Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting information

A mild electroassisted synthesis of (hetero)arylphosphonates

Stéphane Sengmany,^a Anthony Ollivier,^a Erwan Le Gall,^a Eric Léonel^{*a}

^a Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, F- 94320 Thiais France

* Corresponding author. Tel.: +33-149781136; fax: +33-149781148; e-mail: leonel@icmpe.cnrs.fr

Table of contents

General	S1
General procedure for electrochemical (hetero)aryl C-P couplings	S1
Characterization data for compounds (3a-x), (3'a), (3"a) and (5a-b)	S2
NMR data	S10

General

Solvents and reagents were purchased from commercial suppliers and were used without further purification. (2,2'-Bipyridine)nickel bromide (NiBr₂bpy) was prepared from NiBr₂·xH₂O and 2,2'-bipyridyl.¹ Reactions were monitored by gas chromatography (GC) using a chromatograph fitted with a capillary column (l = 5.5 m, i.d. = 0.25 mm, depth of film (d.f.) = 0.25 µm). Melting points (mp) were measured in unsealed capillary tubes. Infrared spectra (FTIR) were recorded in ATR mode. NMR spectra were recorded in CDCl₃ at 400 MHz (¹H), 100 MHz (¹³C), 162 MHz (³¹P) and 376 MHz (¹⁹F). NMR spectra were calibrated using the residual solvent signal. Mass spectra [MS in electron-impact (EI+) ionization mode] were measured with a GC-MS spectrometer fitted with a capillary column (l = 25 m, i.d. = 0.25 µm). Purification was carried out manually by flash chromatography on silica gel (70–200 µm). All literature previously described and characterized compounds are linked with the corresponding bibliographic references.

Electrosyntheses were carried out in a 25 mL undivided cell fitted with an iron/nickel (64/36) rod anode (diameter: 12 mm, 30 mm of the surface is submerged in the reaction solution, purchased from Goodfellow) surrounded by a nickel foam cathode (dimension: 80 mm x 40 mm, purchased from Goodfellow). These electrode materials have proved to be the best in most previously described electrochemical couplings involving the generation of Ni(0) by electroreduction of nickel(II) salts. A simple digital electricity generator was used for the electrolyses under galvanostatic mode (Figure 1).

Figure 1 The electrochemical cell with the generator

General procedure for electrochemical (hetero)aryl and vinyl C-P couplings

In an 25 mL electrochemical cell equipped with an iron/nickel (64/36) rod anode surrounded by a nickel foam cathode were successfully added acetonitrile (20 mL), tetrabutylammonium bromide (200 mg, 0.15 mmol), used as supporting electrolyte, and 1,2-dibromoethane (100 μ L, 0.3 mmol). A constant current of 0.2 A was applied at room temperature for 15 min under argon bubbling, time during which electroreduction of 1,2-dibromoethane furnishes organometallic species that acts as water scavengers and additionally furnishes salts that increase medium conductibility. The electric current and argon bubbling were then stopped. NiBr₂bpy complex (10 mol%), (hetero)aryl or vinyl bromide (4 mmol), dimethyl phosphite (733 μ L, 8 mmol) and trimethylamine (1.1 mL, 8 mmol) were added before a constant current of 0.2 A was applied at room temperature. The reaction was monitored by GC and stopped once aryl bromide was completely consumed (2-4 h). The reaction mixture was then poured in a saturated EDTA-Na₂ aqueous solution (50 mL) and the resulting solution was extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography (silica gel, 70–200 μ m) to give the pure product.

Characterization data for compounds (3a-x), (3'a), (3"a) and (5a-b)

Dimethyl (4-methoxyphenyl)phosphonate (3a).¹ Pale yellow oil. Yield: 86% (740 mg). FC: elution

with a gradient of petroleum ether/acetone (80/20), then (70/30) and (60/40); GC (60 °C, 8 °C/min): t_R 14.31 min; ATR-FTIR (neat, cm⁻¹) v 2953, 2848, 1599, 1505, 1461, 1241, 1131, 1017, 810, 768, 535; ¹H NMR (400 MHz) δ 7.73 (dd, J = 12.8, 8.8 Hz, 2H), 6.97 (dd, J = 8.8, 3.4

Hz, 2H), 3.85 (s, 3H), 3.73 (d, J = 11.1 Hz, 6H); ¹³C NMR (100 MHz) δ 163.1 (d, J = 3.4 Hz), 133.9 (d, J = 11.3 Hz), 118.1 (d, J = 195.9 Hz), 114.1 (d, J = 16.1 Hz), 55.3, 52.5 (d, J = 5.5 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 22.56; MS, m/z (relative intensity) 217 (13), 216 ([M]⁺, 92), 215 (100), 201 (9), 186 (11), 185 (17), 183 (19), 171 (56), 170 (6), 135 (6), 123 (8), 122 (12), 121 (67), 108 (26), 93 (6), 91 (10), 79 (6), 78 (12), 77 (16), 63 (12).

