Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

First characterisation of two important postulated intermediates in the formation of the HydT DNA lesion, a thymidine oxidation product.

Emmanuel E. Psykarakis, Elli Chatzopoulou and Thanasis Gimisis^{*} Organic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 10571, Athens, Greece.

ELECTRONIC SUPPLAMENTARY INFORMATION

Table of contents

Spectra related to the ozonolysis of 1c	page S2-S3
Spectra related to the ozonolysis of 1a	pages S4-S7
Spectra related to the ozonolysis of 1b	pages S8-S17
Spectra related to the <i>de novo</i> synthesis of ribo derivatives	pages S18-S23
Spectra related to the <i>de novo</i> synthesis of 2-deoxy furanosyl derivatives	pages S24-S35
Spectra related to the <i>de novo</i> synthesis of 2-deoxy pyranosyl derivatives	pagse S36-S49

Figure S1: ¹H NMR spectrum of **1c** (200 MHz, CDCl₃).

Figure S2: ¹³C NMR spectrum of **1c** (50 MHz, CDCl₃).

Figure S3: ¹H NMR spectrum of **5c** (200 MHz, CDCl₃).

Figure S4: ¹³C NMR spectrum of **5c** (50 MHz, CDCl₃).

Figure S5: ¹H NMR spectrum of crude ozonolysis product **2a** (200 MHz, CDCl₃).

Figure S6: ¹³C NMR spectrum of crude ozonolysis product **2a** (50 MHz, CDCl₃).

Figure S7: MS (ESI⁺) spectrum of crude ozonolysis product 2a.

Figure S8: ¹H NMR spectrum of compound **3a** (200 MHz, CDCl₃).

Figure S9: ¹H NMR spectrum of compound 4a (200 MHz, CDCl₃).

Figure S10: ¹³C NMR spectrum of compound **4a** (50 MHz, CDCl₃).

Figure S11: ¹H NMR spectrum of compound **5a** (200 MHz, CDCl₃).

Figure S12: ¹³C NMR spectrum of compound **5a** (50 MHz, CDCl₃).

Figure S13: ¹H NMR spectrum of crude ozonolysis product (**2b & 5b**) (200 MHz, CDCl₃).

Figure S14: ¹³C NMR spectrum of crude ozonolysis product (**2b & 5b**) (50 MHz, CDCl₃).

Figure S15: MS (ESI⁺) spectrum of crude ozonolysis product (2b & 5b).

Figure S17: ¹³C NMR spectrum of **3b** (50 MHz, CDCl₃).

Figure S18: ¹H NMR spectrum of compound **4b** (200 MHz, CDCl₃).

Figure S20: 2D-COSY spectrum of compound **4b** (200 MHz, CDCl₃).

Figure S22: ¹³C NMR spectrum of **5b** (50 MHz, CDCl₃).

Figure S23: ¹H NMR spectrum of **5b** (500 MHz, CDCl₃).

Figure S24: 2D-NOESY spectrum of **5b** (500 MHz, CDCl₃).

Figure S25:¹H NMR spectrum of 5b' (200 MHz, CDCl₃).

Figure S26: Figure S27:¹³C NMR spectrum of **5b'** (50 MHz, CDCl₃).

Figure S28: ¹H NMR spectrum of VI (200 MHz, D₂O).

Figure S29: ¹H NMR spectrum of VI (200 MHz, CD₃OD).

S17

Figure S31: ¹H NMR spectrum of **6a** (200 MHz, CDCl₃).

Figure S32: ¹³C NMR spectrum of **6a** (50 MHz, CDCl₃).

Figure S33: ¹H NMR spectrum of **7a** (200 MHz, DMSO-d6).

Figure S34: ¹³C NMR spectrum of **7a** (50 MHz, DMSO-d6).

Figure S35:2D COSY spectrum of 7a (200 MHz, DMSO-d6).

Figure S38: ¹³C NMR spectrum of **8a** (50 MHz, CDCl₃).

Figure S39: 2D-COSY spectrum of 8a (200 MHz, CDCl₃).

Figure S41: ¹³C NMR spectrum of **5a** (50 MHz, CDCl₃).

Figure S43: ¹³C NMR spectrum of **6b** (50 MHz, CDCl₃).

Figure S44: 2D-COSY spectrum of **6b** (200 MHz, CDCl₃).

Figure S45: ¹H NMR spectrum of α -anomer of **7b** (200 MHz, CDCl₃).

Figure S46: ¹³C NMR spectrum of α -anomer of **7b** (50 MHz, CDCl₃).

Figure S47: 2D-NOESY spectrum of α -anomer of 7b (500 MHz, CDCl₃).

Figure S48: ¹H NMR spectrum of β -anomer of **7b** (200 MHz, CDCl₃).

Figure S49: ¹³C NMR spectrum of β -anomer of **7b** (50 MHz, CDCl₃).

Figure S50: 2D-NOESY spectrum of β -anomer of **7b** (500 MHz, CDCl₃).

Figure S51: ¹H NMR spectrum of **8b** (200 MHz, CDCl₃).

Figure S52: ¹³C NMR spectrum of **8b** (50 MHz, CDCl₃).

Figure S53: 2D-COSY spectrum of **8b** (200 MHz, CDCl₃).

Figure S54: ¹H NMR spectrum of **5b** (200 MHz, CDCl₃).

Figure S55: ¹³C NMR spectrum of **5b** (50 MHz, CDCl₃).

Figure S56: 2D-COSY spectrum of **5b** (200 MHz, CDCl₃).

Figure S57: ¹H NMR spectrum of VI (200 MHz, D_2O).

Figure S58: ¹³C NMR spectrum of VI (50 MHz, D₂O).

Figure S59: 2D-COSY spectrum of VI (200 MHz, D_2O).

Figure S61: ¹³C NMR spectrum of **6c** (50 MHz, CDCl₃).

Figure S62: 2D-COSY spectrum of 6c (200 MHz, CDCl₃).

Figure S63: ¹H NMR spectrum of **7c** (200 MHz, DMSO-*d*6).

Figure S64: ¹³C NMR spectrum of **7c** (200 MHz, DMSO-*d*6).

Figure S65: ¹H NMR spectrum of **7c** (200 MHz, DMSO-*d*6).

Figure S66: ¹H NMR spectrum of **7d** (200 MHz, DMSO-*d*6).

Figure S68: 2D-COSY spectrum of 7d (200 MHz, DMSO-d6).

Figure S70: ¹³C NMR spectrum of **7e** (50 MHz, CDCl₃).

Figure S71: 2D-COSY spectrum of 7e (200 MHz, CDCl₃).

Figure S72: ¹H NMR spectrum of **8e** (200 MHz, CDCl₃).

Figure S73: ¹³C NMR spectrum of **8e** (50 MHz, CDCl₃).

Figure S74: 2D-COSY spectrum of 8e (200 MHz, CDCl₃).

Figure S75: ¹H NMR spectrum of **5e** (200 MHz, CDCl₃).

Figure S76: ¹³C NMR spectrum of **5e** (50 MHz, CDCl₃).

Figure S77: 2D-COSY spectrum of **5e** (200 MHz, CDCl₃).

Figure S79: ¹³C NMR spectrum of **9** (50 MHz, D₂O).

Figure S80: 2D-COSY spectrum of 9 (200 MHz, D₂O).