 spectrometer using CDCl₃ as the solvent and TMS as an internal standard. Melting points were measured using a WC-1 microscopic apparatus and are uncorrected. Mass spectra were measured on an LC-MSD-Trap-XCT instrument. High resolution mass spectra were ensured on a MALDI-FTMS. All solvents were used directly without further purification. Petroleum ether, ethyl acetate and hexane were used for column chromatography. Chemical shift multiplicities are represented as follows: (s = singlet, d = doublet, t = triplet, m = multiplet, dd = double doublet, td = triplet doublet). Unless otherwise mentioned, all materials were commercially obtained and used without further purification.

2. Preparation of Substrates

All of the esters substrates were prepared from the corresponding acids and 8-hydroxyquinoline according to the reported procedure.¹

3. Optimization of Reaction Conditions

A 20 mL Schlenk tube was equipped with a magnetic stir bar and charged with 8hydroxylquinoline ester **1a** (24.9 mg, 0.1 mmol), diphenylphosphine oxide **2a** (0.2 mmol, 2.0 equiv), photocatalyst (0.003 mmol, 3 mol%), AgX (0.01 mmol, 10 mol%), oxidant (0.2 mmol, 2 equiv), and solvent (1.0 mL). The resulting mixture was stirred under the irradiation of 26 W household light under nitrogen at room temperature for 6 h. Upon completion, the mixture was added into H₂O (20 mL) and extracted with CH₂Cl₂ (20 mL) three times. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100–200 mesh) using CH₂Cl₂/ethyl acetate as an eluent (2:1, V/V) to afford the pure product **3aa**.

Table S1 Screening of Reaction Conditions^a

	o o 1a	N + HP Ph Ph 2a	eosin Y (3 mol% Ag ₂ O (10 mol%) K ₂ S ₂ O ₈ (2.0 equ Additive (1.0 equ CH ₃ CN/H ₂ O (3:2 rt, nitrogen, 6 h household light	o) hiv) iv)) O O N S S S S S S S S S S S S S	O P P Ph	
Entry	Photocatalyst	AgX	Oxidant	Solvent	Addition	yield $(\%)^b$
1	acid red 94	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	50%
2	acid red 94	AgOAc	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	trace
3	acid red 94	AgI	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	trace
4	acid red 94	AgNO ₂	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	37%
5	acid red 94	Ag ₃ PO ₄	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	trace
6	acid red 94	AgNO ₃	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	44%
7	acid red 94	Ag ₂ CO ₃	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	48%
8	acid red 94	Ag_2SO_4	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	trace
9	acid red 94	AgOTf	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	trace

10	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	74%
11	eosin B	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	43%
12	[Ru(bpy) ₃]Cl ₂	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	42%
13	alizarin red S	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	20%
14	Ir(bpy) ₂	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	43%
15	eosin Y	Ag ₂ O	NMO	CH ₃ CN/H ₂ O(3:2)	-	trace
16	eosin Y	Ag ₂ O	BQ	CH ₃ CN/H ₂ O(3:2)	-	trace
17	eosin Y	Ag ₂ O	TBHP	CH ₃ CN/H ₂ O(3:2)	-	38%
18	eosin Y	Ag ₂ O	DTBP	CH ₃ CN/H ₂ O(3:2)	-	20%
19	eosin Y	Ag ₂ O	TBPB	CH ₃ CN/H ₂ O(3:2)	-	trace
20	eosin Y	Ag ₂ O	$(NH_4)_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	45%
21	eosin Y	Ag ₂ O	$Na_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	57%
22	eosin Y	Ag ₂ O	PhI(OAc) ₂	CH ₃ CN/H ₂ O(3:2)	-	NR
23	eosin Y	Ag ₂ O	-	CH ₃ CN/H ₂ O(3:2)	-	NR
24	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	NaOAC	trace
25	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	PivONa	trace
26	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	K_3PO_4	NR
27	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	Na ₂ CO ₃	trace
28	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	PivOH	trace
29	eosin Y	Ag ₂ O	$K_2S_2O_8$	DCE	-	NR
30	eosin Y	Ag ₂ O	$K_2S_2O_8$	Dioxane	-	NR
31	eosin Y	Ag ₂ O	$K_2S_2O_8$	Acetone	-	NR
32	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(1:1)	-	39%
33	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(2:1)	-	10%
34	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(2:3)	-	18%
35	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(10:0)	-	NR
36	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(0:10)	-	22%
37	eosin Y	Ag ₂ O	$K_2S_2O_8$	Acetone/H ₂ O(1:1)	-	54%
38°	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	60%
39 ^d	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	<5%
40 ^e	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	<5%
41^{f}	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	20%
42 ^{fg}	eosin Y	Ag_2O	$K_2S_2O_8$	$CH_3CN/H_2O(3:2)$	-	<mark><5%</mark>
43 ^{fh}	eosin Y	Ag ₂ O	$K_2S_2O_8$	$CH_3CN/H_2O(3:2)$	-	<mark><5%</mark>
<mark>44^{fi}</mark>	+	Ag ₂ O	$K_2S_2O_8$	$CH_3CN/H_2O(3:2)$	-	<mark>NR</mark>
45 ^j	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	78%
46 ^k	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	65%
47 ¹	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	34%
48 ^m	eosin Y	Ag ₂ O	$K_2S_2O_8$	CH ₃ CN/H ₂ O(3:2)	-	NR

^aReaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), AgX (10 mol%), photocatalyst (3 mol%, 26 W household light), oxidant (0.2 mmol, 2 equiv), additive (1.0 equiv), solvent (1.0 mL) under nitrogen for 8 h. ^bIsolated yield. ^cUnder green LED. ^dUnder red LED. ^eUnder blue LED. ^fUnder dark. ^gFor Ag₂O (1.0 equiv). ^bFor Ag₂O (2.0 equiv). ^fFor no eosin Y, ^jFor 6 h, ^kFor 10 h, ^lUnder air, ^mUnder O₂.