Dimethyl (3-methoxyphenyl)phosphonate (3b).² Pale yellow oil. Yield: 75% (650 mg). FC: elution

with a gradient of petroleum ether/acetone (80/20), then (70/30) and (60/40); GC (60 °C, 8 °C/min): t_R 13.78 min; ATR-FTIR (neat, cm⁻¹) v 2954, 2850, 1578, 1464, 1420, 1237, 1017, 827, 766, 557; ¹H NMR (400 MHz) δ 7.41-7.27 (m, 3H), 7.11-7.06 (m, 1H), 3.83 (s, 3H), 3.75 (d, *J* = 11.1 Hz, 6H); ¹³C NMR (100 MHz) δ 159.6 (d, *J* = 19.0 Hz), 129.8 (d, *J* = 17.7 Hz),

128.2 (d, J = 187.7 Hz), 124.1 (d, J = 9.2 Hz), 119.1 (d, J = 3.2 Hz), 116.5 (d, J = 11.3 Hz), 55.4 , 52.70 (d, J = 5.5 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 21.44; MS, m/z (relative intensity) 217 (9), 216 ([M]⁻⁺, 75), 215 (100), 201 (11), 186 (19), 185 (13), 183 (18), 171 (14), 154 (7), 121 (19), 108 (12), 92 (5), 91 (7), 79 (7), 78 (12), 77 (12), 63 (9).

Dimethyl (2-methoxyphenyl)phosphonate (3c).² Pale yellow oil. Yield: 35% (300 mg). FC: elution with

a gradient of petroleum ether/acetone (80/20), then (70/30), (60/40) and (50/50); GC (60 °C, 8 °C/min): t_R 13.82 min; ATR-FTIR (neat, cm⁻¹) v 2953, 2849, 1592, 1480, 1433, 1248, 1018, 807, 760, 584; ¹H NMR (400 MHz) δ 7.79 (ddd, *J* = 14.9, 7.6, 1.7 Hz, 1H), 7.50 (ddd, *J* = 7.5, 4.5, 0.8 Hz, 1H), 7.00 (tdd, *J* = 7.5, 3.5, 0.7 Hz, 1H), 6.97-6.90 (m, 1H), 3.89 (s, 3H), 3.78 (d, *J* = 11.3

Hz, 6H); ¹³C NMR (100 MHz) δ 161.3 (d, J = 2.6 Hz), 135.2 (d, J = 7.0 Hz), 134.5 (d, J = 2.1 Hz), 120.5 (d, J = 14.6 Hz), 115.5 (d, J = 188.7 Hz), 111.2 (d, J = 9.5 Hz), 55.9, 52.81 (d, J = 5.7 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 23.33; MS, m/z (relative intensity) 217 (11), 216 ([M]⁻⁺, 100), 215 (46), 187 (92), 185 (52), 184 (40), 183 (91), 169 (52), 155 (59), 153 (62), 141 (48), 110 (35), 104 (17), 91 (41), 80 (13), 79 (24), 78 (17), 77 (35), 63 (16), 51 (19).

Dimethyl (4-(methylthio)phenyl)phosphonate (3d). Pale brown oil. Yield: 82% (760 mg). FC: elution

with a gradient of petroleum ether/acetone (90/10); GC (60 °C, 8 °C/min): t_R 16.83 min; ATR-FTIR (neat, cm⁻¹) v 2952, 2850, 1583, 1247, 1014, 786, 592; ¹H NMR (400 MHz) δ 7.70 (dd, J = 12.9, 8.3 Hz, 2H), 7.31 (dd, J = 8.3, 3.6 Hz, 2H), 3.76 (d, J = 11.1 Hz, 6H), 2.53 (s,

3H); ¹³C NMR (100 MHz) δ 145.3 (d, J = 3.5 Hz), 132.2 (d, J = 10.6 Hz), 125.2 (d, J = 15.5 Hz), 122.3 (d, J = 193.1 Hz), 52.7 (d, J = 5.5 Hz), 14.8; ³¹P NMR (CDCl₃, 162 MHz): δ 21.96; MS, *m/z* (relative intensity) 233 (12), 232 ([M]⁺, 100), 231 (32), 217 (14), 201 (8), 199 (10), 187 (27), 186 (14), 185 (5), 139 (7),

¹ S. Wang, D. Qiu, F. Mo, Y. Zhang, J. Wang, *J. Org. Chem.*, 2016, **81**, 11603.

² A. J. Kendall, C. A. Salazar, P. F. Martino, D. R. Tyler, *Organometallics*, 2014, **33**, 6171.

138 (6), 137 (60), 124 (15), 122 (5), 91 (6). HRMS (ESI⁺) *m*/*z* calcd for C₉H₁₄O₃PS [M + H], 233.039578; found, 233.039276.

Dimethyl (4-(dimethylamino)phenyl)phosphonate (3e). Pale yellow oil. Yield: 75% (690 mg). FC:

elution with a gradient of petroleum ether/acetone (80/20), then (70/30); GC (60 °C, 8 °C/min): t_R 17.72 min; ATR-FTIR (neat, cm⁻¹) v 2950, 2849, 1599, 1521, 1237, 1127, 1017, 793, 532; ¹H NMR (400 MHz) δ 7.61 (dd, J = 12.5, 9.0 Hz, 2H), 6.69 (dd, J = 9.0, 3.5 Hz, 2H),

3.69 (d, J = 11.1 Hz, 6H), 3.00 (s, 6H); ¹³C NMR (100 MHz) δ 153.0 (d, J = 2.8 Hz), 133.5 (d, J = 11.4 Hz), 111.2 (d, J = 15.7 Hz), 111.0 (d, J = 199.9 Hz), 52.3 (d, J = 5.3 Hz), 39.9; ³¹P NMR (CDCl₃, 162 MHz): δ 24.73; MS, m/z (relative intensity) 230 (11), 229 ([M]⁺, 100), 228 (65), 214 (7), 198 (5), 196 (12), 184 (11), 183 (7), 182 (11), 135 (5), 134 (33), 121 (9), 120 (8), 118 (10), 91 (5); HRMS (ESI⁺) m/z calcd for $C_{10}H_{17}NO_3P$ [M + H], 230.094056; found, 230.093991.

