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1. General experimental methods

Commercially available reagents were used as redeivEtO, THF, CHCl2, ando-dichlorobenzene
(o-DCB) were distilled from relevant drying agentsoptto use. A fresh lithium diisopropylamide
(LDA) was prepared as follows: a solutionMyN-diisopropylamine (1.0 mL, 14.1 mmol) in THF (10
mL) was added dropwise toraBuLi hexane solution (2.66 molt, 5.6 mL, 14.9 mmol) at =78 °C
under argon atmosphere, and then the resultinguneixtas stirred at —78 °C for 1 h and at 0 °C for 1
h. Boronic acid pinacol este9' and 1-decyloxy-4-ethynylbenzenavere known compounds.
Column chromatography and plug filtrations wereaiedrout with SiQ.  Thin layer chromatography
(TLC) was conducted on aluminum sheets coated 8ii; visualization with a lamp (254 or 365
nm). Melting points (M.p.) were measured with &-simge apparatus and are uncorrecté#
NMR and*C NMR spectra were recorded in CRGIt 298 K. Residual and deuterated solvent
signals in théH and*3C NMR spectra were used as an internal refereespgctively (CDG| *H: 6
7.26;13C: 6 77.16). Chemical shift$) are given as values. The coupling constan® ére given

in Hz. The apparent resonance multiplicity is désal as s (singlet), d (doublet), t (triplet), and
(multiplet). FAB-MS and MALDI-TOF-MS spectra wemecorded withm-nitrobenzyl alcohol
(NBA) and dithranol (Dith) as a matrix, respectiel The most important signals are reportedvin
units with M as the molecular ion. Electronic alpgimn spectra were measured in a cuvette of 1 cm
at room temperature. The absorption maxitad are reported in nm with the relative intensity or
the molar absorptivity in brackets. Recycling geklmeation chromatography (GPC) eluting CHCI
was performed with UV detectors using 1H and 2H/gtyrene columns. Cyclic voltammetry and
differential pulse voltammetry were performed byngsa cell equipped with a platinum as working
electrode, a platinum wire as counter electroded, A&g/AgNGs as the referential electrode. All
electrochemical measurements were performesDCB solution ¢a. 5 x 10* mol L) containing
0.1 mol L* n-BuiNPFs at room temperature. All potentials are referdnce® the
ferrocenium/ferrocene (F=c) couple, used as a standard. PXRD measurerfweritsee materials
from 1 and3 through a phase transfer method were performexhotrray diffractometer for which a
Cu—Ka radiation £ = 1.54 A) was used.
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2. Synthesis
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Scheme S1. Synthesis of reference compouhd

Preparation of 2-[4-(Decyloxy)phenyl]-1,3-thiazole (10). A solution of9 (198 mg, 0.549 mmol)
and NaHCQ@ (95 mg, 1.1 mmol) in a mixture of DME/water (425 mL) was bubbled with argon for
0.5h. Pd(PPiu (26 mg, 0.02 mmol) and 2-bromothiazole (148 mgp@.mmol) were added to the
mixture. The resulting mixture was refluxed fos 6. After addition of water (50 mL), the organic
phase was separated and the aqueous phase waseekivdh toluene/ethyl acetate (1:1, 50 mL x 3).
The combined organic phase was dried over anhydgSCQ: and concentrated under reduced
pressure. The residue was purified by column chtography (Si@ toluene/hexane 4:1) to gi®
(124 mg, 0.391 mmol, 71%) as white solids. M.p-&8°C; 'H NMR (400 MHz, CDCJ): § 7.89
(2H, d,J = 8.8 Hz), 7.80 (1H, d] = 3.3 Hz), 7.24 (1H, d] = 3.3 Hz), 6.94 (2H, d] = 8.8 Hz), 4.00
(2H, t,J = 6.6 Hz), 1.80 (2H, df] = 6.6, 7.5 Hz), 1.50-1.28 (14H, m), 0.89 (3H +, 7.0 Hz); *C
NMR (75 MHz, CDC$): ¢ 168.5, 160.8, 143.4, 128.1, 126.4, 117.8, 1148%,632.0, 29.7, 29.53,
29.47, 29.3, 26.1, 22.8, 14.2 (1 signal was migsingyV—vis (CHCB): Amax (¢) 302 nm (19000 L
moltcm™); MALDI-TOF-MS (Dith, positive)m/'z 318 [(M + H)]; elemental analysis: calcd (%)
C1oH27NOS: C 71.88, H 8.57, N 4.41, found: C 71.64, HB8I$ 4.41.