4. Typical Procedure for the Products

(a) Procedure for the synthesis of 3:

A 20 mL Schlenk tube was equipped with a magnetic stir bar and charged with 8hydroxylquinoline ester 1 (0.1 mmol), diaryphosphine oxide 2 (0.2 mmol), eosin Y (2.1 mg, 0.003 mmol, 3 mol%), $K_2S_2O_8$ (0.2 mmol, 2 equiv), Ag_2O (2.3 mg, 0.01 mmol, 10 mol%) in CH₃CN/H₂O (3:2) (1.5 mL). The resulting mixture was stirred under the irradiation of 26 W household light under nitrogen at room temperature for 6 h. Upon completion, the mixture was added into H₂O (20 mL) and extracted with CH₂Cl₂ (20 mL) three times. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100–200 mesh) using CH₂Cl₂/ethyl acetate as an eluent (2:1, V/V) to afford the pure product **3**.

(b) Procedure for the hydrolysis of 4a:

To a solution of **3aa** (0.2 mmol) in ethyl alcohol (3 mL), NaOH (0.22 mmol, 1.1 equiv) was added, and the resulting mixture was stirred at 80 °C for 12 h. The solvent was removed by vacuum, and then 3 mL H₂O was added to the residue. The mixture was extracted with CH₂Cl₂ (3×5 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and filtered. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100–200 mesh) using CH₂Cl₂/ethyl acetate (2:1, V/V) as an eluent to afford the pure product **4a**.

5. Characterization Data of the Products

4-(diphenylphosphoryl)quinolin-8-yl benzoate (3aa):

Light yellow solid (78% yield); mp 88–89 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (t, *J*= 4.0 Hz, 1H), 8.53–8.51 (m, 1H), 8.34–8.32 (m, 2H), 7.72–7.49 (m, 15H), 7.15 (dd, *J*= 15.1, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.5, 149.1 (d, *J*_{C-P} = 11.5 Hz), 148.2 (d, *J*_{C-P} = 2.8 Hz), 141.9 (d,

 $J_{C-P} = 7.1$ Hz), 138.8 (d, $J_{C-P} = 94.3$ Hz), 133.7, 132.6 (d, $J_{C-P} = 2.8$ Hz), 132,0 (d, $J_{C-P} = 10.0$ Hz), 131.1 (d, $J_{C-P} = 106.3$ Hz), 130.6, 129.4, 128.9 (d, $J_{C-P} = 12.5$ Hz), 128.9, 128.6, 127.7, 126.7 (d, $J_{C-P} = 9.3$ Hz), 125.7 (d, $J_{C-P} = 5.6$ Hz), 122.2; ³¹P NMR (163 MHz, CDCl₃) δ : 30.7; HRMS (ESI-TOF): Calcd for C₂₈H₂₁NO₃P [M+H]⁺: 450.1254, Found: 450.1255.

4-(di-p-tolylphosphoryl)quinolin-8-yl benzoate (3ab):

Light yellow solid (66% yield); mp 194–195 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (t, *J*= 3.8 Hz, 1H), 8.53 (d, *J*= 7.9 Hz, 1H), 8.33 (d, *J*= 7.6 Hz, 2H), 7.67–7.63 (m, 1H), 7.59–7.51 (m, 8H), 7.31–7.29 (m, 4H), 7.15 (dd, *J*= 14.8, 4.2 Hz, 1H), 2.42 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.5, 149.1 (d, *J*_{*C*-*P*} = 11.5 Hz), 148.1 (d, *J*_{*C*-*P*} = 2.6 Hz), 143.2 (d, *J*_{*C*-*P*} = 2.8 Hz), 141.9 (d, *J*_{*C*-*P*} = 7.0 Hz), 139.2 (d, *J*_{*C*-*P*} = 93.9 Hz), 133.7, 132.0 (d, *J*_{*C*-*P*} = 10.4 Hz), 130.6, 129.7 (d, *J*_{*C*-*P*} = 12.7 Hz), 129.3 (d, *J*_{*C*-*P*} = 8.0 Hz), 129.0 (d, *J*_{*C*-*P*} = 6.8 Hz), 128.6, 127.9 (d, *J*_{*C*-*P*} = 107.8 Hz), 127.6, 126.7 (d, *J*_{*C*-*P*} = 9.4 Hz), 125.8 (d, *J*_{*C*-*P*} = 5.5 Hz), 122.2, 21.7; ³¹P NMR (163 MHz, CDCl₃) δ : 31.1; HRMS (ESI-TOF): Calcd for C₃₀H₂₅NO₃P [M+H]⁺: 478.1567, Found: 478.1569.

4-(bis(3,5-dimethylphenyl)phosphoryl)quinolin-8-yl benzoate (3ac):

Light yellow solid (53% yield); mp 109–110 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (t, *J*= 3.9 Hz, 1H), 8.56-8.54 (m, 1H), 8.35-8.32 (m, 2H), 7.68–7.64 (m, 1H), 7.58–7.53 (m, 4H), 7.29 (d, *J*= 12.6 Hz, 4H), 7.21 (s, 2H), 7.16 (dd, *J*= 14.8, 4.2 Hz, 1H), 2.33 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.5, 149.1 (d, *J*_{C-P} = 11.5 Hz), 148.1 (d, *J*_{C-P} = 2.5 Hz), 141.9 (d, *J*_{C-P} = 7.1 Hz), 139.3 (d, *J*_{C-P} = 92.7 Hz), 138.6 (d, *J*_{C-P} = 13.0 Hz), 134.4 (d, *J*_{C-P} = 2.8 Hz), 133.7, 130.9 (d, *J*_{C-P} = 104.1 Hz), 130.7, 129.5 (d, *J*_{C-P} = 10.0 Hz), 129.4, 129.1 (d, *J*_{C-P} = 6.6 Hz), 128.6, 127.5, 126.8 (d, *J*_{C-P} = 9.5 Hz), 125.9 (d, *J*_{C-P} = 5.4 Hz), 122.1, 21.4; ³¹P NMR (163 MHz, CDCl₃) δ : 31.3; HRMS (ESI-TOF): Calcd for C₃₂H₂₉NO₃P [M+H]⁺: 506.1880, Found: 506.1881.