Dimethyl benzo[d][1,3]dioxol-5-ylphosphonate (3f). Pale brown oil. Yield: 84% (770 mg). FC: elution

with a gradient of petroleum ether/acetone (80/20), then (70/30); GC (60 °C, 8 °C/min): t_R 15.45 min; ATR-FTIR (neat, cm⁻¹) v 2954, 2851, 1481, 1426, 1241, 1017, 814, 777, 539; ¹H NMR (400 MHz) δ 7.35 (ddd, *J* = 14.0, 7.9, 1.4 Hz, 1H), 7.16 (dd, *J* = 12.9, 1.0 Hz, 1H), 6.87 (dd, *J* = 7.9, 3.7 Hz, 1H), 6.01 (s, 2H), 3.72 (d, *J* = 11.1 Hz, 6H); ¹³C NMR (100 MHz) δ 151.4

(d, J = 3.5 Hz), 148.0 (d, J = 22.8 Hz), 127.7 (d, J = 11.1 Hz), 119.7 (d, J = 194.5 Hz), 111.3 (d, J = 12.3 Hz), 108.7 (d, J = 18.8 Hz), 101.7, 52.7 (d, J = 5.4 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 21.86; MS, m/z (relative intensity) 231 (11), ([M]⁻⁺, 100), 229 (74), 215 (15), 200 (8), 199 (19), 197 (19), 185 (36), 184 (10), 183 (8), 136 (10), 135 (92), 122 (33), 121 (15), 79 (9), 77 (10), 63 (7), 62 (7); HRMS (ESI⁺) m/z calcd for C₉H₁₂O₅P [M + H], 231.041687; found, 231.041399.

Dimethyl (4-methylphenyl)phosphonate (3g).³ Pale yellow oil. Yield: 74% (590 mg). FC: elution with a

gradient of petroleum ether/acetone (90/10), then (80/20); GC (60 °C, 8 °C/min): t_R 12.04 min; ATR-FTIR (neat, cm⁻¹) v 2953, 2851, 1459, 1249, 1129, 1018, 807, 767, 517; ¹H NMR (400 MHz) δ 7.67 (dd, *J* = 13.1, 7.9 Hz, 2H), 7.27 (dd, *J* = 6.7, 3.1 Hz, 2H), 3.73 (d, *J* = 11.1 Hz, 6H),

2.39 (s, 3H); ¹³C NMR (100 MHz) δ 143.3 (d, J = 3.1 Hz), 132.0 (d, J = 10.3 Hz), 129.3 (d, J = 15.5 Hz), 123.5 (d, J = 190.9 Hz), 52.6 (d, J = 5.5 Hz), 21.7; ³¹P NMR (CDCl₃, 162 MHz): δ 22.40; MS, m/z (relative intensity) 200 ([M]⁻⁺, 34), 199 (100), 170 (5), 169 (13), 167 (13), 155 (37), 137 (6), 106 (5), 105 (48), 103 (7), 92 (5), 91 (33), 79 (8), 77 (7), 65 (10), 63 (6).

Dimethyl (3-methylphenyl)phosphonate (3h).⁴ Pale yellow oil. Yield: 81% (650 mg). FC: elution with

a gradient of petroleum ether/acetone (90/10), then (80/20); GC (60 °C, 8 °C/min): t_R 11.87 min; ATR-FTIR (neat, cm⁻¹) v 2953, 2851, 1458, 1412, 1248, 1018, 826, 768, 563; ¹H NMR (400 MHz) δ 7.64-7.53 (m, 2H), 7.38-7.31 (m, 2H), 3.74 (d, *J* = 11.1 Hz, 6H), 2.38 (s, 3H); ¹³C NMR (100 MHz) δ 138.4 (d, *J* = 15.0 Hz), 133.5 (d, *J* = 3.2 Hz), 132.4 (d, *J* = 10.0 Hz), 128.9 (d,

³ J. Li, X. Bi, H. Wang and J. Xiao, *RSC Adv.*, 2014, **4**, 19214.

⁴ T.-H. Chen, D. M. Reddy, C.-F. Lee, *RSC Adv.*, 2017, **7**, 30214.

J = 9.7 Hz), 128.5 (d, J = 15.9 Hz), 126.7 (d, J = 187.8 Hz), 52.7 (d, J = 5.5 Hz), 21.3; ³¹P NMR (CDCl₃, 162 MHz): δ 22.09; MS, m/z (relative intensity) 201 (6), 200 ([M]⁻⁺, 34), 199 (100), 185 (5), 170 (6), 169 (14), 167 (10), 155 (27), 105 (26), 92 (6), 91 (32), 89 (8), 79 (7), 65 (10), 63 (5).

Dimethyl phenylphosphonate (3j).⁵ Pale yellow oil. Yield: 81% (600 mg). FC: elution with a gradient

of petroleum ether/acetone (90/10), then (80/20) and (70/30); GC (60 °C, 8 °C/min): t_R 10.63 min; ATR-FTIR (neat, cm⁻¹) v 2954, 2851, 1440, 1242, 1131, 1017, 786, 750, 557; ¹H NMR (400 MHz) δ 7.83-7.73 (m, 2H), 7.58 -7.51 (m, 2H), 7.49-7.40 (m, 2H), 3.73 (d, *J* = 11.1 Hz, 6H); ¹³C NMR (100 MHz) δ 132.6

(d, J = 3.0 Hz), 131.9 (d, J = 9.9 Hz), 128.5 (d, J = 15.1 Hz), 127.0 (d, J = 188.7 Hz), 52.7 (d, J = 5.6 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 21.56; MS, m/z (relative intensity) 187 ([M+H]⁻⁺, 6), 186 ([M]⁻⁺, 22), 185 (100), 156 (7), 155 (16), 153 (8), 141 (34), 105 (6), 104 (7), 92 (5), 91 (39), 79 (7), 78 (14), 77 (22), 51 (14).

