Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Enantioselective amination of nitroolefins under base-free and water-rich

conditions by chiral bifunctional phase-transfer catalysts

Junchao Zhu,^{a,†} Dongxiao Cui,^{b,c,†} Yuedan Li,^a Jingxu He,^a Weiping Chen^{a,‡} and Pingan Wang^{a,‡}

^aDepartment of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, P. R. China.

^bDepartment of Authentication of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave. Xi'an-Xianyang New Economic Zone, 712046, P. R. China

^c Department of Pharmaceutics, Xijing Hospital, The Fourth Military Medical University, Changle West Road 15, Xi'an 710032, P. R. China.

[†]Co-first authors [‡]Corresponding authors: ping_an1718@outlook.com, wpchen@fmmu.edu.cn. Tel: 029-84776807

Table of Contents

- 1. General Information S 2
- 2. General procedure for the preparation of chiral bifunctional phase-transfer catalysts and enantioselective aminations S 2-10
- 3. NMR spectra of all new products S 11-50
- 4. HMRS spectra of all new compounds S 51-79
- 5. HPLC traces of all amination products S 80-90

General

¹H NMR, ¹³C NMR, ¹⁹F and ³¹P spectra were recorded at room temperature using 400 MHz *Bruker spectrometer*. The data are reported as follows: chemical shift δ in ppm (from internal tetramethylsilane on the δ scale in case of ¹H and CDCl₃ triplet in case of ¹³C), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectra were obtained by peak matching on *BrukermaXis Spectrometer*. Melting points are reported uncorrected and measured on Fukai-X-6 melting point apparatus. HPLC data were recorded on *Agilent 1260* with UV detector. Analytical thin layer chromatography was performed using indicated solvent system on 200~300 mesh silica gel (SiO₂). All air- and water-sensitive reactions were carried out under an inert atmosphere in glassware, which had been oven-dried as per standard procedure. Unless otherwise noted, all reagents were commercially obtained and used without further purification. Benzyl chloride and benzyl bromide were freshly distilled and used in following steps.

The synthesis of phase-transfer catalysts

1. Synthesis of chiral phase-transfer catalysts OC-1, OC-2 and OC-3

1 and **2** were prepared from D-tartaric acid according to published literature¹. *Typical procedure:*

To 1.0 mmol of **1** (193 mg) in dry toluene (4.0 mL) was added by 1.05 mmol of BnBr (180 mg) in dry toluene (1.0 mL) at room temperature (r.t.). The mixture was heated to 80 $^{\circ}$ C by an oil-bath and stirred for 12 h under inert atmosphere. The reaction mixture was cooled to r.t. and the precipitate was collected and washed by dry Et₂O for three times. This precipitate was dried under a reduced pressure to give **OC-1** as a pale powder which was used directly without further purification. **OC-2** was obtained by using the same procedure as **OC-1**.

OC-1 is an known compound² and prepared according to the reported procedure.

OC-2: pale powder, 93% yield; m.p. 34.8-35.5 °C; $[\alpha]^{20}{}_D 0^\circ$ (c = 1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (bs, 4 H), 7.49 (bs, 5H), 7.41-7.29 (m, 1H), 5.83 (bs, 2H), 5.69 (d, *J* = 8.4 Hz, 2H), 4.88 (d, *J* = 11.2 Hz, 2H), 4.52 (br, 2H), 4.03 (d, *J* = 12.08 Hz, 2H), 3.49 (bs, 1H), 3.34 (s, 5H); ¹³C NMR (100 MHz, CDCl₃) δ : 133.74, 131.37, 129.74, 129.02,128.79, 126.65, 79.51, 66.36, 60.12, 39.05; HRMS (ESI) *m*/*z* calcd. for C₂₀H₂₆NO₆S₂⁺ [M-Br]⁺:

440.1196, found 440.1210.

OC-3 was prepared in 92% yield according to reported process, and the ¹H and ¹³C NMR was in agreement with the published literature³.

2. Synthesis of chiral phase-transfer catalysts OC-4~OC-8

Amine **3** was prepared from (R)-Ugi's amine according to our published literatures⁴. (R)-N-Benzyl-3-amino-pyrrolidine was purchased and used directly.

Typical procedure for preparation of chiral bifunctional phase-transfer catalysts with a (thio)urea moiety

Step 1: To 0.5 mmol of amine in dry DCM (4.0 mL) was added by 0.5 mmol of iso(thio)cyanate in dry DCM (1.0 mL) at room temperature (r.t.). The mixture was stirred for 8 h under inert atmosphere (checked by TLC). The solvent was evaporated to afford crude product as an orange glue which purified by a flash column chromatography (petroether/EtOAc, 10/1 to 5/1, v/v) to provide pure product.