Preparation of 5-Bromo-2-[4-(decyloxy)phenyl]-1,3-thiazole (11). To a solution ofl0 (458 mg,
1.44 mmol) in 1,2-dichloroethane (15 mL) was adbigoromosuccinimide (261 mg, 1.46 mmol) at
room temperature. The resulting mixture was reftufor 19 h. After addition of water (50 mL),
the organic phase was separated and the aqueaes\wha extracted with CH{B0 mL x 3). The
resulting solution was dried over anhydrous Mg&@d concentrated under reduced pressure. The
residue was purified by column chromatography ¢St@luene/hexane 4:1) to givéd (537 mg, 1.35
mmol, 94%) as white solids. M.p. 69-70 °CGH NMR (400 MHz, CDCJ): § 7.78 (2H, dJ = 8.9
Hz), 7.66 (1H, s), 6.93 (2H, d,= 8.9 Hz), 4.00 (2H, 1] = 6.6 Hz), 1.80 (2H, d] = 6.6, 7.5 Hz), 1.46
(2H, dt,J=7.1, 7.5 Hz), 1.43-1.27 (12H, m), 0.89 (3Hl £, 7.0 Hz); *C NMR (CDCk, 75 MHz):
0169.6, 161.1, 144.6, 127.7, 125.9, 114.9, 10B3R,82.0, 29.7, 29.52, 29.46, 29.3, 26.1, 22.8 14
(1 signal was missing); UV-vis (GBI2): Amax (¢) 314 nm (20300 L mot cn?); MALDI-TOF-
MS (Dith, positive)m/z397 (M"); elemental analysis: calcd (%)d26BrNOS: C 57.57, H 6.61, N
3.53, found: C 57.51, H 6.58, N 3.53.

Preparation of 2-[4-(Decyloxy)phenyl]-5-(tributyltin)-1,3-thiazole (6). To a solution ofil1 (499
mg, 1.13 mmol) in THF (15 mL) was added dropwiseBuLi hexane solution (1.60 mot+t, 0.95
mL, 1.52 mmol) at =78 °C under argon atmospherefterAhe mixture was stirred at —=78 °C for 1 h,
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tributyltin chloride (600 mg, 1.84 mmol) was addedhe mixture at =78 °C. The resulting mixture
was stirred at room temperature for 1 h. Afteritold of water (50 mL), the organic phase was
separated and the aqueous phase was extractegthyittacetate (50 mL x 3). The combined organic
phase was dried over sodium sulfate and concedtratder reduced pressure. The residue was
purified by column chromatography (8, toluene) to givé (652 mg, 1.07 mmol, 95%) as yellow
oil. ™™ NMR (400 MHz, CDCY): 6 7.91 (2H, d,J = 8.9 Hz), 7.73 (1H, s), 6.94 (2H, 8= 8.9 Hz),
3.99 (2H, tJ = 6.6 Hz), 1.80 (2H, di] = 6.6, 7.5 Hz), 1.68-1.52 (6H, m), 1.47 (2H,Ht 6.8, 7.4
Hz), 1.40-1.28 (18H, m), 1.24-1.07 (6H, m), 0.9870(12H, m); 3C NMR (75 MHz, CDCJ): 6
173.3, 160.5, 150.0, 128.1, 127.4, 126.7, 114.2,62.0, 29.7, 29.56, 29.48, 29.38, 29.0, 27.3.,26
22.8, 14.2, 13.8, 11.1 (1 signal was missing); WU¥~CHCb): imax (¢) 309 nm (26500 L mot
cm); MALDI-TOF-MS (Dith, positive):mVz 608 [(M + H)]; elemental analysis: calcd (%)
Csz1HssNOSSn: C 61.39, H 8.81, N 2.31, found: C 61.33, 848N 2.26.

Preparation of Tris({2-[4-(decyloxy)phenyl]-1,3-thiazol-5-y1})-1,3,5-triazine (1). A solution of6
(652 mg, 1.07 mmol) in 1,4-dioxane (20 mL) was Habbwith argon for 0.5 h. B@lbaj- CHCk
(26 mg, 0.03 mmol), tributylphosphonium tetrafluoooate (44 mg, 0.15 mmol), CsF (92 mg, 0.61
mmol), and 2,4,6-trichloro-1,3,5-triazinB) ((45 mg, 0.24 mmol) were added to the mixtureoant
temperature. The resulting mixture was stirre¢l0atC for 24 h.  After addition of water (100 mL),
the organic phase was separated and the aqueaes\pha extracted with ethyl acetate (100 mL x 3).
The combined organic phase was dried over anhydiaSQ: and concentrated under reduced
pressure. The residue was purified by column chtography (Si@ CHCE) to givel (136 mg,
0.132 mmol, 54%) as yellow solids. M.p. 139-140 °éH NMR (600 MHz, CDCJ): ¢ 8.85 (3H,

s), 8.03 (6H, dJ = 8.8 Hz), 6.99 (6H, d] = 8.8 Hz), 4.04 (6H, 1] = 6.6 Hz), 1.83 (6H, dl = 6.6, 7.2
Hz), 1.49 (6H, dt) = 7.2, 7.8 Hz), 1.39-1.26 (36H, m), 0.89 (9H,%,6.9 Hz); 3C NMR (75 MHz,
CDCh): 0 173.1, 166.4, 161.4, 147.9, 134.9, 128.3, 12518,6], 68.2, 32.0, 29.8, 29.6, 29.5, 29.4,
26.2, 22.8, 14.3 (1 signal was missing); UV—-Vvi$i(3): imax (¢) 381 (77000), 385 nm (75700 L
mol™? cn?); HR-FAB-MS (NBA, positive):m/z calcd for GoH7eNeO:Sst 1027.5376, found
1027.5375 [(M + H)].