4-(di-p-tolylphosphoryl)quinolin-8-yl 3-methylbenzoate (3ad):

Light yellow solid (48% yield); mp 106–107 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (t, *J*= 3.8 Hz, 1H), 8.54–8.52 (m, 1H), 8.15–8.12 (m, 2H), 7.59–7.53 (m, 6H), 7.48–7.40 (m, 2H), 7.31–7.29 (m, 4H), 7.14 (dd, *J*= 14.8, 4.2 Hz, 1H), 2.45 (s, 3H), 2.42 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.6, 149.1 (d, *J*_{*C*-*P*} = 11.3 Hz), 148.2 (d, *J*_{*C*-*P*} = 2.7 Hz), 143.1 (d, *J*_{*C*-*P*} = 2.7 Hz), 141.9 (d, *J*_{*C*-*P*} = 7.0 Hz), 139.3 (d, *J*_{*C*-*P*} = 6.6 Hz), 128.5, 127.7, 127.5, 127.5, 126.6 (d, *J*_{*C*-*P*} = 9.3 Hz), 125.8 (d, *J*_{*C*-*P*} = 5.4 Hz), 122.1, 21.7, 21.4; ³¹P NMR (163 MHz, CDCl₃) δ : 31.0; HRMS (ESI-TOF): Calcd for C₃₁H₂₇NO₃P [M+H]⁺: 492.1723, Found: 492.1724.

4-(diphenylphosphoryl)quinolin-8-yl 2-methylbenzoate (3ba):

Light yellow solid (67% yield); mp 95–97 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.87 (t, *J*= 4.0 Hz, 1H), 8.51–8.48 (m, 1H), 8.38–8.36 (m, 1H), 7.72–7.49 (m, 13H), 7.38-7.33 (m, 2H), 7.16 (dd, *J*= 14.9, 4.2 Hz, 1H), 2.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.2, 149.0 (d, *J*_{C-P} = 11.3 Hz), 148.3 (d, *J*_{C-P} = 2.8 Hz), 142.0 (d, *J*_{C-P} = 7.2 Hz),141.5, 138.8 (d, *J*_{C-P} = 93.7 Hz), 132.8, 132.6 (d, *J*_{C-P} = 2.6 Hz), 132,0 (d, *J*_{C-P} = 10.0 Hz),131.9,131.7, 131.2 (d, *J*_{C-P} = 105.0 Hz), 128.9 (d, *J*_{C-P} = 12.5 Hz), 128.9, 128.6, 127.7, 126.7 (d, *J*_{C-P} = 9.4 Hz), 126.0,125.6 (d, *J*_{C-P} = 5.6 Hz), 122.3, 21.9; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF) Calcd for C₂₉H₂₃NO₃P [M+H]⁺: 464.1410, Found: 464.1413.

4-(diphenylphosphoryl)quinolin-8-yl 3-methylbenzoate (3ca):

Light yellow solid (68% yield); mp 116–118 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (t, *J*= 4.0 Hz, 1H), 8.53–8.50 (m, 1H), 8.15–8.12 (m, 2H), 7.72–7.41 (m, 15H), 7.15 (dd, *J*= 14.9, 4.2 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.6, 149.1 (d, *J*_{C-P} = 11.4 Hz), 148.2 (d, *J*_{C-P} = 2.7 Hz), 142.0 (d, *J*_{C-P} = 7.3 Hz), 138.8 (d, *J*_{C-P} = 94.0 Hz), 138.5, 134.5, 132.6 (d, *J*_{C-P} = 2.7 Hz), 132,0 (d, *J*_{C-P} = 10.0 Hz), 131.2 (d, *J*_{C-P} = 105.1 Hz), 131.0, 129.3, 128.9 (d, *J*_{C-P} = 12.5 Hz), 128.9, 128.5, 127.7, 127.7, 126.6 (d, *J*_{C-P} = 9.5 Hz), 125.6 (d, *J*_{C-P} = 5.5 Hz), 122.2, 21.3; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF) Calcd for C₂₉H₂₃NO₃P [M+H]⁺: 464.1410, Found: 464.1412.

4-(diphenylphosphoryl)quinolin-8-yl 4-methylbenzoate (3da):

Light yellow solid (66% yield); mp 107-109 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (t, *J*= 4.0 Hz, 1H), 8.52–8.49 (m, 1H), 8.23–8.21 (m, 1H), 7.72–7.49 (m, 13H), 7.35-7.33 (m, 2H), 7.14 (dd, *J*= 14.9, 4.2 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.5, 149.1 (d, *J*_{C-P} = 11.4 Hz), 148.3 (d, *J*_{C-P} = 3.2 Hz), 144.5, 142.0 (d, *J*_{C-P} = 7.0 Hz), 138.7 (d, *J*_{C-P} = 94.1 Hz), 132.6 (d, *J*_{C-P} = 2.3 Hz), 132,0 (d, *J*_{C-P} = 10.0 Hz), 131.2 (d, *J*_{C-P} = 108.4 Hz),129.4, 128.9 (d, *J*_{C-P} = 12.4 Hz), 127.7, 126.7, 126.6, 126.6, 125.6 (d, *J*_{C-P} = 5.4 Hz), 122.3, 21.8; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF) Calcd for C₂₉H₂₃NO₃P [M+H]⁺: 464.1410, Found: 464.1413.

4-(diphenylphosphoryl)quinolin-8-yl 2-methoxybenzoate (3ea):

Light yellow solid (58% yield); mp 86–87 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.87 (t, *J*= 4.0 Hz, 1H), 8.48 (d, *J*= 8.2 Hz, 1H), 8.32–8.29 (m, 1H), 7.71–7.48 (m, 13H), 7.15 (dd, *J*= 15.0, 4.2 Hz, 1H), 7.10-7.04 (m, 2H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.2,160.3, 149.0 (d, *J*_{C-P} = 11.4 Hz), 148.2 (d, *J*_{C-P} = 2.8 Hz), 142.1 (d, *J*_{C-P} = 7.2 Hz),139.1, 138.1, 134.85, 132.9, 132.6 (d, *J*_{C-P} = 2.6 Hz), 132.0 (d, *J*_{C-P} = 10.1 Hz),132.0, 131.2 (d, *J*_{C-P} = 105.1 Hz), 128.9 (d, *J*_{C-P} = 12.3 Hz), 128.8, 127.6, 126.6 (d, *J*_{C-P} = 9.4 Hz), 125.4 (d, *J*_{C-P} = 5.4 Hz), 122.4, 119.5 (d, *J*_{C-P} = 161.4 Hz) 112.3, 56.1; ³¹P NMR (163 MHz, CDCl₃) δ : 30.7; HRMS (ESI-TOF) Calcd for C₂₉H₂₃NO₄P [M+H]⁺: 480.1359, Found: 480.1362.