Step 2: To 0.4 mmol of (thio)urea in dry CH₃CN (4.0 mL) was added by 0.5 mmol of BnBr in dry CH₃CN (1.0 mL) at room temperature (r.t.). The mixture was stirred for 24 h under inert atmosphere (checked by TLC). The solvent was evaporated to afford crude phase-transfer catalyst which purified by a flash column chromatography (CHCl₃/CH₃OH, 20/1~5/1, v/v) to provide pure product.

4: orange powder, 90% yield; m.p. 117.0-118.1 °C; $[\alpha]_{D}^{20}$ +305° (c = 0.26, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.50-7.47 (m, 4H), 7.40 (bs, 3H), 7.26-7.23 (m, 7H), 5.49 (s, 1H), 5.15 (t, *J* = 6.52 Hz, 1H), 4.76 (d, *J* = 6.92 Hz, 1H), 4.51 (s, 1H), 4.33 (s, 1H), 4.10 (s, 1H), 4.06 (s, 4H), 3.80 (s, 1H), 1.53 (d, *J* = 5.64 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 152.86, 142.18, 140.27, 136.42, 135.01, 134.80, 132.77, 132.58, 129.28,

128.36, 128.30, 128.25, 128.17, 126.05, 126.01, 118.39, 95.06, 94.82, 75.06, 74.98, 72.14, 70.07, 69.94, 69.10, 45.77, 21.43; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.76; ³¹P NMR (162 MHz, CDCl₃) δ : 24.90; HRMS (ESI) *m*/*z* calcd. for C₃₂H₂₉F₃FeN₂OP⁺ [M+H]⁺: 601.1314, found 601.1318.

OC-4: golden powder, 72% yield; m.p. 174.6-175.3 °C; $[\alpha]_{D}^{20} + 220^{\circ}$ (c = 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 9.03 (bs, 1H), 7.82 (br, 1H), 7.74-7.69 (m, 4H), 7.61 (d, J = 9.08 Hz, 1H), 7.44-7.30 (m, 7H), 7.19 (d, J = 3.84 Hz, 4H), 6.98 (dd, J = 7.64, 4.2 Hz, 2H), 5.34 (t, J = 15.0 Hz, 1H), 5.13 (bs, 1H), 5.10 (br, 1H), 4.75 (br, 1H), 4.67 (d, J = 14.72 Hz, 1H), 4.40 (bs, 5H), 3.70 (bs, 1H), 1.71 (br, 1H), 1.69 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ: 154.42, 143.23, 135.01, 134.26 (d, J = 2.87 Hz), 133.97 (q, J = 8.96 Hz), 131.38 (d, J = 5.35 Hz), 129.70 (t, J = 14.18 Hz), 129.02 (d, J = 2.74 Hz), 128.83 (d, J = 3.57 Hz), 127.54 (d, J = 8.43

Hz), 125.99, 125.43, 122.83, 122.51, 120.29, 119.42, 117.45, 94.78 (d, J = 11.83 Hz), 75.79 (d, J = 12.79 Hz), 74.41 (d, J = 9.81 Hz), 73.29 (d, J = 10.55 Hz), 71.38, 60.14, 59.18, 43.29, 31.25, 30.75, 21.27; ¹⁹F NMR (376 MHz, CDCl₃) δ : -61.44; ³¹P NMR (162 MHz, CDCl₃) δ : 27.74; HRMS (ESI) m/z calcd. for C₃₉H₃₅F₃N₂OP⁺ [M-Br]⁺: 691.1783, found 691.1789.

Ferrocene-based thiourea 5 is known compound, and prepared according to our published method⁵.

OC-5: golden powder, 80% yield; m.p. 164.5-165.7 °C; $[\alpha]_{D}^{20} + 120^{\circ}$ (c = 0.22, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 10.15 (s, 1H), 9.38 (d, J = 12.56 Hz, 1H), 7.83 (bs, 3H), 7.70 (br, 4H), 7.51 (bs, 3H), 7.44 (d, J = 6.44 Hz, 1H), 7.34 (br, 1H), 7.25 (br, 4H), 7.10 (dd, J = 7.96, 3.24 Hz, 2H), 5.72 (br, 1H), 5.43 (t, J = 14.62 Hz, 1H), 5.19 (br, 1H), 4.81 (t, J = 13.92 Hz, 2H), 4.43 (s, 5H), 3.75 (bs, 1H), 1.74 (d, J = 5.84 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 178.74, 140.77, 135.16 (d, J = 2.77 Hz), 134.42 (d, J = 5.84 Hz, 2H)