Preparation of 4-Bromo-2-[4-(decyloxy)phenyl]-1,3-thiazole (12). To a solution ofl1 (939 mg,
2.37 mmol) in THF (15 mL) was added dropwise toeslily prepared LDA THF solution (0.84 mol
L1, 3.7 mL, 3.11 mmol) at -78 °C under argon atmosgheAfter the mixture was stirred at —78 °C
for 0.5 h, water (1.3 mL) was added at the sam@éeature and the resulting mixture was allowed to
warm to room temperature. After addition of wated0 mL), the organic phase was separated and
the aqueous phase was extracted with ethyl agdi@®emL x 3). The combined organic phase was
washed with brine (100 mL), dried over Mg&@nd concentrated under reduced pressure. The
residue was purified by column chromatography ¢Si@uene) to givd2 (476 mg, 1.20 mmol, 55%)
as white solids. M.p. 77-78 °C; 1H NMR (400 MI&DCI3):6 7.86 (2H, d,J) = 8.9 Hz), 7.12 (1H,

s), 6.93 (2H, dJ=8.9 Hz), 4.00 (2H, ] = 6.6 Hz), 1.80 (2H, dt1 = 6.6 Hz, 7.4 Hz), 1.50-1.28 (14H,
m), 0.89 (3H, tJ = 6.8 Hz); °C NMR (CDCE, 75 MHz):6 169.0, 161.3, 127.9, 125.7, 125.3, 115.3,
114.8, 68.3, 32.0, 29.6, 29.51, 29.45, 29.2, Z&R18, 14.2 (1 signal was missing); UV-vis (CE)CI
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Jmax (€) 313 nm (25400 L mot cmi);  MALDI-TOF-MS (Dith, positive):my/z397 (M"); elemental
analysis: calcd (%) fsH26BrNOS: C 57.57, H 6.61, N 3.53, found: C 57.55,.B36 N 3.46.

Preparation of 2-[4-(Decyloxy)phenyl]-4-(tributyltin)-1,3-thiazole (7). To a solution ofi2 (1.06
g, 2.68 mmol) in EO (20 mL) was added dropwis@#uLi hexane solution (2.66 mott, 1.20 mL,
3.19 mmol) at —78 °C under argon atmosphere. Alftemixture was warmed to —50 °C and stirred
for 0.5 h. The mixture was cooled to —78 °C aioltyltin chloride (1.20 g, 3.68 mmol) was added
to the mixture. The mixture was warmed to roomgerature and stirred for 1 h.  After addition of
water (100 mL), the organic phase was separatedrandqueous phase was extracted with ethyl
acetate (100 mL x 3). The combined organic phase washed with brine (100 mL), dried over
anhydrous Nz5Qs, and concentrated under reduced pressure. Tilieesas purified by column
chromatography (ADs, toluene/hexane 1:4) to give(1.42 g, 2.34 mmol, 87%) as pale yellow oil.
'H NMR (400 MHz, CDG): 6 7.91 (2H, dJ = 8.9 Hz), 7.23 (1H, s), 6.93 (2H, &= 8.9 Hz), 4.00
(2H, t,J = 6.6 Hz), 1.80 (2H, di] = 6.6, 7.4 Hz), 1.67-1.52 (6H, m), 1.47 (2H, X% 6.6, 7.6 Hz),
1.41-1.28 (18H, m), 1.23-1.05 (6H, m), 0.92—-0.8H1m); 3C NMR (CDCk, 75 MHz):6 168.2,
160.6, 160.4, 128.5, 127.1, 124.5, 114.7, 68.2,30.7, 29.57, 29.49, 29.3, 29.2, 29.0, 27.4,,26.1
22.8,14.3,13.9, 10.4; UV-vis (CHimax (¢) 303 nm (15100 L mot cm™);  MALDI-TOF-MS
(Dith, positive):m/z607 (M'); elemental analysis: calcd (%3:853NOSSn: C 61.39, H 8.81, N 2.31,
found: C 61.35, H 8.86, N 2.30.