4-(diphenylphosphoryl)quinolin-8-yl 4-methoxybenzoate (3fa):

Light yellow solid (61% yield); mp 208–209 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (t, *J*= 4.0 Hz, 1H), 8.51-8.49 (m, 1H), 8.29–8.27 (m, 2H), 7.71–7.66 (m, 4H), 7.62-7.48 (m, 8H), 7.14 (dd, *J*= 15.0, 4.2 Hz, 1H), 7.03-7.00 (m, 2H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.2, 164.0, 148.7 (d, *J*_{C-P} = 11.5 Hz), 148.3 (d, *J*_{C-P} = 2.9 Hz), 142.1 (d, *J*_{C-P} = 7.2 Hz), 139.2, 138.3, 132.7, 132.6 (d, *J*_{C-P} = 2.7 Hz), 132,0 (d, *J*_{C-P} = 10.0 Hz), 131.9 (d, *J*_{C-P} = 105.2 Hz), 128.9 (d, *J*_{C-P} = 12.4 Hz), 127.7, 126.6 (d, *J*_{C-P} = 9.4 Hz), 125.5 (d, *J*_{C-P} = 5.4 Hz), 122.0 (d, *J*_{C-P} = 63.4 Hz), 55.6; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF) Calcd for C₂₉H₂₃NO₄P [M+H]⁺: 480.1359, Found: 480.1361.

4-(diphenylphosphoryl)quinolin-8-yl 3,5-dimethoxybenzoate (3ga):

Light yellow solid (60% yield); mp 154–155 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.86 (t, *J*= 4.0 Hz, 1H), 8.54-8.51 (m, 1H), 7.72–7.67 (m, 4H), 7.63-7.49 (m, 8H), 7.48 (s, 1H), 7.47 (s, 1H), 7.15 (dd, *J*= 14.9, 4.2 Hz, 1H), 6.75 (t, *J*= 2.4 Hz, 1H), 3.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.2, 160.8, 149.1 (d, *J*_{*C-P*} = 11.4 Hz), 148.2 (d, *J*_{*C-P*} = 2.8 Hz), 141.9 (d, *J*_{*C-P*} = 7.2 Hz), 139.2, 138.3, 132.6 (d, *J*_{*C-P*} = 2.7 Hz), 132,0 (d, *J*_{*C-P*} = 10.0 Hz), 131.1 (d, *J*_{*C-P*} = 105.1 Hz), 131.1, 128.9 (d, *J*_{*C-P*} = 12.4 Hz), 127.7, 126.6 (d, *J*_{*C-P*} = 9.4 Hz), 125.7 (d, *J*_{*C-P*} = 5.4 Hz), 122.2, 108.0, 106.7, 55.7; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF) Calcd for C₃₀H₂₅NO₃P [M+H]⁺: 510.1465, Found: 510.1469.

4-(diphenylphosphoryl)quinolin-8-yl 2-fluorobenzoate (3ha):

Light yellow solid (63% yield); mp 96–97 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.89 (t, *J*= 3.9 Hz, 1H), 8.54 (d, *J*= 8.2, 1H), 8.32-8.28 (m, 1H), 7.73-7.68 (m, 4H), 7.65–7.58 (m, 4H), 7.56-7.51 (m, 5H), 7.35–7.31 (m, 1H), 7.26–7.23 (m, 1H), 7.18 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.9, 162.8 (d, *J*_{C-F} = 3.9 Hz), 161.3, 149.1 (d, *J*_{C-F} = 11.4 Hz), 147.8 (d, *J*_{C-F} = 2.7 Hz), 141.7 (d, *J*_{C-F} = 7.2 Hz), 138.8 (d, *J*_{C-F} = 93.9 Hz), 135.3 (d, *J*_{C-F} = 9.1 Hz), 133.0, 132.6 (d, *J*_{C-F} = 2.6 Hz), 132.0 (d, *J*_{C-F} = 9.8 Hz), 131.1 (d, *J*_{C-F} = 105.1 Hz), 129.0 (d, *J*_{C-F} = 12.4 Hz), 127.7, 126.7 (d, *J*_{C-F} = 9.4 Hz), 125.8 (d, *J*_{C-F} = 5.4 Hz), 124.2 (d, *J*_{C-F} = 4.0 Hz), 122.2, 117.9 (d, *J*_{C-F} = 9.2 Hz), 117.2 (d, *J*_{C-F} = 21.9 Hz); ³¹P NMR (163 MHz, CDCl₃) δ : 30.7; ¹⁹F NMR (376 MHz, CDCl₃) δ : -111.912; HRMS (ESI-TOF): Calcd for C₂₈H₂₀FNO₃P [M+H]⁺: 468.1159, Found: 468.1159.

4-(diphenylphosphoryl)quinolin-8-yl 3-fluorobenzoate (3ia):

Light yellow solid (66% yield); mp 169–170 °C; ¹H NMR (400 MHz, CDCl₃) δ: 8.85 (t, J= 3.8 Hz,

1H), 8.53 (d, J= 8.0, 1H), 8.11 (d, J= 7.7, 1H), 8.00 (d, J= 8.9, 1H), 7.72–7.67 (m, 4H), 7.62-7.55 (m, 3H), 7.53–7.50 (m, 6H), 7.37–7.33 (m, 1H), 7.16 (dd, J= 15.0, 4.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.4 (d, J_{C-F} = 2.9 Hz), 162.6 (d, J_{C-F} = 245.8 Hz), 157.2, 149.2 (d, J_{C-P} = 11.5 Hz), 147.9 (d, J_{C-P} = 3.0 Hz), 141.7 (d, J_{C-F} = 7.2 Hz), 138.7 (d, J_{C-P} = 94.1 Hz), 132.7 (d, J_{C-P} = 2.7 Hz), 132.0 (d, J_{C-P} = 10.1 Hz), 130.9 (d, J_{C-P} = 105.3 Hz), 130.3 (d, J_{C-P} = 7.7 Hz), 129.0 (d, J_{C-P} = 12.4 Hz), 127.7, 126.8 (d, J_{C-P} = 9.4 Hz), 126.3 (d, J_{C-F} = 3.0 Hz), 125.9 (d, J_{C-P} = 5.5 Hz), 122.2, 120.8 (d, J_{C-P} = 21.1 Hz), 117.4 (d, J_{C-F} = 23.0 Hz), 115.6; ³¹P NMR (163 MHz, CDCl₃) δ : 31.0; ¹⁹F NMR (376 MHz, CDCl₃) δ : -108.038; HRMS (ESI-TOF): Calcd for C₂₈H₂₀FNO₃P [M+H]⁺: 468.1159, Found: 468.1163.