Dimethyl (3-chlorophenyl)phosphonate (3k).⁶ Pale yellow oil. Yield: 59% (520 mg). FC: elution with a

gradient of petroleum ether/acetone (90/10), then (80/20); GC (60 °C, 8 °C/min): t_R 12.54 min; ATR-FTIR (neat, cm⁻¹) v 2954, 2851, 1566, 1468, 1403, 1249, 1143, 1018, 817, 747, 560; ¹H NMR (400 MHz) δ 7.78-7.72 (m, 1H), 7.66 (ddd, *J* = 13.0, 7.5, 1.1 Hz, 1H), 7.54-7.48 (m, 1H), 7.40 (td, *J* = 7.8, 4.9 Hz, 1H), 3.75 (d, *J* = 11.1 Hz, 6H); ¹³C NMR (100 MHz) δ 134.9 (d, *J* =

20.4 Hz), 132.7 (d, J = 3.1 Hz), 131.8 (d, J = 10.7 Hz), 130.0 (d, J = 16.5 Hz), 129.9 (d, J = 9.2 Hz), 129.4 (d, J = 188.8 Hz), 52.9 (d, J = 5.6 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 19.30; MS, m/z (relative intensity) 222 (14), 221 (36), 220 ([M]⁻⁺, 36), 219 (100), 190 (11), 189 (14), 187 (6), 185 (10), 175 (20), 139 (8), 138 (7), 127 (6), 125 (22), 112 (11), 111 (8), 91 (7), 79 (8), 77 (8), 75 (15), 74 (8).

Dimethyl (4-fluorophenyl)phosphonate (31).⁶ Pale yellow oil. Yield: 78% (640 mg). FC: elution with a

gradient of petroleum ether/acetone (90/10), then (80/20); GC (60 °C, 8 °C/min): t_R 9.68 min; ATR-FTIR (neat, cm⁻¹) v 3478, 2956, 2853, 1592, 1502, 1462, 1228, 1129, 1015, 820, 774, 505; ¹H NMR (400 MHz) δ 7.86-7.71 (m, 2H), 7.14 (td, *J* = 8.4, 2.9 Hz, 2H), 3.73 (d, *J* = 11.1 Hz, 6H); ¹³C

NMR (100 MHz) δ 165.5 (dd, J = 253.9, 3.9 Hz), 134.5 (dd, J = 11.3, 8.9 Hz), 123.1 (dd, J = 193.6, 3.4 Hz), 115.9 (dd, J = 21.5, 16.4 Hz), 52.7 (d, J = 5.5 Hz); ¹⁹F NMR (CDCl₃, 376 MHz): δ -105.51; ³¹P NMR (CDCl₃, 162 MHz): δ 20.58; MS, m/z (relative intensity) 205 (5), 204 ([M]⁻⁺, 21), 203 (100), 174 (13), 173 (18), 171 (7), 159 (45), 123 (5), 122 (8), 110 (6), 109 (49), 96 (11), 95 (7), 83 (5), 79 (7), 75 (13), 74 (8).

Dimethyl (3-fluorophenyl)phosphonate (3m).² Pale yellow oil. Yield: 69% (560 mg). FC: elution with a gradient of petroleum ether/acetone (90/10), then (80/20); GC (60 °C, 8 °C/min): t_R 9.82 min; ATR-FTIR (neat, cm⁻¹) v 2956, 2853, 1421, 1253, 1225, 1020, 829, 770, 685, 559; ¹H NMR (400 MHz) δ 7.58 (dd, J = 12.8, 7.5 Hz, 1H), 7.53-7.41 (m, 2H), 7.30-7.22 (m, 1H), 3.77 (d, J = 11.1 Hz, 6H); ¹³C NMR

(100 MHz) δ 162.5 (dd, J = 249.7, 21.6 Hz), 130.6 (dd, J = 17.7, 7.5 Hz), 128.6 (d, J = 6.2 Hz), 127.6 (dd, J = 9.2, 3.3 Hz), 119.9 (dd, J = 21.1, 3.1 Hz), 118.8 (dd, J = 22.4, 10.5 Hz), 52.9 (d, J = 5.6 Hz); ¹⁹F NMR (CDCl₃, 376 MHz): δ -111.29 (d, J = 8.7 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 19.48 (d, J = 8.7 Hz); MS, m/z

⁵ M. Kalek, A. Ziadi, J. Stawinski, *Org. Lett.*, 2008, **10**, 4637.

⁶ S.-Y. Chen, R.-S. Zeng, J.-P. Zou, O. T. Asekun, J. Org. Chem., 2014, 79, 1449.

(relative intensity) 204 ([M]⁺, 28), 203 (100), 174 (10), 173 (22), 171 (6), 159 (30), 123 (9), 122 (15), 110 (12), 109 (40), 96 (21), 95 (8), 83 (5), 79 (9), 77 (6), 75 (21), 74 (12).

