Electronic Supplementary Information (ESI)

The a-hydroxyphosphonate-phosphate rearrangement of a
 noncyclic substrate - Some new observations

Susanne Prechelmacher, ${ }^{\text {a }}$ Kurt Mereiter ${ }^{\mathrm{b}}$ and Friedrich Hammerschmidt*a
${ }^{a}$ Faculty of Chemistry, Institute of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
${ }^{\mathrm{b}}$ Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria .
E-mail: friedrich.hammerschmidt@univie.ac.at

Table of Contents

${ }^{1} \mathrm{H}$ NMR spectrum of compounds (\pm) - and $(R)-(-)-\mathbf{1 0}$ ESI-3
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compounds (\pm) - and $(R)-(-)$ - $\mathbf{1 0}$ ESI-4
${ }^{31} \mathrm{P}$ NMR spectrum of compounds (\pm) - and $(R)-(-)-\mathbf{1 0}$ ESI-5
${ }^{1} \mathrm{H}$ NMR spectrum of compound $(R)-\mathbf{1 1} \times(-)-\mathbf{1 0} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ ESI-6
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound $(R) \mathbf{- 1 1} \times(-)-\mathbf{1 0} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ ESI-7
${ }^{31} \mathrm{P}$ NMR spectrum of compound $(R)-\mathbf{1 1} \times(-)-\mathbf{1 0} \times 0.5 \mathrm{H}_{2} \mathrm{O}$ ESI-8
${ }^{1} H$ NMR spectrum of compound 14 ESI-9
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound 14 ESI-10
${ }^{1}$ H NMR spectrum of compound 15 ESI-11
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound 15 ESI-12
${ }^{1} H$ NMR spectrum of compound 16 ESI-13
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound 16 ESI-14
${ }^{1} \mathrm{H}$ NMR spectrum of compound 17 ESI-15
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound 17 ESI-16
${ }^{1} H$ NMR spectrum of compound 18 ESI-17
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound 18 ESI-18
${ }^{1} \mathrm{H}$ NMR spectrum of compound 20 ESI-19
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound 20 ESI-20
${ }^{31}$ P NMR spectrum of compound 20 ESI-21
${ }^{1} H$ NMR spectrum of compound 23 ESI-22
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound 23 ESI-23
${ }^{31} \mathrm{P}$ NMR spectrum of compound 23 ESI-24
${ }^{1} \mathrm{H}$ NMR spectrum of compound 22 ESI-25
${ }^{13} \mathrm{C}$ NMR spectrum (J-modulated) of compound 22 ESI-26
${ }^{31} \mathrm{P}$ NMR spectrum of mixture of $\mathbf{2 2}$ and $\mathbf{2 5}$ ESI-27
Single crystal X-ray structure analysis ESI-28-31

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600.25 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$6 \varepsilon \cdot L T-$