9.68 Hz), 133.89 (d, J = 9.78 Hz), 131.37 (d, J = 5.53 Hz), 131.10, 130.77, 129.86 (dd, J = 8.35, 3.94 Hz), 129.15 (d, J = 2.65 Hz), 128.98 (d, J = 3.16 Hz), 127.43 (dd, J = 3.17, 1.65 Hz), 124.85, 123.47, 121.94, 119.85, 118.97, 117.72, 117.18, 116.86, 92.84, 76.17 (d, J = 12.5 Hz), 74.87 (d, J = 9.49 Hz), 73.74 (d, J = 10.73 Hz), 71.50, 60.50, 59.54, 47.82, 31.86, 31.37, 20.14; ¹⁹F NMR (376 MHz, CDCl3) δ : -62.71; ³¹P NMR (162 MHz, CDCl3) δ : 27.11; HRMS (ESI) m/z calcd. for C₄₀H₃₄F₆FeN₂PS⁺ [M-Br]⁺: 775.1428, found 775.1437.

6: white powder, 93% yield; m.p. 109.3-110.9 °C; $[\alpha]^{20}{}_D$ -48.8° (c = 0.25, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.47 (d, *J* = 7.68 Hz, 2H), 7.38 (d, *J* = 7.48 Hz, 2H), 7.29 (br, 5H), 6.12 (d, *J* = 6.72 Hz, 1H), 4.07 (bs, 1H), 3.64 (s, 2H), 3.01 (bs, 1H), 2.82 (bs, 1H), 2.47 (t, *J* = 7.12 Hz, 1H), 2.31-2.20 (m, 2H), 2.12 (bs, 1H), 1.74 (bs, 1H); ¹³C NMR (100

MHz, CDCl₃) δ : 155.19, 142.51, 129.03, 128.48, 127.48, 126.14, 126.10, 118.91, 60.97, 60.02, 52.98, 49.71, 32.42; ¹⁹F NMR (376 MHz, CDCl3) δ : -61.83; HRMS (ESI) *m*/*z* calcd. for C₁₉H₂₁F₃N₃O⁺ [M+H]⁺: 364.1631, found 364.1643.

OC-6: pale powder, 81% yield; m.p. 150.6-152.5 °C; $[\alpha]^{20}{}_D$ -21.7° (c = 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 8.79 (s, 1H), 8.20 (s, 1H), 7.63 (dd, J = 8.68, 2.60 Hz, 4H), 7.56-7.44 (m, 6H), 7.41 (t, J = 7.52 Hz, 1H), 7.33 (t, J = 7.64 Hz, 2H), 5.41 (d, J = 12.72 Hz, 1H), 5.06 (d, J = 12.32 Hz, 1H), 4.94 (d, J = 12.84 Hz, 1H), 4.45 (br, 1H),

4.36 (d, J = 12.88 Hz, 1H), 4.25-4.19 (m, 1H), 3.91 (d, J = 12.84 Hz, 1H), 3.70-3.62 (m, 2H), 2.42-2.34 (m, 1H), 2.10 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.27, 142.58, 133.14 (d, $J_{C-F} = 11.73$ Hz), 131.05 (d, $J_{C-F} = 17.25$ Hz), 129.57 (d, $J_{C-F} = 14.56$ Hz), 127.30, 126.88, 125.97(m), 125.74, 123.97, 123.65, 123.04, 117.96, 66.80, 64.11, 62.66, 58.58, 43.13, 28.99; ¹⁹F NMR (376 MHz, CDCl₃) δ : -61.70; HRMS (ESI) m/z calcd. for C₂₆H₂₇F₃N₃O⁺ [M-Br]⁺: 452.2101, found 454.2108.

Compounds 7^6 and 8^7 are known, and prepared according to these literatures.

7: white crystal, 92% yield; m.p. 126.9-128.3 °C; $[\alpha]_{D}^{20}$ -65.6° (c = 0.25, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (bs, 2H), 7.46(bs, 1H), 7.35-7.28 (m, 5H), 6.50 (s, 1H), 3.67 (s, 2H), 3.09 (bs, 1H), 2.89 (bs, 1H), 2.52 (bs, 1H), 2.37-2.26 (m, 2H), 1.79 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 179.09, 155.09, 140.88, 136.83, 132.00 (q, $J_{C-F} = 33$ Hz),

129.12, 128. 60, 127.75, 127.27, 124.56, 121.85, 118.81, 115.67, 60.64, 59.97, 52.96, 49.62, 32.18; ¹⁹F NMR (376 MHz, CDCl₃) δ: -63.05; HRMS (ESI) m/z calcd. for C₂₀H₂₀F₆N₃O⁺ [M+H]⁺: 432.1505, found 432.1520.