Dimethyl (4-(trifluoromethyl)phosphonate (3n).⁷ Pale yellow oil. Yield: 59% (600 mg). FC:

elution with a gradient of petroleum ether/acetone (90/10), then (80/20) and (70/30); GC (60 °C, 8 °C/min): t_R 9.51 min; ATR-FTIR (neat, cm⁻¹) v 2958, 2855, 1462, 1400, 1322, 1288, 1254, 1127, 1014, 827, 804, 601; ¹H NMR (400 MHz) δ 7.90 (dd, *J* = 13.0, 7.9 Hz, 2H), 7.70 (dd, *J*

= 8.0, 3.5 Hz, 2H), 3.76 (d, *J* = 11.1 Hz, 6H); ¹³C NMR (100 MHz) δ 134.3 (qd, *J* = 32.7, 3.2 Hz), 132.4 (d, *J* = 10.1 Hz), 130.5, 125.4 (dq, *J* = 15.2, 3.7 Hz), 123.5 (q, *J* = 273.1 Hz), 52.9 (d, *J* = 5.7 Hz); ¹⁹F NMR (CDCl₃, 376 MHz): δ -63.42 (d, *J* = 1.0 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 19.00; MS, *m/z* (relative intensity) 254 ([M]⁺, 22), 253 (100), 235 (13), 234 (15), 224 (12), 223 (22), 221 (7), 209 (22), 172 (6), 160 (7), 159 (27), 146 (9), 145 (17), 140 (26), 127 (8), 125 (6), 109 (5), 95 (6), 93 5), 79 (12).

Dimethyl (3-(trifluoromethyl)phosphonate (3o).⁸ Pale yellow oil. Yield: 65% (660 mg). FC:

elution with a gradient of petroleum ether/acetone (90/10), then (80/20) and (70/30); GC (60 °C, 8 °C/min): t_R 9.53 min; ATR-FTIR (neat, cm⁻¹) *v* 2958, 2855, 1609, 1461, 1427, 1328, 1251, 1125, 1021, 831, 559; ¹H NMR (400 MHz) δ 8.04 (d, *J* = 13.7 Hz, 1H), 7.97 (dd, *J* = 13.0, 7.7 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.60 (td, *J* = 7.7, 3.9 Hz, 1H), 3.77 (d, *J* = 11.1 Hz, 6H); ¹³C

NMR (100 MHz) δ 135.1 (d, J = 9.6 Hz), 131.2 (qd, J = 33.0, 15.8 Hz), 129.6, 129.3 (q, J = 3.6 Hz), 129.2 (d, J = 15.0 Hz), 128.7 (dq, J = 11.3, 3.8 Hz), 127.7, 123.6 (qd, J = 272.7, 2.7 Hz), 52.9 (d, J = 5.7 Hz); ¹⁹F NMR (CDCl₃, 376 MHz): δ -63.93; ³¹P NMR (CDCl₃, 162 MHz): δ 19.04; MS, *m/z* (relative intensity) 255 (5), 254 ([M]⁻⁺, 20), 253 (100), 235 (16), 234 (9), 224 (11), 223 (16), 221 (6), 214 (6), 209 (21), 172 (5), 160 (6), 159 (23), 146 (9), 145 (12), 140 (15); 127 (7), 125 (6), 95 (5), 79 (11).

Dimethyl (2-(trifluoromethyl)phenyl)phosphonate (3p). Pale yellow oil. Yield: 15% (150 mg). FC: O $P(OMe)_2$ CF_3 elution with a gradient of petroleum ether/acetone (90/10), then (80/20) and (70/30); GC (60 °C, 8 °C/min): t_R 10.16 min; ATR-FTIR (neat, cm⁻¹) v 2958, 2855, 1443, 1311, 1251, 1126, 1021, 771, 561; ¹H NMR (400 MHz) δ 8.24-8.16 (m, 1H), 7.84-7.77 (m, 1H), 7.71-7.59 (m, 2H), 3.79 (d, *J* = 11.4 Hz, 6H); ¹³C NMR (100 MHz) δ 136.3 (d, *J* = 7.4 Hz), 132.6 (d, *J* = 2.8 Hz), 131.5 (d, *J* =

13.0 Hz), 127.4 (dq, J = 11.6, 5.7 Hz), 126.7, 124.8, 123.2 (qd, J = 273.9, 4.8 Hz), 53.1 (d, J = 5.9 Hz); ¹⁹F NMR (CDCl₃, 376 MHz): δ -59.43 (d, J = 1.4 Hz).;³¹P NMR (CDCl₃, 162 MHz): δ 17.55; MS, m/z (relative intensity) 254 ([M]⁻⁺, 14), 253 (100), 235 (7), 233 (25), 204 (7), 203 (36), 189 (21), 185 (62), 175 (9), 161 (11), 159 (13), 155 (7), 153 (8), 146 (12), 145 (9), 126 (7), 125 (10), 92 (9). HRMS (ESI⁺) m/z calcd for C₉H₁₁F₃O₃P [M + H], 255.039242; found, 255.039130.

Ethyl 4-(dimethoxyphosphoryl)benzoate (3q).¹ Pale yellow oil. Yield: 49% (510 mg). FC: elution with

a gradient of petroleum ether/acetone (90/10), then (80/20) and (70/30); GC (60 °C, 8 °C/min): t_R 16.99 min; ATR-FTIR (neat, cm⁻¹) v 2956, 2852, 1718, 1462, 1397, 1369, 1270, 1102, 1016, 762, 584; ¹H NMR (400 MHz) δ 8.11 (dd, J = 8.5, 3.9 Hz, 2H), 7.85 (dd, J = 13.0, 8.5

Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 3.75 (d, J = 11.1 Hz, 6H), 1.38 (t, J = 7.1 Hz, 3H); 13 C NMR (100 MHz) δ

⁷ X.-Y. Jiao, W. G. Bentrude, *J. Org. Chem.* 2003, **68**, 3303.