Preparation of Tris({2-[4-(decyloxy)phenyl]-1,3-thiazol-4-y1})-1,3,5-triazine (2). A solution of7
(700 mg, 1.15 mmol) in 1,4-dioxane (20 mL) was Habbwith argon for 0.5 h. B@lbaj- CHCk
(31 mg, 0.03 mmol), tributylphosphonium tetrafluoooate (50 mg, 0.27 mmol), CsF (91 mg, 0.60
mmol), and 2,4,6-trichloro-1,3,5-triazing) (50 mg, 0.271 mmol) were added to the mixtuream
temperature. The resulting mixture was refluxed2® h. After addition of water (100 mL), the
organic phase was separated and the aqueous phasexiracted with ethyl acetate (100 mL x 3).
The combined organic phase was dried over anhydiaSQ: and concentrated under reduced
pressure. The residue was purified by column chatography (AdOs, CHCE) to give2 (160 mg,
0.156 mmol, 58%) as yellow solids. M.p. > 200 &&domp.); *H NMR (600 MHz, CDCJ): 6 8.76
(3H, s), 8.09 (6H, d) = 8.8 Hz), 7.02 (6H, d] = 8.8 Hz), 4.04 (6H, t) = 6.6 Hz), 1.83 (6H, df] =
6.6, 7.5 Hz), 1.51-1.25 (42H, m), 0.89 (9HJ & 7.0 Hz); 3C NMR (75 MHz, CDCJ): § 169.8,
167.8, 161.3, 153.3, 128.7, 126.2, 125.7, 115.(8,&R.0, 29.7, 29.56, 29.49, 29.3, 26.1, 22.8 14.
(1 signal was missing); UV-vis (CH$ Jmax (¢) 310 nm (62600 L mot cn?); HR-FAB-MS
(NBA, positive):m/z calcd for GoH7eNeO3Ss" 1027.5376, found 1027.5376 [(M +H)

S5



Preparation of 2-{2-[4-(Decyloxy)phenyl]ethynyl}-1,3-thiazole (13). A solution of 1-(decyloxy)-
4-ethynylbenzene (807 mg, 3.12 mmol) and aqueoeth@iolamine (0.5 mol, 11.2 mL, 5.60
mmol) in THF (20 mL) was bubbled with argon for W5 Pd(PP¥2Clz (63 mg, 0.09 mmol), Cul
(11 mg, 0.06 mmol), and 2-bromothiazole (463 mg22nmol) were added to the mixture at room
temperature. The resulting mixture was stirre@DatC for 6.5 h.  After addition of water (100 mL),
the organic phase was separated and the aqueaes\pasa extracted with CHEGILOO0 mL x 3).  The
combined organic phase was washed with water (10} dried over anhydrous MgSQOand
concentrated under reduced pressure. The residaguwrified by column chromatography (giO
toluene/hexane 4:1) to giu8 (609 mg, 1.78 mmol, 63%) as white solids. M.p-&2°C; H NMR
(400 MHz, CDC4): 0 7.83 (1H, d,J = 3.6 Hz), 7.52 (2H, d] = 8.8 Hz), 7.34 (1H, dl = 3.6 Hz), 6.88
(2H, d,J = 8.8 Hz), 3.98 (2H, 1) = 6.6 Hz), 1.79 (2H, d] = 6.6, 7.4 Hz), 1.45-1.28 (14H, m), 0.89
(3H, t,J = 6.8 Hz); *C NMR (75 MHz, CDCJ): 6 160.2, 149.3, 143.5, 133.6, 120.3, 114.7, 113.1,
94.5, 81.3, 68.2, 32.0, 29.6, 29.48, 29.43, 29621,222.8, 14.2 (1 signal was missing); UV-vis
(CHCl): Amax (¢) 317 nm (24200 L mot cmi'Y); MALDI-TOF-MS (Dith, positive):m/z 341 (M);
elemental analysis: calcd (%)»#27NOS: C 73.86, H 7.97, N 4.10, found: C 73.62, H3719 4.04.

Preparation of 2-{2-[4-(Decyloxy)phenyl]ethynyl}-5-(tributyltin)-1,3-thiazole (8). To a solution
of 13 (1.00 g, 2.93 mmol) in THF (20 mL) was added dreva freshly prepared LDA THF solution
(0.83 mol L%, 3.7 mL, 3.07 mmol) at -78 °C under argon atmospheThe resulting mixture was
warmed to O °C and stirred for 1 h. The mixturesweoled to =78 °C and tributyltin chloride (1.80
g, 5.52 mmol) was added to the mixture. The reagylnixture was warmed to 0 °C and stirred for
3 h. After addition of water (100 mL), the orgapitase was separated and the aqueous phase was
extracted with ethyl acetate (100 mL x 3). The borad organic phase was dried over anhydrous
NaSOs and concentrated under reduced pressure.  Thelueesivas purified by column
chromatography (ADs, hexane to toluene) to gi&(1.42 g, 2.25 mmol, 77%) as yellow oilH
NMR (CDCk, 400 MHz):6 7.76 (1H, s), 7.51 (2H, d,= 8.9 Hz), 6.87 (2H, d] = 8.9 Hz), 3.97 (2H,
t,J=6.6 Hz), 1.79 (2H, di] = 6.6, 7.4 Hz), 1.63-1.52 (6H, m), 1.45 (2H,Mt 6.7, 7.6 Hz), 1.39—
1.28 (18H, m), 1.24-1.07 (6H, m), 0.92-0.87 (12K, m*C NMR (75 MHz, CDC4): 6 160.0, 154.0,
149.8,133.4,131.3,114.7,113.6,95.5, 81.5,822, 29.6, 29.49, 29.44, 29.2, 29.0, 27.3, 221,
14.2, 13.7, 11.2 (1 signal was missing); UV-vi$l(@s): Amax (¢) 323 nm (26300 L mot cm™);
MALDI-TOF-MS (Dith, positive):m/z 631 (M); elemental analysis: calcd (%33#s5NOSSn: C
62.86, H 8.47, N 2.22, found: C 62.73, H 8.54, RB2.