OC-7: white powder, 89% yield; m.p. 115.6-117.1 °C; $[\alpha]_{D}^{20}$ -20.6° (c = 0.28, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 9.04 (s, 1H), 8.18 (d, *J* = 5.88 Hz, 1H), 7.99 (s, 2H), 7.61(d, *J* = 7.12 Hz, 2H), 7.54-7.41 (m, 7H), 7.36 (t, *J* = 7.64 Hz, 2H), 5.34 (d, *J* = 12.8 Hz, 1H), 5.04 (d, *J* = 12.88 Hz, 1H), 4.95 (d, *J* = 12.88 Hz, 1H), 4.46 (br, 1H), 4.43 (bs, 1H), 4.23-4.17 (m, 1H), 3.89 (dd, *J* = 9.64, 3.28 Hz, 1H), 3.76-3.69 (m, 1H), 3.68-3.62 (m, 1H), 2.40-2.32 (m, 1H), 2.23-2.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.10, 140.95, 133.15, 131.91 (q, $J_{C-F} = 33$ Hz), 131.21, 131.03, 129.70, 129.51, 123.17, 126.71, 124.66, 118.05, 115.25, 66.72, 64.16, 62.28, 58.57, 48.15, 29.00; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.91; HRMS (ESI) m/z calcd. for $C_{27}H_{26}F_6N_3O^+$ [M-Br]⁺: 522.1975, found 522.1983.

8: white crystal, 92% yield; m.p. 129.0-130.1 °C; $[\alpha]_{D}^{20}$ -89.1° (c = 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 12.07 (bs, 1H), 7.89 (bs, 2H), 7.72 (s, 1H), 7.36 (s, 1H), 7.27-7.23 (m, 2H), 7.11 (br, 2H), 3.96 (br, 1H), 3.65 (m, 2H), 3.30 (br, 1H), 3.19 (br, 1H), 2.47-2.45 (m, 1H), 2.43-2.37 (m, 1H), 2.25 (q, *J* = 8.4 Hz, 1H), 2.00 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 179.64, 141.28, 136.03, 131.73, 129.07, 128.61, 128.05, 127.15,

126.13, 124.46, 121.74, 119.03, 59.30, 58.73, 53.73, 53.29, 30.36; ^{19}F NMR (376 MHz, CDCl₃) δ : -62.73; HRMS (ESI) m/z calcd. for C₂₀H₂₀F₆N₃S⁺ [M+H]⁺: 448.1277, found 448.1288.

OC-8: pale powder, 90% yield; m.p. 102.0-103.4 °C; $[\alpha]_{D}^{20} + 5.2^{\circ}$ (c = 1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 10.15 (s, 1H), 9.86 (d, J = 4.92 Hz, 1H), 8.29 (s, 2H), 7.61-7.24 (m, 11H), 5.38 (d, J = 12.76 Hz, 1H), 5.08 (d, J = 12.76 Hz, 1H), 4.95 (d, J = 12.68 Hz, 1H), 4.32-4.27 (m, 2H), 4.09 (d, J = 13.2 Hz, 1H), 3.75-3.63 (m, 2H), 2.60-2.55 (m, 1H), 2.20-2.15 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 181.59, 140.68,

133.22, 131.75, 131.42, 131.28, 131.10, 129.77, 129.60, 124.55, 122.81, 121.84, 117.82, 67.18, 64.06, 61.98, 58.88, 51.84, 29.71, 28.29; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.80; HRMS (ESI) *m*/*z* calcd. for C₂₇H₂₆F₆N₃S⁺ [M-Br]⁺: 538.1746, found 538.1754.

4. Synthesis of chiral phase-transfer catalysts OC-9~12

(*R*)-*N*-Benzyl-3-aminopyrrolidine and quinuclidin-3-amine were purchased and used directly. Squaramides **9**~12 were prepared according to reported procedures⁸. Squaramides **9**⁹ and **11**¹⁰ are known compounds. *Typical procedure for preparation of chiral bifunctional phase-transfer catalysts with a squaramide moiety*

Step 1: To a solution of 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-methoxycyclobut-3-ene-1,2-dione (1.0 mmol) in MeOH (3 mL) was added a solution of amine (1.0 mmol) in MeOH (2 mL) at r.t.. The mixture was stirred for 24 h. The reaction mixture was filtered, and the precipitate was washed with cold MeOH (2×1.0 mL) to afford pure squaramide.