4-(diphenylphosphoryl)quinolin-8-yl 4-fluorobenzoate (3ja):

Light yellow solid (65% yield); mp 86–87 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.87 (t, *J*= 3.9Hz, 1H), 8.54 (d, *J*= 7.3, 1H), 8.38-8.34 (m, 2H), 7.74-7.69 (m, 4H), 7.64–7.58 (m, 4H), 7.56-7.51 (m, 5H), 7.28–7.25 (m, 1H), 7.17 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 167.5, 165.0, 164.5, 149.1 (d, *J*_{C-P}= 11.3 Hz), 148.0 (d, *J*_{C-P} = 2.5 Hz), 141.8 (d, *J*_{C-F} = 7.1 Hz), 138.8 (d, *J*_{C-P} = 93.8 Hz), 133.2 (d, *J*_{C-P} = 9.4 Hz), 132.6 (d, *J*_{C-P} = 2.4 Hz), 132.0 (d, *J*_{C-P} = 9.9 Hz), 131.1 (d, *J*_{C-P} = 105.2 Hz), 129.0 (d, *J*_{C-P} = 12.3 Hz), 127.7, 126.7 (d, *J*_{C-P} = 9.4 Hz), 125.8 (d, *J*_{C-P} = 5.4 Hz), 125.6 (d, *J*_{C-P} = 2.8 Hz), 122.2, 115.9 (d, *J*_{C-P} = 21.9 Hz); ³¹P NMR (163 MHz, CDCl₃) δ : 30.7; ¹⁹F NMR (376 MHz, CDCl₃) δ : -104.355; HRMS (ESI-TOF): Calcd for C₂₈H₂₀FNO₃P [M+H]⁺: 468.1159, Found: 468.1161.

4-(diphenylphosphoryl)quinolin-8-yl 2-chlorobenzoate (3ka):

Light yellow (66% yield); mp 99–100 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.88 (t, *J*= 4.0 Hz, 1H), 8.52 (d, *J*= 8.4 Hz, 1H), 8.37–8.34 (m, 1H), 7.72–7.67 (m, 4H), 7.62–7.58 (m, 3H), 7.56–7.48 (m, 7H), 7.44–7.40 (m, 1H), 7.18 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.6, 149.1 (d, *J*_{C-P} = 11.5 Hz), 147.8 (d, *J*_{C-P} = 2.8 Hz), 141.7 (d, *J*_{C-P} = 7.2 Hz), 138.8 (d, *J*_{C-P} = 93.9 Hz), 134.8, 133.3, 132.7 (d, *J*_{C-P} = 2.0 Hz), 132.6, 132,0 (d, *J*_{C-P} = 9.9 Hz), 131.4, 131.1 (d, *J*_{C-P} = 105.1 Hz), 129.0 (d, *J*_{C-P} = 12.4 Hz), 128.9, 127.6, 126.8, 126.8, 126.7 (d, *J*_{C-P} = 9.5 Hz), 125.8 (d, *J*_{C-P} = 5.4 Hz), 122.2; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF): Calcd for C₂₈H₂₀CINO₃P [M+H]⁺: 484.0864, Found: 484.0867.

4-(diphenylphosphoryl)quinolin-8-yl 3-chlorobenzoate (3la):

Light yellow solid (65% yield); mp 108–110 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (t, *J*= 4.0 Hz, 1H), 8.55-8.52 (m, 1H), 8.32–8.31 (m, 1H), 8.2 2–8.19 (m, 1H), 7.72–7.67 (m, 4H), 7.65–7.58 (m, 3H), 7.56–7.47 (m, 7H), 7.15 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.2, 149.2 (d, *J*_{C-P} = 11.3 Hz), 147.9 (d, *J*_{C-P} = 2.9 Hz), 141.7 (d, *J*_{C-P} = 7.0 Hz), 139.0 (d, *J*_{C-P} = 93.7 Hz), 133.7, 132.6 (d, *J*_{C-P} = 2.6 Hz), 132,0 (d, *J*_{C-P} = 10.0 Hz), 131.5, 131.2, 131.1 (d, *J*_{C-P} = 105.1 Hz), 130.3, 130.2 (d, *J*_{C-P} = 3.7 Hz), 129.3, 129.0 (d, *J*_{C-P} = 12.3 Hz), 127.7, 127.5 (d, *J*_{C-P} = 3.9 Hz), 126.7 (d, *J*_{C-P} = 9.4 Hz), 126.0 (d, *J*_{C-P} = 5.5 Hz), 122.1; ³¹P NMR (163 MHz, CDCl₃) δ : 30.5; HRMS (ESI-TOF): Calcd for C₂₈H₂₀CINO₃P [M+H]⁺: 484.0864, Found: 484.0866.

4-(diphenylphosphoryl)quinolin-8-yl 4-chlorobenzoate (3ma):

Light yellow solid (63% yield); mp 106–107 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (t, *J*= 3.9 Hz, 1H), 8.54-8.52 (m, 1H), 8.28–8.25 (m, 2H), 7.72–7.67 (m, 4H), 7.63–7.58 (m, 2H), 7.57–7.56 (m, 1H), 7.54–7.49 (m, 7H), 7.15 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.6, 149.1 (d, *J*_{C-P} = 11.5 Hz), 148.0 (d, *J*_{C-P} = 2.9 Hz), 141.8 (d, *J*_{C-P} = 7.1 Hz), 140.2, 138.9 (d, *J*_{C-P} = 93.6 Hz), 132.6 (d, *J*_{C-P} = 2.8 Hz), 132.1, 132,0 (d, *J*_{C-P} = 1.8 Hz), 131.1 (d, *J*_{C-P} = 105.1 Hz), 129.0, 129.0, 128.9, 127.9, 127.6, 126.7 (d, *J*_{C-P} = 9.5 Hz), 125.8 (d, *J*_{C-P} = 5.5 Hz), 122.2; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF): Calcd for C₂₈H₂₀CINO₃P [M+H]⁺: 484.0864, Found: 484.0865.