⁸ W. G. Bentrude, J.-J. L. Fu, P. E. Rogers, J. Am. Chem. Soc., 1972, 95, 3625.

165.6, 134.2 (d, J = 3.2 Hz), 131.9 (d, J = 10.1 Hz), 131.6 (d, J = 187.4 Hz), 129.4 (d, J = 15.1 Hz), 61.5, 52.8 (d, J = 5.6 Hz), 14.2; ³¹P NMR (CDCl₃, 162 MHz): δ 19.89; MS, m/z (relative intensity) 258 ([M]⁻⁺, 13), 257 (26), 230 (10), 229 (36), 214 (24), 213 (100), 199 (6), 186 (7), 185 (21), 164 (5), 163 (6), 155 (6), 136 (26), 135 (8), 91 (12), 79 (6), 77 (7).

Ethyl 3-(dimethoxyphosphoryl)benzoate (3r). Pale brown oil. Yield: 91% (940 mg). FC: elution with a

gradient of petroleum ether/acetone (90/10), then (80/20) and (70/30); GC (60 °C, 8 °C/min): t_R 16.97 min; ATR-FTIR (neat, cm⁻¹) v 2957, 2853, 1719, 1250, 1138, 1018, 828, 750, 560; ¹H NMR (400 MHz) δ 8.45 (d, *J* = 13.9 Hz, 1H), 8.24 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.98 (dd, *J* = 12.9, 7.6 Hz, 1H), 7.59-7.54 (m, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 3.78 (d, *J* = 11.1 Hz, 7H), 1.40

(t, *J* = 7.1 Hz, 5H; ¹³C NMR (100 MHz) δ 165.6 (d, *J* = 2.3 Hz), 136.0 (d, *J* = 10.1 Hz), 133.6 (d, *J* = 2.9 Hz), 132.9 (d, *J* = 10.9 Hz), 131.0 (d, *J* = 15.1 Hz), 128.8 (d, *J* = 14.9 Hz), 127.8 (d, *J* = 190.1 Hz), 61.5, 52.9 (d, *J* = 5.6 Hz), 14.3; ³¹P NMR (CDCl₃, 162 MHz): δ 20.11; MS, *m/z* (relative intensity) 258 ([M]⁻⁺, 17), 257 (38), 240 (13), 231 (18), 230 (9), 229 (72), 214 (18), 213 (100), 199 (13), 186 (19), 185 (54), 154 (5), 148 (7), 136 (6), 135 (5), 131 (6), 91 (7), 79 (9), 77 (11). HRMS (ESI⁺) *m/z* calcd for C₁₁H₁₆O₅P [M + H], 259.072987; found, 259.072859.

Dimethyl naphthalen-1-ylphosphonate (3u).⁹ Pale yellow oil. Yield: 48% (450 mg). FC: elution with a

gradient of petroleum ether/acetone (90/10), then (80/20); GC (60 °C, 8 °C/min): t_R 17.27 min; ATR-FTIR (neat, cm⁻¹) v 2952, 2849, 1508, 1459, 1244, 1016, 824, 804, 774, 566; ¹H NMR (400 MHz) δ 8.46 (d, *J* = 8.5 Hz, 1H), 8.23 (ddd, *J* = 16.4, 7.1, 1.3 Hz, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.61 (ddd, *J* = 8.5, 6.9, 1.4 Hz, 1H), 7.57-7.49 (m, 2H), 3.78 (d, *J* = 11.3 Hz,

6H); ¹³C NMR (100 MHz) δ 134.9 (d, *J* = 9.1 Hz), 133.9 (d, *J* = 3.4 Hz), 133.6 (d, *J* = 12.8 Hz), 132.7 (d, *J* = 11.0 Hz), 128.8 (d, *J* = 1.9 Hz), 127.7, 126.5, 126.5, 124.5 (d, *J* = 16.7 Hz), 123.4 (d, *J* = 183.7 Hz), 52.7 (d, *J* = 5.4 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 22.25; MS, *m/z* (relative intensity) 237 (13), 236 ([M]⁻⁺, 100), 235 (56), 221 (23), 218 (13), 205 (7), 204 (14), 203 (34), 189 (5), 186 (5), 173 (9), 155 (14), 142 (11), 141 (67), 140 (7), 128 (26), 127 (16), 126 (10), 115 (17).

Tetramethyl 1,4-phenylenebis(phosphonate) (3v).¹⁰ White solid. mp 102-103 °C; Yield: 40% (470

mg). FC: elution with a gradient of petroleum dichloromethane/acetone (70/30); ATR-FTIR (neat, cm⁻¹) v 2999, 2955, 2853, 1457, 1244, 1138, 10010, 819, 773, 599, 547; ¹H NMR (400 MHz) δ 7.92-7.88 (m , 4H), 3.78 (d, J = 11.1 Hz, 12H);

¹³C NMR (100 MHz) δ 132.09–131.64 (m), 131.78 (dd, J = 187.5, 3.1 Hz), 53.0–52.9 (m); ³¹P NMR (CDCl₃, 162 MHz): δ 19.48.