Step 2: To 0.5 mmol of squaramide in anhydrous toluene (2.0 mL) was added by 1.0 mmol of BnBr in anhydrous toluene (1.0 mL) at room temperature (r.t.). The mixture was stirred for 12 h under inert atmosphere

(checked by TLC) at 80 °C. The precipitate was collected and washed by anhydrous Et₂O (3×1.0 mL) to afford pure chiral phase-transfer catalysts.

9: light yellow powder, 85% yield; m.p. 169.8-171.0 °C; $[\alpha]_{D}^{20}$ -64.5° (c = 0.24, CH₂Cl₂); ¹H NMR (400 MHz, MeOD) δ: 8.05 (bs, 2H), 7.55 (bs, 1H), 7.34-7.26 (m, 5H), 4.78 (s, 1H), 3.70 (s, 1H), 3.33 (s, 1H), 2.94 (br, 1H), 2.77 (bs, 2H), 2.45 (bs, 2H), 1.84 (bs, 1H), 4.73 (q, J = 6.9 Hz, 1H), 4.38 – 4.26 (m, 2H), 3.82 (dd, J = 12.3, 6.8 Hz, 1H), 2.86 (t, J = 7.0 Hz, 1H), 2.71 (s, 3H), 1.95 (bs, 1H), 1.52 (s, 3H), 1.35 (s, 3H); ¹³C NMR (100 MHz, MeOD) δ :

168.97, 162.61, 140.90, 132.69, 128.75, 128.06, 127.06, 124.54, 121.84, 117.91, 115.23, 60.53, 59.51, 53.78, 52.21, 32.76; ¹⁹F NMR (376 MHz, MeOD) δ: -64.51.

OC-9: pale powder, 90% yield; m.p. 204.6-205.1 °C; $[\alpha]_{D}^{20}$ +16.5° (c = 0.25, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 10.79 (bs, 1H), 9.78 (d, J = 5.84 Hz, 1H), 8.25 (s, 2H), 7.76 (d, J = 5.96 Hz, 2H), 7.53-7.46 (m, 9H), 5.17 (d, J = 12.92 Hz, 1H), 5.04 (d, J =12.92 Hz, 1H), 4.88-4.85 (m, 2H), 4.58 (d, J = 12.08 Hz, 1H), 4.27-4.22 (m, 1H), 4.17

 $(d, J = 4.4 \text{ Hz}, 2\text{H}), 3.67-3.60 \text{ (m, 1H)}, 2.61 \text{ (br, 1H)}, 2.34-2.25 \text{ (m, 1H)}; {}^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta$: 183.86, 180.76, 168.60, 165.15, 140.54, 133.17-132.40 (dd, $J_{C-F} = 33.04$, 23.4 Hz), 131.42, 129.88, 127.05, 126.63, 124.47, 121.76, 118.32, 116.12, 68.23, 66.06, 65.11, 57.77, 52.36, 30.26; ¹⁹F NMR (376 MHz, CDCl₃) δ: -62.98; HRMS (ESI) m/z calcd. for $C_{30}H_{26}F_6N_3O_2^+$ [M-Br]⁺: 574.1924, found 574.1930.

10: white powder, 92% yield; m.p. 178.5-179.2 °C; $[\alpha]_{D}^{20}$ -48.9° (c = 0.28, CH₂Cl₂); ¹H NMR (400 MHz, MeOD) δ: 8.13 (bs, 2H), 7.58 (s, 1H), 4.31 (br, 1H), 2.94 (t, J = 11.44 Hz, 1H), 2.79 (br, 2H), 2.63 (br, 3H), 1.99-1.91 (m, 1H), 1.85 (br, 4H), 1.02 (dd, J = 6.72, 5.76 Hz, 6H); 13 C NMR (100 MHz, MeOD) δ : 184.20, 180.83, 170.60, 162.78, 141.23, 132.68-132.35 (d, $J_{C-F} = 33.36$ Hz), 124.60, 121.89, 117.90,

115.05, 58.68; 53.98, 31.71, 22.84, 18.29, 15.78; ¹⁹F NMR (376 MHz, MeOD) δ -63.67; HRMS (ESI) *m/z* calcd. for $C_{21}H_{24}F_6N_3O_2^+$ [M+H]⁺: 464.1767, found 464.1779.