Preparation of Tris(2-{2-[4-(decyloxy)phenyl]ethynyl}-1,3-thiazol-5-y1)-1,3,5-triazine (3). A
solution of 8 (1.84 g, 2.94 mmol) in toluene (35 mL) was bubbledh argon for 0.5 h.
Pd(dba)- CHCE (66 mg, 0.06 mmol), triphenylarsine (90 mg, 0.2@al), and 2,4,6-trichloro-1,3,5-
triazine 6) (120 mg, 0.651 mmol) were added to the mixtureoam temperature and the resulting
mixture was refluxed for 51 h. After addition oater (100 mL), the organic phase was separated
and the aqueous phase was extracted with ethydtaqdi00 mL x 3). The combined organic phase
was dried over anhydrous Mg®énd concentrated under reduced pressure. Thieieasas purified
by column chromatography (SiChexane/CHGI1:4) and washed with acetone to g&¢103 mg,
0.146 mmol, 14%) as yellow solids. M.p. 177-179 °éH NMR (CDCk, 400 MHz):6 8.84 (3H,
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s), 8.02 (6H, dJ = 8.8 Hz), 6.99 (6H, dl = 8.8 Hz), 4.04 (6H, 1] = 6.6 Hz), 1.83 (6H, di1 = 6.6, 7.5
Hz), 1.49 (6H, dt)=6.8, 7.5 Hz), 1.45-1.25 (36H, m), 0.89 (9H,%,6.8 Hz); *C NMR (75 MHz,
CDCls): 6 166.6, 160.7, 154.5, 148.1, 136.6, 134.0, 11418,6], 98.2, 82.1, 68.3, 32.0, 29.8, 29.7,
29.54, 29.47, 29.2, 26.1, 22.8, 14.2; UV-vis (CHlClmax (¢) 393 (83400), 400 nm (83100 L mbl
cml); HR-FAB-MS (NBA, positive):mVz calcd for GeH7adNsO3Ss* 1099.5376, found 1099.5378
[(M +H)'].

Preparation of Tris({2-[4-(decyloxy)phenyl]ethynyl})-1,3,5-triazine (4). To a solution of 1-
(decyloxy)-4-ethynylbenzene (370 mg, 1.43 mmol)TiHF (6 mL) was added dropwisenaBuLi
hexane solution (1.60 molt, 1.3 mL, 2.08 mmol) at -78 °C under argon atmospheAfter the
mixture was stirred at =78 °C for 1 h, a ZnTHF solution (0.20 mol t}, 11.7 mL, 2.34 mmol) was
added. After the mixture was stirred at —78 °C1dr, the resulting mixture was warmed to room
temperature. The resulting mixture was stirredifbr a solution of 2,4,6-trichloro-1,3,5-triazi(%®
(61 mg, 0.33 mmol) and Pd(P#$h(20 mg, 0.032 mmol) in THF (10 mL) was added driggvio the
mixture at room temperature. After the mixture weluxed for 18 h, the resulting mixture was
filtered through a bed of silica gel (toluene) dind filtered was concentrated under reduced pressur
The residue was purified by column chromatogra@i@{, hexane/CELCl2 1:1) to gived (53 mg, 0.06
mmol, 19%) as yellow waxy solids. M.p. 40-41 °CH NMR (400 MHz, CDCJ): 6 7.64 (6H, d))
=8.9 Hz), 6.90 (6H, d] = 8.9 Hz), 4.00 (6H, ] = 6.6 Hz), 1.80 (6H, dt] = 6.7, 7.4 Hz), 1.49-1.28
(42H, m), 0.89 (9H, tJ = 6.9 Hz); *C NMR (75 MHz, CDCG)): ¢ 161.3, 160.6, 135.2, 114.9, 112.0,
94.9, 86.5, 68.3, 32.0, 29.6, 29.48, 29.46, 22B111, 22.8, 14.2 (1 signal was missing); UV-vis
(CHCI): Amax (¢) 362 nm (92600 L mot cmil); MALDI-TOF-MS (Dith, positive):m/z 850 [(M +
H)'l;, HR-FAB-MS (NBA, positive):m/z calcd for G7H7eéN3Oz* 850.5887, found 850.5886 [(M +
H)*].