4-(diphenylphosphoryl)quinolin-8-yl 3-bromobenzoate (3na):

Light yellow solid (49% yield); mp 108-109 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (t, *J*= 4.0 Hz, 1H), 8.55–8.53 (m, 1H), 8.47–8.46 (m, 1H), 8.26–8.23 (m, 1H), 7.79–7.76 (m, 1H), 7.72–7.67 (m, 4H), 7.62–7.58 (m, 2H), 7.56 (m, 1H), 7.54–7.49 (m, 5H), 7.42 (t, *J*= 7.9 Hz, 1H), 7.16 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.1, 149.1 (d, *J*_{C-P} = 11.5 Hz), 147.9 (d, *J*_{C-P} = 2.8 Hz), 141.7 (d, *J*_{C-P} = 7.2 Hz), 138.9 (d, *J*_{C-P} = 93.8 Hz), 136.6, 133.5, 132.6 (d, *J*_{C-P} = 2.6

Hz), 132,0 (d, $J_{C-P} = 9.9$ Hz), 131.3, 131.1 (d, $J_{C-P} = 105.1$ Hz), 130.2, 129.1, 129.0 (d, $J_{C-P} = 12.3$ Hz), 129.0, 127.6, 126.7 (d, $J_{C-P} = 9.4$ Hz), 125.9 (d, $J_{C-P} = 5.5$ Hz), 122.7, 122.1; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF): Calcd for C₂₈H₂₀BrNO₃P [M+H]⁺: 528.0359, Found: 528.0360.

4-(diphenylphosphoryl)quinolin-8-yl 4-bromobenzoate (3oa):

Light yellow solid (54% yield); mp 101-102 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (t, *J*= 3.9 Hz, 1H), 8.54–8.52 (m, 1H), 8.19-8.17 (m, 2H), 7.72–7.67 (m, 7H), 7.63–7.58 (m, 2H), 7.56 (m, 1H), 7.54–7.49 (m, 5H), 7.15 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.8 149.1 (d, *J*_{C-P} = 11.3 Hz), 148.0 (d, *J*_{C-P} = 2.7 Hz), 141.7 (d, *J*_{C-P} = 7.2 Hz), 138.8 (d, *J*_{C-P} = 93.9 Hz), 132.6 (d, *J*_{C-P} = 2.8 Hz), 132.1, 132.0, 132.0, 131.0 (d, *J*_{C-P} = 105.1 Hz), 129.0, 129.0, 128.9, 128.3, 127.7, 126.7 (d, *J*_{C-P} = 9.4 Hz), 125.8 (d, *J*_{C-P} = 5.6 Hz), 122.1; ³¹P NMR (163 MHz, CDCl₃) δ : 30.7; HRMS (ESI-TOF): Calcd for C₂₈H₂₀BrNO₃P [M+H]⁺: 528.0359, Found: 528.0359.

4-(diphenylphosphoryl)quinolin-8-yl 2-iodobenzoate (3pa):

3ра

Light yellow solid (45% yield); mp 80–81 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.90 (t, *J*= 3.9Hz, 1H), 8.52 (d, *J*= 2.1, 1H), 8.42-8.39 (m, 1H), 8.12 (d, *J*= 7.8, 1H), 7.74-7.69 (m, 4H), 7.65–7.61 (m, 3H), 7.58-7.52 (m, 6H), 7.27–7.25 (m, 1H), 7.19 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.9, 149.1 (d, *J*_{C-P}= 11.3 Hz), 147.8 (d, *J*_{C-P} = 2.7 Hz), 141.7 (d, *J*_{C-P} = 9.3 Hz), 138.8 (d, *J*_{C-P} = 93.7 Hz), 133.5, 133.4, 132.6 (d, *J*_{C-P} = 2.6 Hz), 132.4, 132.0 (d, *J*_{C-P} = 9.9 Hz), 131.1 (d, *J*_{C-P} = 105.2 Hz), 129.0 (d, *J*_{C-P} = 12.3 Hz), 128.9, 128.6, 128.2, 127.6, 126.7 (d, *J*_{C-P} = 9.4 Hz), 125.8 (d, *J*_{C-P} = 5.4 Hz), 122.2, 95.3; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; HRMS (ESI-TOF): Calcd for C₂₈H₂₀INO₃P [M+H]⁺: 476.0220, Found: 476.0218.

4-(diphenylphosphoryl)quinolin-8-yl 4-cyanobenzoate (3qa):

3qa

Light yellow solid (58% yield); mp 106–107 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (t, *J*= 4.0 Hz, 1H), 8.56–8.54 (m, 1H), 8.44–8.42 (m, 2H), 7.86–7.84 (m, 2H), 7.72–7.67 (m, 4H), 7.62–7.58 (m, 3H), 7.56–7.50 (m, 5H), 7.16 (dd, *J*= 14.9, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.9, 149.2 (d, *J*_{C-P} = 11.5 Hz), 147.7 (d, *J*_{C-P} = 2.8 Hz), 141.5 (d, *J*_{C-P} = 7.2 Hz), 139.0 (d, *J*_{C-P} = 93.5 Hz), 133.3, 132.7 (d, *J*_{C-P} = 2.7 Hz), 132.5, 132,0 (d, *J*_{C-P} = 10.0 Hz), 131.0, 130.9 (d, *J*_{C-P} = 105.3 Hz), 129.0, 129.0 (d, *J*_{C-P} = 12.5 Hz), 127.7, 126.8 (d, *J*_{C-P} = 9.4 Hz), 126.1 (d, *J*_{C-P} = 5.6 Hz), 122.0, 117.5 (d, *J*_{C-P} = 96.4 Hz); ³¹P NMR (163 MHz, CDCl₃) δ : 30.7; HRMS (ESI-TOF): Calcd for C₂₉H₂₀N₂O₃P [M+H]⁺: 475.1206, Found: 475.1209.