OC-10: pale powder, 84% yield; m.p. 204.9-206.6 °C; $\left[\left[\alpha\right]_{D}^{20} + 78.5^{\circ}\right]$ (c = 0.25, CH₂Cl₂); ¹H NMR (400 MHz, MeOD) δ: 8.24 (bs, 2H), 7.69-7.60 (m, 6H), 7.55-7.47 (m, 1H), 5.02-5.01 (m, 1H), 4.70 (bs, 2H), 3.90-3.76 (m, 2H), 3.72-3.50 (m, 4H), 2.39-2.34 (m, 1H), 2.28-2.18 (m, 3H), 2.05-1.97 (m, 1H), 1.05 (t, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, MeOD) δ: 184.39, 180.38, 168.60, 165.29, 140.61,

132.58, 132.28, 131.39, 129.90, 129.82, 129.55, 128.34, 126.84, 124.54, 121.83, 118.50, 115.98, 63.02, 62.82, 62.39, 61.56, 54.67, 33.60, 21.90, 20.26, 19.39, 16.73; ¹⁹F NMR (376 MHz, MeOD) δ -62.95; HRMS (ESI) *m/z* calcd. for $C_{28}H_{30}F_6N_3O_2^+$ [M-Br]⁺: 554.2237, found 554.2243.

11: white powder, 80% yield; discom. 174.5 °C; $[\alpha]_{D}^{20}$ +6.49° (c = 0.23, MeOH); ¹H NMR (400 MHz, MeOD) δ : 8.13 (s, 2H), 7.59 (s, 1H), 4.20 (d, J = 10.6 Hz, 1H), 2.85-2.72 (m, 3H), 2.66 (d, J = 11.96 Hz, 1H), 2.53 (br, 2H), 1.83 (bs, 4H), 1.04 (s, 9H); ¹³C NMR (100 MHz, CDCl₃ + MeOD) δ: 184.17, 180.67, 170.85, 162.46, 141.01, 133.24-132.56 (m), 124.51, 121.80, 117.81, 115.29, 62.27, 56.71, 54.01,

34.30, 25.41, 22.98; ¹⁹F NMR (376 MHz, CDCl₃ + MeOD) δ : -59.89; HRMS (ESI) *m/z* calcd. for C₂₂H₂₆F₆N₃O₂⁺ [M+H]⁺: 478.1924, found 478.1935.

OC-11: white powder, 82% yield; m.p. 234.3-235.9 °C; $[\alpha]_{D}^{20} + 19.6^{\circ}$ (c = 0.21, MeOH); ¹H NMR (400 MHz, CDCl₃ + MeOD) δ: 8.26 (s, 2H), 7.82 (s, 1H), 7.68-7.66 (m, 2H), 7.60-7.55 (m, 3H), 4.87 (s, 1H), 4.71 (d, J = 13.36 Hz, 1H), 4.59 (d, *J* = 13.44 Hz, 1H), 3.90-3.78 (m, 2H), 3.75 (s, 1H), 3.71-3.60 (m, 3H),

2.39-2.31 (m, 1H), 2.30-2.19 (m, 1H), 2.18-2.06 (m, 2H), 1.09 (s, 9H); ¹³C NMR (100 MHz, $CDCl_3 + MeOD$) δ : 184.47, 180.43, 168.61, 164.67, 140.62, 132.70-132.35 (m), 130.79, 129.32, 127.48, 121.78, 118.19, 62.79-61.56 (dd, $J_{C-F} = 60.78$, 32.67 Hz), 58.22, 36.68, 25.07, 21.64, 20.39; ¹⁹F NMR (376 MHz, $CDCl_3 + MeOD$) δ : -62.96; HRMS (ESI) m/z calcd. for $C_{29}H_{32}F_6N_3O_2^+$ [M-Br]⁺: 568.2393, found 568.2405.

12: white powder, 80% yield; m.p. > 230 °C; $[\alpha]_{D}^{20}$ +5.3° (c = 0.22, CH₂Cl₂); ¹H NMR (400 MHz, MeOD) δ : 8.14 (s, 2H), 7.59 (s, 1H), 4.18 (d, J = 10.28 Hz, 1H), 3.62 (br, 4H), 2.70-2.65 (m, 3H), 2.48 (t, J = 12.0 Hz, 1H), 2.37 (br, 2H), 1.05 (s, 9H); ¹³C NMR (100 MHz, MeOD) δ : 184.29, 180.54, 170.73, 161.93, 140.82, 132.80 (d, $J_{C-F} = 33$ Hz), 124.46, 121.75, 117.78, 115.46, 66.83, 60.43, 59.49, 53.89. 33.70,

25.74; ¹⁹F NMR (376 MHz, MeOD) δ : -63.99; HRMS (ESI) *m*/*z* calcd. for C₂₂H₂₆F₆N₃O₃⁺ [M+H]⁺: 494.1873, found 494.1886.