3. Photophysical properties
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FigureSl. Fluorescence spectra®dfn (n-Bu);O, toluene, ED, 1,4-dioxane, THF,

CH.Cl,, and DMF at RT.
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FigureS2. Fluorescence spectra®fn (n-Bu);0O, toluene, EO, 1,4-dioxane, THF,
CH.Cl, and DMF at RT.
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Figure S3. Fluorescence spectra4in (n-Bu).0O, toluene, EO, 1,4-dioxane, THF,
CH.Cl, and DMF at RT.
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1E+04: Chi.Sq. = 1.005188

FigureS7. Fluorescence decay curve (top) and residual (bottdihin CHxCl..

4. Electrochemical properties

TableS1. Cyclic Voltammetry (CV) and Differential Pulse ¥ammetry (DPV) Data oi—4 in o-DCB
(0.1 mol L' n-BusNPFg), Theoretically Calculated HOMQUMO Gaps (Ecacd, Electrochemical Gaps
(AEredox AE°redoy, and Optical Energy GapAKop)

cv? DPV® AE°regodV 2° AEqpfeV ©
EpdV EpdV EoxlV EredV (AEreqodV *9) (AEcacdeV')

1 1.38 -2.22 1.14 -2.01 3.60 3.17
1.23 -2.53 (3.15) (3.46)

2 1.45 -2.47 1.11 -2.31 3.92 4.00
1.18 (3.42) (3.92)

3 1.30 -1.92 1.17 -1.79 3.22 3.08
-2.51 1.45 -2.33 (2.96) (3.21)

4 1.46 -2.18 1.31 -2.03 3.64 3.42
1.53 -2.11 (3.34) (3.92)

2 Scan rate 100 mv's  Irreversible wave. ? Pulse width of 0.1 s in a period of 0.2 $.AEredox = Epa — Epc.
4 AE%edox= Eox — Erea.  ¢Optical gap AEop, is defined as the energy corresponding to th@estimax in CHC.
fB3LYP/6-31+G(d)//B3LYP/6-31G(d).
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Figure S8. Cyclic voltammograms af-4 measured iw-DCB
(0.1 mol L n-BusNPFs) at a scan rate of 100 m\ts

Current/a.u.

-3.0 -2.0 -1.0 0 1.0 2.0
E vs Fc*/Fc/V

Figure 9. Differential pulse voltammograms &f4 measured in-DCB
(0.1 mol L1 n-BusNPFs) at a pulse width of 0.1 s over a period of 0.2 s.

(a) (b)
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Figure S10. Plots of theAEedoxValues as a function of the (@lEop: and (b)AEcaca values forl—4.
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5. Quantum chemical calculations

/4

FigureS11. Optimized structures dfwith (a) Csn and (b)Cs symmetry at the B3LYP/6-31G(d) level.

R S
f‘@%{@qfﬁ%

FigureS12. Optimized structures of (), (b) 2, (c) 3, and (d)4’ at the B3LYP/6-31G(d) level.

B &
FETR @8

LUMO/ -2.16 eV LUMO+1/-2.16 eV
,\i‘é‘m N gir"t"'a
HOMO/ -6.08 eV HOMO-1/-6.09 eV HOMO-2/-6.09 eV

Figure S13. Selected frontier molecular orbitals 4t the B3LYP/6-31+G(d,p)//B3LYP/6-31G(d).
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TableS2. Summary of TD-DFT Calculations (B3LYP/6-31G(djdaAssignment of Electronic Absorption
in the Longer Wavelength Region fbr

InaINm Ina9nm Osc. Transitiorfs
391 400 0.8033 H-—L+1,3%;H-1 —>L,3%;H—L,25%;

H — L+1, 68%

400 0.8033 H2—L,3%;H-1—>L+1,3%;H— L, 68%;
H— L+1, 25%

395 0.3750 H2— L, 44%; H-2 — L+1, 2%; H-1 — L, 2%;
H-1 - L+1,44%;H — L, 6%

395 0.3750 H2—L,2%; H2 — L+1, 44%; H-1 — L, 44%;

H-1 — L+1,2%; H — L+1, 6%

aIn CHCk. PH =HOMO; L = LUMO.

TableS3. Summary of TD-DFT Calculations (B3LYP/6-31G(djdaAssignment of Electronic Absorption
in the Longer Wavelength Region Br

Imad®Inm  Anat®9nm Osc. Transitions
310 349 0.0558 H— L, 15%; H-2— L+1, 5%; H-1— L, 5%;