Dimethyl thiophen-3-ylphosphonate (3w). Pale yellow oil. Yield: 68% (520 mg). FC: elution with a

gradient of petroleum ether/acetone (90/10), then (80/20) and (70/30); GC (60 °C, 8 °C/min): t_R 10.24 min; ATR-FTIR (neat, cm⁻¹) v 2953, 2851, 1459, 1394, 1244, 1016, 821, 759, 621, 565; ¹H NMR (400 MHz) δ 8.96 (br s, 1H), 8.78 (br s, 1H), 8.08 (dd, J = 13.4, 7.8 Hz, 1H), 7.57-7.35 (m, 1H), 3.79 (d, J =

⁹ Y.-L. Zhao, G.-J. Wu, Y. Li, L.-X. Gao, F.-S. Han, Chem. Eur. J., 2012, 18, 9622.

¹⁰ S. S. Iremonger, J. Liang, R. Vaidhyanathan, I. Martens, G. K. H. Shimizu, T. D. Daff, M. Z. Aghaji, S. Yeganegi, T. K. Woo, *J. Am. Chem. Soc.*, 2011, **133**, 20048.

11.2 Hz, 6H); ¹³C NMR (100 MHz) δ 135.8 (d, J = 18.0 Hz), 129.0 (d, J = 16.8 Hz), 128.0 (d, J = 198.0 Hz),.127.4 (d, J = 19.7 Hz), 52.7 (d, J = 5.5 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 16.02; MS, m/z (relative intensity) 193 (11), 192 ([M]⁺, 92), 191 12), 177 (72), 163 (8), 162 (57), 161 (36), 159 (30), 147 (79), 119 (20), 111 (13), 110 (23), 99 (13), 98 (22), 97 (100), 84 (33), 81 (9), 79 (11), 63 (12, 58 (17); HRMS (ESI⁺) m/z calcd for C₆H₁₀O₃PS [M + H], 193.008278; found, 193.008128.

Dimethyl pyridin-3-ylphosphonate (3x). Pale yellow oil. Yield: 20% (150 mg). FC: elution with a

gradient of petroleum ether/acetone (70/30), then (60/40) and (50/50); GC (60 °C, 8 °C/min): t_R 10.74 min; ATR-FTIR (neat, cm⁻¹) v 2955, 2851, 1629, 1582, 1462, 1408, 1237, 1021, 765, 560, 531; ¹H NMR (400 MHz) δ 8.96 (br s, 1H), 8.78 (br s, 1H), 8.08 (dd, *J* = 13.4, 7.8 Hz, 1H), 7.57-7.35 (m, 1H), 3.79 (d,

J = 11.2 Hz, 6H); ¹³C NMR (100 MHz) δ 153.2, 152.3 (d, J = 12.1 Hz), 139.6 (d, J = 8.3 Hz), 123.7 (d, J = 192.1 Hz), 123.5 (d, J = 13.1 Hz), 52.9 (d, J = 5.7 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 18.61; MS, m/z (relative intensity) 187 ([M]⁻⁺, 18), 186 (100), 157 (6), 156 (7), 154 (7), 142 (14), 106 (5), 93 (34), 92 (9), 79 (31), 78 (13), 65 (6), 52 (9), 51 (16); HRMS (ESI⁺) m/z calcd for C₇H₁₁NO₃P [M + H], 188.047106; found, 188.046901.

Diethyl (4-methoxyphenyl)phosphonate (3'a).³ Pale brown oil. Yield: 79% (770 mg). FC: elution with

a gradient of petroleum ether/acetone (90/10), then (80/20), and (70/30); GC (60 °C, 8 °C/min): t_R 15.73 min; ATR-FTIR (neat, cm⁻¹) v 2981, 2853, 1599, 1506, 1239, 1131, 1018, 956, 806, 537; ¹H NMR (400 MHz) δ 7.73 (dd, J = 12.7, 8.8 Hz, 2H), 6.95 (dd, J = 8.8, 3.3 Hz, 2H),

4.26-3.96 (m, 4H), 3.84 (s, 3H), 1.30 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz) δ 162.9 (d, J = 3.4 Hz), 133.8 (d, J = 11.3 Hz), 119.5 (d, J = 194.9 Hz), 114.0 (d, J = 16.0 Hz), 61.9 (d, J = 5.3 Hz), 55.3 (s), 16.3 (d, J = 6.6 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 19.76; MS, m/z (relative intensity) 244 ([M]⁻⁺, 18), 217 (5), 215 (49), 201 (5), 189 (9), 188 (100), 172 (17), 171 (23), 170 (16), 135 (11), 124 (8), 123 (6), 109 (5), 108 (22), 94 (11), 78 (6), 78 (12), 77 (6).

Dibutyl (4-methoxyphenyl)phosphonate (3"a).⁴ Pale brown oil. Yield: 78% (930 mg). FC: elution with

a gradient of petroleum ether/acetone (90/10), then (80/20); GC (60 °C, 8 °C/min): t_R 20.12 min; ATR-FTIR (neat, cm⁻¹) v 2956, 2874, 1600, 1244, 1131, 1020, 973, 830, 810, 807, 541; ¹H NMR (400 MHz) δ 7.73 (dd, J = 12.6, 8.7 Hz, 2H), 6.95 (dd, J = 8.5, 3.2 Hz, 2H), 4.13-3.90 (m,

4H), 3.84 (s, 3H), 1.73-1.56 (m, 4H), 1.42-1.33 (m, 4H), 0.89 (t, J = 7.4 Hz, 6H); ¹³C NMR (100 MHz) δ 162.8 (d, J = 3.3 Hz), 133.8 (d, J = 11.2 Hz), 119.5 (d, J = 195.5 Hz), 114.0 (d, J = 16.0 Hz), 65.6 (d, J = 5.5 Hz), 55.3 (s), 32.5 (d, J = 6.6 Hz), 18.8 (s), 13.61; ³¹P NMR (CDCl₃, 162 MHz): δ 19.73; MS, m/z (relative intensity) 300 ([M]⁻⁺, 3), 245 (24), 244 (11), 190 (8), 189 (100), 188 (48), 171 (28), 170 (10), 162 (14), 147 (5), 109 (10), 108 (9).