OC-12: white powder, 86% yield; m.p. 227.6-228.5 °C; $[\alpha]_{D}^{20} + 23.1^{\circ}$ (c = 0.26, MeOH); ¹H NMR (400 MHz, CDCl₃ + MeOD) δ : 8.22 (s, 2H), 7.63-7.53 (m, 5H), 7.50 (bs, 1H), 4.96-4.93 (d, J = 12.0 Hz, 1H), 4.81-4.79 (d, J = 8.0 Hz, 1H), 4.63-4.60 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (d, J = 12.0 Hz, 1H), 4.33-4.18 (m, 3H), 4.07-3.98 (m, 2H), 3.77-3.74 (m, 2H), 3

= 12.0 Hz 1H), 3.65-3.50 (m, 3H), 3.40-3.36 (m, 1H), 1.13 (s, 9H); ¹³C NMR (100 MHz, CDCl₃ + MeOD) δ: 183.97, 180.15, 168.05, 165.02, 140.19, 133.53, 132.76-132.43 (d, J_{C-F} = 33 Hz), 131.41-131.10 (d, J_{C-F} = 31 Hz), 129.62, 125.53, 124.39, 121.69, 66.38-60.35 (m), 60.12, 59.92, 57.51, 57.12, 55.50, 37.23, 30.41, 25.57, 19.04, 13.34; ¹⁹F NMR (376 MHz, CDCl₃ + MeOD) δ: -63.68; HRMS (ESI) *m*/*z* calcd. for C₂₉H₃₂F₆N₃O₃⁺ [M-Br]⁺: 584.2342, found 584.2355.

The direct enantioselective amination of nitroolefins by phase-transfer catalysts

$$R \xrightarrow{\text{NO}_2} + \frac{\text{Boc}}{\text{NO}_2} + \frac{\text{Boc}}{\text{H}} \xrightarrow{\text{OBn}} \frac{1 \text{ mol}\% \text{ OC-11 or OC-12}}{0 \text{ °C or r.t., toluene-H}_2 O (v/v = 1/10)} \xrightarrow{\text{Boc}} \xrightarrow{\text{NO}_2} \underset{\text{R}}{\text{H}} \xrightarrow{\text{OBn}} \underset{\text{R}}{\overset{\text{H}}}$$

General procedure for the neutral aminations

Bifunctional phase-transfer catalyst (**OC-11** or **OC-12**, 1 mol%), nitroolefins (0.1 mmol) and amination reagent (0.3 mmol) were added to a 10-mL vial equipped with a stirring bar, the mixed solvent of toluene (0.2 mL) and H₂O (2.0 mL) was added subsequently. The mixture was stirred at 0 °C or room temperature for the indicated time and then the mixture was extracted by EtOAc (3×5.0 mL), the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure to yield a light yellow glue which was purified by flash column chromatography on silica gel, eluting with mixtures of petroether/EtOAc (50/1 to 10/1, v/v). The *ee* of products **3a-k** were determined by HPLC using a chiral column (Daicel Chiralpak AS-H), and the absolute configurations of products were assigned according to literature report¹¹.

3a: light yellow oil, $[\alpha]_{D}^{20}$ -11.9° (c = 1.15, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.41 (br, 10H), 5.91 (br, 1H), 5.15-5.10 (m, 1H), 4.82-4.70 (m, 3H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.31, 135.13, 135.04, 129.56, 128.89, 128.78, 128.58, 128.08, 82.86, 78.59, 75.19, 61.29, 28.16; HRMS (ESI) *m*/*z* calcd. for C₂₀H₂₄N₂NaO₅⁺ [M+Na]⁺: 395.1577, found 395.1584.

HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; *rac*-form: $t_r = 19.161$ and 23.377 min.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
1	OC-11	0 °C	91%	15.124	18.089	87	3	OC-12	0 °C	92%	14.781	17.610	89
2	OC-11	r.t.	96%	15.302	18.318	84	4	OC-12	r.t.	96%	15.285	18.227	83

3b: light yellow oil, $[\alpha]_{D}^{20}$ -9.3° (c = 0.30, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.39 (br, 7H), 7.06 (br, 2H), 5.85 (d, J = 4.4 Hz, 1H), 5.06 (m, 1H), 4.79 (m, 1H), 4.75-4.70 (m, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 164.12, 161.65, 156.31, 134.91, 130.85, 130.03, 129.95, 129.50, 128.82, 128.59, 115.90, 115.69, 83.08, 78.64, 75.25, 60.60, 28.14; ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$: -112.41; HRMS (ESI) m/z calcd. for C₂₀H₂₃FN₂O₅Na⁺ [M+Na]⁺: 413.1483, found 413.1481. HPLC: Chiralpak AS-H (ⁱPrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; rac-form: t_r = 19.179 and 25.168 min.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
5	OC-11	0 °C	94%	17.895	23.435	86	7	OC-12	0 °C	92%	17.623	22.652	86
6	OC-11	r.t.	95%	18.371	24.099	85	8	OC-12	r.t.	96%	19.153	24.795	84
					2	2			1				