4 diphenylphosphoryl)quinolin-8-yl 3-(trifluoromethyl)benzoate (3ra):

Light yellow solid (67% yield); mp 99–102 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (t, *J*= 4.0 Hz, 1H), 8.60 (s, 1H), 8.57–8.54 (m, 1H), 8.52–8.50 (m, 1H), 7.93–7.91 (m, 1H), 7.72–7.67 (m, 5H), 7.63–7.56 (m, 4H), 7.54–7.50 (m, 4H), 7.16 (dd, *J*= 14.9, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.2, 149.2 (d, *J*_{C-P} = 11.5 Hz), 147.9 (d, *J*_{C-P} = 2.9 Hz), 141.7 (d, *J*_{C-P} = 7.0 Hz), 139.0 (d, *J*_{C-P} = 93.8 Hz), 133.7, 132.6 (d, *J*_{C-P} = 2.7 Hz), 132.0 (d, *J*_{C-P} = 10.0 Hz), 131.3 (q, *J*_{C-F} = 32.9 Hz), 131.1 (d, *J*_{C-P} = 105.1 Hz), 130.3, 130.2 (d, *J*_{C-P} = 3.6 Hz), 129.3, 129.0 (d, *J*_{C-P} = 12.3 Hz), 128.9, 127.7, 127.5 (d, *J*_{C-P} = 3.8 Hz), 126.7 (d, *J*_{C-P} = 9.5 Hz), 126.0 (q, *J*_{C-F} = 5.4 Hz), 123.7 (q, *J*_{C-F} = 270.7 Hz), 122.1; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.704; HRMS (ESI-TOF): Calcd for C₂₉H₂₀ F₃NO₃P [M+H]⁺: 518.1127, Found: 518.1132.

4-(diphenylphosphoryl)quinolin-8-yl 4-(trifluoromethyl)benzoate (3sa):

Light yellow solid (52% yield); mp 99–101 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.84 (t, *J*= 3.8 Hz, 1H), 8.56-8.54 (m, 1H), 8.45 (d, *J*= 8.3 Hz, 2H), 7.82 (d, *J*= 8.3 Hz, 2H), 7.72–7.67 (m, 4H), 7.64–7.56 (m, 4H), 7.54–7.50 (m, 4H), 7.16 (dd, *J*= 14.9, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.3, 149.1 (d, *J*_{C-P} = 11.4 Hz), 147.9 (d, *J*_{C-P} = 2.8 Hz), 141.6 (d, *J*_{C-P} = 7.1 Hz), 139.0 (d, *J*_{C-P} = 93.8 Hz), 135.3, 134.9, 132.6 (d, *J*_{C-P} = 2.7 Hz), 132.0 (d, *J*_{C-P} = 10.0 Hz), 131.1 (d, *J*_{C-P} = 105.1 Hz), 130.9, 129.0 (d, *J*_{C-P} = 12.4 Hz), 127.6, 126.7 (d, *J*_{C-P} = 9.3 Hz), 126.0 (d, *J*_{C-F} = 5.4 Hz), 125.7 (d, *J*_{C-P} = 3.7 Hz), 122.1; ³¹P NMR (163 MHz, CDCl₃) δ : 30.6; ¹⁹F NMR (376 MHz, CDCl₃) δ : -63.100; HRMS (ESI-TOF): Calcd for C₂₉H₂₀ F₃NO₃P [M+H]⁺: 518.1127, Found: 518.1133.

4-(diphenylphosphoryl)-2-methylquinolin-8-yl benzoate (3ta):

Light yellow solid (69% yield); mp 200–201 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.37–8.31 (m, 3H), 7.72–7.64 (m, 4H), 7.61–7.48 (m, 10H), 7.45–7.41 (m, 1H), 7.12-7.08 (d, *J*= 15.4 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.7, 158.1 (d, *J*_{C-P} = 11.4 Hz), 147.8 (d, *J*_{C-P} = 3.0 Hz), 141.5 (d, *J*_{C-P} = 7.7 Hz), 138.6 (d, *J*_{C-P} = 94.0 Hz), 133.5, 132.6 (d, *J*_{C-P} = 2.6 Hz), 132.0 (d, *J*_{C-P} = 9.9 Hz), 131.3 (d, *J*_{C-P} = 104.9 Hz), 130.5, 129.7, 128.9 (d, *J*_{C-P} = 12.4 Hz), 128.6, 127.8 (d, *J*_{C-P} = 9.0 Hz), 127.0 (d, *J*_{C-P} = 7.0 Hz), 126.5, 125.3 (d, *J*_{C-P} = 5.3 Hz), 122.0, 25.8; ³¹P NMR (163 MHz, CDCl₃) δ : 30.4; HRMS (ESI-TOF): Calcd for C₂₉H₂₃NO₃P [M+H]⁺: 464.1410, Found: 464.1414.

4-(diphenylphosphoryl)-2-methylquinolin-8-yl 4-methylbenzoate (3ua):

Light yellow solid (67% yield); mp 157–158 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.35 (d, *J*= 8.4 Hz, 1H), 8.21 (d, *J*= 8.1 Hz, 2H), 7.71–7.67 (m, 4H), 7.60–7.57 (m, 2H), 7.52-7.48 (m, 5H), 7.44-7.40 (m, 1H), 7.34 (d, *J*= 8.0 Hz, 2H), 7.10 (d, *J*= 15.3 Hz, 1H), 2.54 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.7, 158.0 (d, *J*_{C-P} = 11.3 Hz), 147.8 (d, *J*_{C-P} = 2.9 Hz), 144.3, 141.6 (d, *J*_{C-P} = 7.5 Hz), 138.6 (d, *J*_{C-P} = 93.9 Hz), 132.5 (d, *J*_{C-P} = 2.4 Hz), 132,0 (d, *J*_{C-P} = 9.9 Hz), 131.3 (d, *J*_{C-P} = 104.8 Hz), 130.5, 129.3, 128.9 (d, *J*_{C-P} = 12.3 Hz), 127.8 (d, *J*_{C-P} = 9.0 Hz), 127.0 (d, *J*_{C-P} = 6.7 Hz), 126.9, 126.5, 125.2 (d, *J*_{C-P} = 5.2 Hz), 122.1, 25.8, 21.8; ³¹P NMR (163 MHz, CDCl₃) δ : 30.3; HRMS (ESI-TOF): Calcd for C₃₀H₂₅NO₃P [M+H]⁺: 478.1567, Found: 478.1567.