H-1— L+1,15% H - L — 23%, H— L+1, 36%

349 0.0558 H2—L, 15%; H=2 — L+1, 5%; H-1 —> L, 5%;
H-1 - L+1,15%;H — L — 23%, H— L+1, 36%

343 0.1522 H-2>1L,8%; H-2— L+1, 20%; H-1— L, 20%;
H-1— L+1, 8%; H— L, 31%, H— L+1, 6%

343 0.1522 H2— L, 20%; H=2 — L+1, 8%: H=1 — L, 8%:
H-1 —» L+1,20%; H— L, 6%, H— L+1, 30%

306 0.6057 H2—L+2,77%; H-1 - L+2,11%; H — L+3, 3%

306 0.6057 H2—L+2,11%; H-1 — L+2,77%; H — L+3, 3%

299 0.4825 H-2» L+2,8%; H2 — L+3, 7%; H-2 — L+4, 14%;
H-1 — L+3, 14%; H-1 —» L+4 — 7%, H — L+3, 35%;
H— L+4, 9%

299 0.4825 H-2» L+3, 14%; H2 — L+4, 7%; H-1 — L+2, 8%;

H-1 — L+3, 7%; H-1 — L+4 — 14%, H — L+3, 9%;
H — L+4, 35%

aIn CHCk. °H =HOMO; L = LUMO.
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TableS4. Summary of TD-DFT Calculations (B3LYP/6-31G(djdaAssignment of Electronic Absorption
in the Longer Wavelength Region f8r

Ima®INmt Amat®9Ynm - Osc. Transitiorfs
391 431 1.3416 H-2 L+1, 3%; H-2— L+1, 5%; H-1— L, 5%;

H-1—-L+1,3% H—>L, 70%; H— L+1, 12%

431 1.3416 H2— L+1, 5%; H-2 — L+1, 3%; H-1 — L, 3%;
H-1 — L+1,5%; H— L, 12%; H — L+1, 70%

424 0.2222 H-2> L+1, 41%: H4 — L, 41%: H — L, 3%:
H— L+1, 14%

424 0.2222 H2—L,41%; H-1 - L+1,41%; H— L, 13%;
H— L+1, 3%

aIn CHCk. PH =HOMO; L = LUMO.

TableS5. Summary of TD-DFT Calculations (B3LYP/6-31G(djdaAssignment of Electronic Absorption
in the Longer Wavelength Region #r

Ima®INM Amas®9Ynm - Osc. Transitiorfs
363 350 1.0315 H—L,5%;H-1—L+1,5%; H— L, 41%;

H— L+1, 49%

350 1.0315 H2— L+1,5%;H-1 —>L, 5%;H — L, 49%:;
H— L+1, 41%

348 0.3532 H-2> L+1,45%; H-1—> L, 45%; H — L, 5%;
H— L+1, 5%

348 0.3532 H2—L,45%; H-1 - L+1,45%; H — L, 5%;
H— L+1, 5%

2ln CHCk. PH = HOMO:; L = LUMO.
(@ o7 (6) 5 © o5

kcal mol-!

kcal mol-!

-5.5

kcal mol-!

kcal mol!

-3.7

kcal mol-!

4.4

kcal mol-!

kcal mol!

2.6

kcal mol!

FigureS14. ESPs and values of MEPs; the calculated positishe@#MEPs are 2A above the center of the
aromatic rings of (&}, (b) 2, and (c)3' at the level of B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) The potentials
are drawn in the same color scale, with red indigatnore-negative potentials and blue, more-pasitiotentials.
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Computational method: We optimized local minima on potential energy scefausing the B3LYP
functionaP*® combined with the 6-31G(d) basis et After geometry optimizations, single-point
calculations were performed to investigate energies electronic structures using the 6-31+G(d,p)
basis set. To obtain excited states and theill@ristrength TD-DF calculations were performed
at the B3LYP/6-31G(d) level. Self-assembling prtipe of 1 and 3 were calculated with the
counterpoise correctidéh and the empirical dispersion correction at the B¥def2-TZVP
//B97D3/def2-SVPlevel. The counterpoise correction is a presianiptor removing the basis set
superposition error. The Gaussian 09 program patkags used for all DFT calculations.

ESPs and MEPs estimated by DFT calculations. To gain further insight into the self-association
properties ofl-3, we calculated the electrostatic-potential susg&SPs) and molecular electrostatic
potentials (MEPs) ol'-3' at the B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) leveliflare S14). The
theoretical results clearly indicate a less-negativaracter for the aromatic ringsloand3 than2,
which is consistent with the results of electroctstim described above; thged value ofl and3 is
less negative than thataf According to the well-known polarimodel, the decrease in the electron
density of aromatic rings reduces the electrostajitilsion between-electrons and strengthansn
stacking interactions Hence, the lower electron densityloind3 than2 is in part responsible for
the higher self-association ability of the formiean the latter. We note that the aromatic ring3 of
are even less negative than thosé ak expected from the DPV analyses; Eha value of3 is less
negative than that &  This finding does not account for the lower se§ociation ability o8 than
1in terms of the electron density of the aromatgs; compound seems to be electronically more
favorable thari for the self-association.