Dimethyl (2-phenylethenyl)phosphonate (5a).¹¹ E/Z: 92/8 diastereoisomers mixture. Pale yellow oil.

Yield: 77% (650 mg). FC: elution with a gradient of petroleum ether/acetone (90/10), then (80/20); GC (60 °C, 8 °C/min): t_R 14.91 min; ATR-FTIR (neat, cm⁻¹) v 2952, 2850, 1616, 1449, 1246, 1020, 831, 724; ¹H NMR (400 MHz) δ 7.66-7.46 (m, 3 H, *E* isomer), 7.44-7.33 (m, 3, *E*

¹¹ J.-W. Yuan, L.-R. Yang, P. Mao and L.-B. Qu, *RSC Adv.*, 2016, **6**, 87058.

isomer), 7.31-7.27 (m, 4H, Z isomer), 7.22-7.18 (m, 3H, Z isomer), 6.21 (t, J = 17.7 Hz, 1H, E isomer), 3.77 (d, J = 11.1 Hz, 6H, E isomer), 3.72 (d, J = 10.8 Hz, 3H, Z isomer); ¹³C NMR (100 MHz), E isomer: δ 149.7 (d, J = 6.7 Hz), 134.7 (d, J = 23.4 Hz), 130.4, 128.9, 127.8, 112.4 (d, J = 192.2 Hz), 52.5 (d, J = 5.5 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 33.45 Z isomer), 22.44 (E isomer); MS, m/z (relative intensity) 213 (6), 212 ([M]⁻⁺, 42), 211 (17), 181 (9), 179 (5), 149 (23), 121 (5), 118 (11), 117 (100), 116 (26), 115 (43), 110 (5), 103 (6), 102 (11), 91 (9), 80 (10), 79 (13), 77 (11).

Dimethyl (1-propenyl)phosphonate (5b).¹² *E/Z*: 90/10 diastereoisomers mixture. Colourless oil. Yield:

58% (350 mg). FC: elution with a gradient of petroleum ether/acetone (90/10), then (80/20) and (70/30); GC (60 °C, 8 °C/min): t_R 5.14 min; ATR-FTIR (neat, cm⁻¹) v 2954, 2852, 1634, 1444, 1235, 1021, 822; ¹H NMR (400 MHz) δ 6.87-6.72 (m, 1H, *E* isomer), 5.82-5.73 (m, 1H, *Z* isomer), 5.67-5.57 (m, 1H, *E* isomer), 5.24-5.19 (m, 1H, *Z* isomer), 3.73 (d, *J* = 10.8 Hz, 6H, *Z*

isomer), 3.69 (d, J = 11.1 Hz, 6H, E isomer), 1.92-1.90 (m, 6H, E + Z isomers); ¹³C NMR (100 MHz), E isomer: δ 150.2 (d, J = 5.0 Hz), 117.0 (d, J = 189.1 Hz), 52.3 (d, J = 5.6 Hz), 20.2 (d, J = 24.1 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 29.65 (Z isomer), 21.23 (E isomer); MS, m/z (relative intensity) 150 ([M].⁺, 5), 149 (12), 135 (100), 123 (7), 119 (9), 110 (12), 109 (14), 105 (13), 103 (21), 96 (62), 95 (7), 93 (14), 87 (22), 80 (21), 79 (54), 78 (5), 66 (19), 65 (16), 63 (9), 55 (5).

¹² W. Rauf and J. M. Brown, Angew. Chem. Int. Ed., 2008, **47**, 4228.

									1.1.1								1 .
140	120	100	80	60	40	20	0	-20	-40 f1 (-60 ppm)	-80	-100	-130	-160	-190	-220	

120 110 100 90 f1 (ppm)

. 140

. 170

														1		
140	120	100	80	60	40	20	0	-20	-40 f1 (-60 ppm)	-80	-100	-130	-160	-190	-220

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

 ζ [151.4 [1451.4] ζ [1451.4 [147.8] ζ [147.8] ζ [147.6 ζ [127.7] ζ [117.6 ζ [111.2] ζ [111.2 ζ [111.2] ζ [111.4 ζ [111.4 ζ [111.4 ζ [111.4 ζ [11.3] ζ [111.4 ζ [111.4] ζ [111.4 ζ [111.4] ζ [111.4]

																+ + + + + + + + + + + + + + + + + + + +	
140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-130	-160	-190	-220	
									f1 ((mag							

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

														1			
140	120	100	80	60	40	20	0	-20	-40 f1 (p	-60 pm)	-80	-100	-130	-160	-190	-220	

									1		1.1.1			1		1 1 1 1 1 1	
140	120	100	80	60	40	20	0	-20	-40 f1 (-60 ppm)	-80	-100	-130	-160	-190	-220	

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

 $\lesssim^{3.80}_{3.77}$

140	120	100	80	60	40	20	0	-20	-40 f1 (p	-60 pm)	-80	-100	-130	-160	-190	-220

									1.1.1		1.1.1			1			
140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-130	-160	-190	-220	
									f1 ((mag							

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

														1.1.1.1.		
140	120	100	80	60	40	20	0	-20	-40 f1 (p	-60 opm)	-80	-100	-130	-160	-190	-220

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 f1 (ppm)