ESI-11

とて・てて

Single crystal X-ray structure analysis of 23

Crystals of 23 were obtained by recrystallisation from hexanes $/ i-\mathrm{PrOH}$. Crystal data and experimental details are given in Table S1. X-ray diffraction data were collected on a PHILIPS PW1100 four-circle diffractometer using graphite monochromated Mo-Ka radiation ($\lambda=0.71073 \AA$) from a sealed tube and a szintillation detector. θ - 2θ-scans with a scan range of 1.2°, a scan speed of $0.5^{\circ} / \mathrm{min}$, and stationary background measurements at both sides of each scan were applied. The raw data were corrected for Lp, system stability, but not for absorption. The structure was solved with direct methods using program SHELXS971 and structure refinement on F^{2} was carried out with program SHELXL971. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were inserted in idealized positions and were refined as riding on the atoms to which they are bonded. The absolute structure was assigned via the known handedness of the 1,3,5(10)-estratriene-3-yl moiety of 20. For geometric analysis of the structure program $P L A T O N^{2}$ was used and selected bond distances and angles are reported in Table S2. Structure graphics (Fig. S1 and S2) was generated with program MERCURY ${ }^{3}$. The structure contains an intermolecular hydrogen bond between the C-bonded OH group of O 1 as the donor and the phosphonate oxygen O 2 as the acceptor $(\mathrm{O} 1-\mathrm{H} 1=0.88 \AA, \mathrm{H} 1 \cdots \mathrm{O} 2(-x, y,-z)=1.86 \AA, \mathrm{O} 1 \cdots \mathrm{O} 2(-x, y,-z)=2.727(4) \AA, \mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2(-$ $\left.x, y,-z)=169^{\circ}\right)$. Each two of these hydrogen bonds link two molecules cyclically into a pair (Fig. S2). The largest void in the structure, centered at $x, y, z=0.5,0.255,0.5$ according to program MERCURY, has only a void volume of $18 \AA^{3}$, which is too small to accomodate any solvent molecule, in agreement with a maximum residual electron density of $0.16 \mathrm{e} / \AA^{3}$. Atomic coordinates, thermal parameters, and bond distances and angles were deposited in CIF format with the journal. These data can also be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif. CCDC number 1818362,

References

1. G. M. Sheldrick, Acta Cryst., 2015,C71, 3.
2. A. L. Spek, Acta Cryst., 2009, D65, 148.
3. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Cryst., 2006, 39, 453.

Table S1. Crystal data and details of the structure determination for compound $\mathbf{2 3 .}$

Table S2. Selected bond distances and angles (\AA, deg.) for compound 23.

S1	-C2	1.806(5)
S1	-C3	1.775 (6)
P1	-02	1.466(3)
P1	-03	1.564 (3)
P1	-04	1.563(4)
P1	-C1	1.840 (5)
01	-C1	1.421 (5)
03	-C10	1.443(5)
04	-C29	1.463(8)
01	-H1	0.880
C1	-C4	1.513(6)
C1	-C2	1.530 (7)
C4	-C9	1.374 (8)
C4	-C5	1.387 (7)
C5	-c6	1.398(8)
C6	-C7	1.359 (15)
C7	-C8	1.362 (11)
C8	-C9	1.383(8)
C10	-C13	1.478(8)
C11	-C20	1.396 (7)
C11	-C12	1.373(7)
C12	-C13	1.380 (6)
C13	-C14	1.385 (8)
C14	-C15	1.366 (7)
C15	-C16	1.523(7)
C15	-C20	1.395 (6)
C16	-C17	1.487(8)
C17	-C18	1.509(6)
C18	-C24	1.503(7)
C18	-C19	1.539 (6)
C19	-C20	1.512 (6)
C19	-C21	1.524 (6)
C21	-C22	1.535 (8)
C22	-C23	1.514 (7)
C23	-C27	1.534 (9)
C23	-C28	1.531 (8)
C23	-C24	1.528(6)
C24	-C25	1.529 (8)
C25	-C26	1.526 (9)
C26	-C27	1.526(9)
C29	-C30	1.432 (11)
C2	-S1 -C3	104.2(2)
02	-P1 -03	114.7(2)
02	-P1 -04	114.0(2)
02	-P1 -C1	112.6(2)
03	-P1 -04	103.3(2)
03	-P1 -C1	103.7(2)
04	-P1 -C1	107.6(2)
P1	-03 -C10	122.7(3)
P1	-04 -C29	123.3(4)
C1	-O1 -H1	108.0
P1	-C1 -01	103.2(3)
P1	-C1 -C2	109.6(3)
01	-C1 -C2	110.9(3)
01	-C1 -C4	108.5(4)
P1	-C1 -C4	110.6(3)
S1	-C2 -C1	116.0(3)

Fig. S1. The molecular structure of $\mathbf{2 3}$ in solid state showing displacement ellipsoids at 20% probability.

Fig. S2. Projection of the crystal structure of 23 along the b-axis $(b=6.917 \AA$). H-atoms omitted for clarity. The light blue dotted lines represent the hydrogen bonds $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$.