Self-assembling properties of 1 and 3:  We note that the lowedfa value of3 than1 cannot be
explained from the viewpoint of the extent of tivedap of the aromatic rings in the dimeric struegy
which is almost the same in the plausible selftatded dimers ofl’ and 3’ obtained by DFT
calculations. It is known that the rotational berfor the carbon (sp)—carbon fspond is smaller
than that for the carbon @pcarbon (sf) bond: for example, the barrier of diphenylethigas high
as one-third of that of biphen{l. Hence, in the monomeric state the rotation abineitacetylenic
bonds connecting the thiazole and decyloxybenzemietias in3 is assumed to be faster than the
rotation about the corresponding single bondk inThus, we speculated that the rotatior3 ¢dister
thanl results in the lowea value of3 thanl, however, this speculation may conflict the firglthat
the AS value (-24 cal mot K™) for the association df in CDCE/MCH is more negative than the
value (5.9 cal mot K?) of 3.
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6. Self-association

Table S5. Self-Association Constant&d) for 1—4 at 20 °C Determined by NMR

Ka/L mol™
CDCh CDCy/MCH (1:5)
1 8+1 41 +£2
2 N.D.2 N.D2
3 N.D.2 20+5
4 N.D.P N.DP

2Due to the too small chemical shift change.
b Almost no self-association

(@) (b)

Conc./mmol L-! CHCl, Conc./mmol L-! CHCl,
28 N\ NP
134 J\__ \ L 234 e .
A 6.71 J L | 7.00 M Mo
A 335 L H | 3.85 i N
_J_ 168 g | H 1 2.20 s T
| 0059 | ) A | 1.94 I i
| 0280 | . | 0.962 ! i
| 0140 | I | 0.481 M L
| 00700 ) 1 It 1 0.240
| 0.0350 1 1 0.120 : ; j t i :
8.8 8.4 8.0 7.6 7.2 ° 8.8 8.4 8.0 7.6 7.2 6.8

FigureS15. 'H NMR spectra of (a2 and (b)3 in CDCk in various concentrations at 20 °C (600 MHz).

1)
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Figure S16. Nonlinear curve-fitting plots of the concentratidependence of the chemical shifts
of the aromatic protons dfin CDCk at 20 °C.
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FigureS17. van't Hoff plot for self-association dfin CDCbk.
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FigureS18. van't Hoff plot for self-association of (d)and (b)3 in CDCKL/MCH (1:5, v/v).

7. Self-assembly
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Figure S19. Peak deconvolution analyses of PXRD patterns dfipitates of
(a) 1 and (b)3 obtained from a CyCl,/MeOH (1:10, v/v) binary solvent system.
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Figure S20. Plausible packing models of the self-assembledelsi®f (a)l and (b)3
deduced from PXRD patterns. In these models, dggygroups inl and3 were
replaced with methyl groups; the monomeric strigswere optimized by B3LYP/6-
31G(d) level. Hydrogen atoms are omitted for tyari
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FigureS21. DSC measurement (10 °C minresults of (all, (b) 2, (c) 3, and (d)4.

Figure S22. Polarizing microscopic images bfat (left) 100 °C and (right) 150 °C.
The thermal transition at 96 °C Inis attributed to crystal-to-crystal transition.
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8. H and *C NMR spectra
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Figure S23. H NMR spectrum ofl0 in CDCk solution (400 MHz).
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Figure S24. 13C NMR spectrum o0 in CDCk solution (75 MHz).
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Figure S25. H NMR spectrum ofl1 in CDCk solution (400 MHz).

. l | . vl e
180 160 140 120 100 80 80 40 20 0

Figure S26. 13C NMR spectrum of1 in CDCk solution (75 MHz).
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Figure S27. *H NMR spectrum o6 in CDCk solution (400 MHz).
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Figure S28. 13C NMR spectrum o6 in CDCk solution (75 MHz).
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FigureS29. 'H NMR spectrum ofl in CDCk solution (600 MHz).
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Figure S30. 13C NMR spectrum ol in CDCk solution (75 MHz).
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FigureS31. *H NMR spectrum ofl2 in CDCk solution (400 MHz).
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Figure S32. 13C NMR spectrum o2 in CDCk solution (75 MHz).
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Figure S33. 'H NMR spectrum of in CDCk solution (400 MHz).
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Figure S34. 13C NMR spectrum o7 in CDCk solution (75 MHz).
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Figure S36. 13C NMR spectrum o2 in CDCk solution (75 MHz).
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Figure S38. 13C NMR spectrum o3 in CDCk solution (75 MHz).
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Figure S39. 'H NMR spectrum o8 in CDCk solution (400 MHz).

= = —crom T
e == T @me CEmEES e nee
=i ZEEZ SESZIEERTEOES

p=gemt et HERRARN SN T

———160.069
——154.021
——140.795

=

S

R |

160 140 120 100 80 80 40 20 0

Figure $40. 13C NMR spectrum o8 in CDCk solution (75 MHz).
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Figure $42. 13C NMR spectrum o8 in CDCk solution (75 MHz).
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Figure $43. 'H NMR spectrum o#t in CDCk solution (400 MHz).
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Figure S44. 13C NMR spectrum o#t in CDCk solution (75 MHz).
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