4-(diphenylphosphoryl)-2-methylquinolin-8-yl 2-methylbenzoate (3va):

Light yellow solid (64% yield); mp 96–97 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.34-8.32 (m, 2H), 8.72-8.67 (m, 4H), 7.62–7.58 (m, 2H), 7.52–7.48 (m, 6H), 7.45-7.41 (m, 1H), 7.38-7.33 (m, 2H), 7.12 (d, *J*= 15.3 Hz, 1H), 2.72 (s, 3H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.6, 158.0 (d, *J*_{*C-P*} = 11.3 Hz), 147.8 (d, *J*_{*C-P*} = 2.8 Hz), 141.4 (d, *J*_{*C-P*} = 7.4 Hz), 140.9, 138.6 (d, *J*_{*C-P*} = 93.9 Hz), 132.5 (d, *J*_{*C-P*} = 2.4 Hz), 132.5, 132,0 (d, *J*_{*C-P*} = 10.0 Hz), 131.7, 131.4, 131.3 (d, *J*_{*C-P*} = 104.9

Hz), 129.2, 128.9 (d, J_{C-P} = 12.2 Hz), 127.8 (d, J_{C-P} = 9.1 Hz), 127.0 (d, J_{C-P} = 7.0 Hz), 126.5, 125.9, 125.2 (d, J_{C-P} = 5.2 Hz), 122.1, 25.7, 21.6; ³¹P NMR (163 MHz, CDCl₃) δ : 30.3; HRMS (ESI-TOF): Calcd for C₃₀H₂₅NO₃P [M+H]⁺: 478.1567, Found: 478.1567.

4-(diphenylphosphoryl)quinolin-8-yl pivalate (3wa):

Light yellow solid (34% yield); mp 185–186 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.85 (t, *J*= 4.0 Hz, 1H), 8.44 (d, *J*= 8.4 Hz, 1H), 7.70–7.64 (m, 4H), 7.62–7.59 (m, 2H), 7.52–7.46 (m, 5H), 7.42–7.40 (m, 1H), 7.13 (dd, *J*= 15.0, 4.2 Hz, 1H), 1.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 177.5, 148.9 (d, *J*_{C-P} = 11.6 Hz), 148.4 (d, *J*_{C-P} = 3.0 Hz), 142.0 (d, *J*_{C-P} = 9.2 Hz), 138.5 (d, *J*_{C-P} = 93.6 Hz), 132.6 (d, *J*_{C-P} = 2.8 Hz), 132.0 (d, *J*_{C-P} = 10.1 Hz), 131.2 (d, *J*_{C-P} = 104.8 Hz), 128.9 (d, *J*_{C-P} = 12.4 Hz), 128.7, 127.6, 126.5 (d, *J*_{C-P} = 9.4 Hz), 125.3 (d, *J*_{C-P} = 5.6 Hz), 121.9, 39.3, 27.4; ³¹P NMR (163 MHz, CDCl₃) δ : 30.7; HRMS (ESI-TOF): Calcd for C₂₆H₂₅NO₃P [M+H]⁺: 430.1567, Found: 430.1569.

4-(diphenylphosphoryl)quinolin-8-yl 2-phenylbutanoate (3xa):

Light yellow solid (37% yield); mp 79–80 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.81 (t, *J*= 3.9 Hz, 1H), 8.42 (d, *J*= 8.5 Hz, 1H), 7.68–7.58 (m, 6H), 7.50–7.48 (m, 6H), 7.45–7.36 (m, 3H), 7.32–7.28 (m, 2H), 7.13 (dd, *J*= 14.9, 4.2 Hz, 1H), 3.97 (t, *J*= 7.6 Hz, 1H), 2.40–2.33 (m, 1H) 2.02–2.00 (m, 1H), 1.08 (t, *J*= 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 173.0, 148.8 (d, *J*_{C-P} = 11.5 Hz), 148.0 (d, *J*_{C-P} = 2.7 Hz), 141.8 (d, *J*_{C-P} = 7.2 Hz), 138.7, 138.6 (d, *J*_{C-P} = 94.0 Hz), 132.6 (d, *J*_{C-P} = 2.2 Hz), 132,0 (d, *J*_{C-P} = 18.2 Hz), 132.0, 131.6 (d, *J*_{C-P} = 7.2 Hz), 130.5 (d, *J*_{C-P} = 7.6 Hz), 129.0, 128.9, 128.6, 128.4, 127.6, 127.4, 126.6 (d, *J*_{C-P} = 9.4 Hz), 125.5 (d, *J*_{C-P} = 5.4 Hz), 121.9, 53.2, 29.7, 27.0; ³¹P NMR (163 MHz, CDCl₃) δ : 30.7; HRMS (ESI-TOF): Calcd for C₃₁H₂₇NO₃P [M+H]⁺: 492.1723, Found: 492.1727.

6. References

1. Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342.

7. The Single Crystal X-ray Diffraction Study of 3aa.

CCDC 1580532 (**3aa**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www. ccdc.cam.ac.uk/data_request/cif.

Table S2 Crystal Data and Structure Refinement for 3aa

Identification code	20170595
Empirical formula	$C_{28}H_{22}NO_4P$
Formula weight	467.43
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	12.3199(11)
b/Å	22.2918(14)
c/Å	9.1023(9)
α/°	90
β/°	108.630(9)
$\gamma/^{\circ}$	90
Volume/Å ³	2368.8(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.311
μ/mm ⁻¹	0.151
F(000)	976.0
Crystal size/mm ³	$0.22\times0.18\times0.15$

Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.956 to 52.732
Index ranges	$\text{-}15 \leq h \leq 14, \text{-}27 \leq k \leq 26, \text{-}6 \leq l \leq 11$
Reflections collected	10630
Independent reflections	4823 [$R_{int} = 0.0316$, $R_{sigma} = 0.0539$]
Data/restraints/parameters	4823/0/307
Goodness-of-fit on F ²	1.021
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0537, wR_2 = 0.1154$
Final R indexes [all data]	$R_1 = 0.0895, wR_2 = 0.1371$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.29

8. The Experiment of Trapping the Phosphonyl Radical

9. Copies of ¹H, ¹³C and ³¹P NMR Spectra for the Products