3c: light yellow oil, $[\alpha]_{D}^{20}$ -22.7° (c = 0.22, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.39 (br, 6H), 7.34 (br, 3H), 5.83 (br, 1H), 5.05 (dd, J = 10.12, 2.44 Hz, 1H), 4.79-4.70 (m, 3H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 158.28, 134.90, 134.49, 129.48, 129.12, 129.04, 128.83, 128.59, 83.17, 78.67, 75.10, 60.67, 28.15; HRMS (ESI) m/z calcd. for $C_{20}H_{23}CIN_2O_5Na [M+Na]^+: 429.1188$, found 429.1195.

HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; rac-form: $t_r = 18.050$ and 23.326 min.

9 OC-11 0 °C 92% 19.680 26.305 91 11 OC-12 0 °C 92% 18.365 23.803			
	9	23.803 89	
10 OC-11 r.t. 96% 18.434 24.307 85 12 OC-12 r.t. 95% 18.081 23.446	10	23.446 84	

3d: light yellow oil, $[\alpha]_{D}^{20}$ -0.144° (c = 0.045, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.51 (s, 1H), 7.49 (s, 1H), 7.39 (br, 4H), 7.28 (s, 1H), 7.26 (s, 1H), 5.83-5.79 (dd, J = 3.28, 5.84 Hz, 1H), 4.79-4.69 (m, 3H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 156.29, 134.82, 133.93, 132.02, 129.77, 129.51, 128.86, 128.61, 123.10, 83.22, 78.68, 75.01, 60.69, 28.15; HRMS (ESI) *m*/*z* calcd. for C₂₀H₂₃BrN₂NaO₅⁺ [M+Na]⁺: 473.0683, found 473.0688.

HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; rac-form: $t_r = 19.619$ and 26.223 min.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
13	OC-11	0 °C	93%	20.971	28.186	90	15	OC-12	0 °C	96%	18.933	24.623	88
14	OC-11	r.t.	96%	19.802	26.237	88	16	OC-12	r.t.	96%	19.380	25.142	85

3e: light yellow oil, $[\alpha]_{D}^{20}$ -7.0° (c = 0.30, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.39-7.31 (m, 9H), 5.83 (d, J = 3.92 Hz, 1H), 5.08-5.02 (m, 1H), 4.80 (br, 1H), 4.76-4.67 (m, 2H), 1.52-1.51 (d, J = 2.28 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.20, 136.97, 134.79, 134.71, 130.19, 129.56, 129.12, 128.86, 128.61, 128.33, 126.25, 83.25, 78.71,

74.90, 60.75, 28.14; HRMS (ESI) *m/z* calcd. for C₂₀H₂₃ClN₂O₅Na [M+Na]⁺: 429.1188, found 429.1197. HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; *rac*-form: t_r = 16.241 and 20.425 min.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
17	OC-11	0 °C	82%	15.904	19.928	89	19	OC-12	0 °C	81%	16.839	21.252	87
18	OC-11	r.t.	90%	16.024	20.031	87	20	OC-12	r.t.	91%	17.131	21.706	82

3f: light yellow oil, $[\alpha]_{D}^{20}$ -5.06 (c = 1.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.65-7.60 (m, 3H), 7.52-7.50 (m, 1H), 7.40 (br, 5H), 5.90 (d, J = 4.8 Hz, 1H), 5.12-5.05 (m, 1H), 4.80-4.75 (m, 3H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 156.28, 136.03, 134.77, 131.42, 129.44, 128.87, 128.61, 125.77, 125.07, 83.41, 78.72, 74.91, 60.94, 29.73;

¹⁹F NMR (376 MHz, CDCl₃) δ -62.72; HRMS (ESI) m/z calcd. for C₂₁H₂₃F₃N₂O₅Na [M+Na]⁺: 463.1451, found 463.1466.

HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; *rac*-form: t_r = 13.459 and 17.146 min.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
21	OC-11	0 °C	82%	13.560	17.489	91	23	OC-12	0 °C	84%	13.513	17.182	87
22	OC-11	r.t.	86%	13.314	17.048	88	24	OC-12	r.t.	85%	13.567	17.316	85

3g: light yellow oil, $[\alpha]_{D}^{20}$ -0.87° (c = 0.90, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.41 (br, 5H), 7.31 (br, 2H), 7.20 (br, 2H), 5.89-5.87 (m, 1H), 5.11 (br, 1H), 4.83-4.68 (m, 3H), 2.38 (s, 3H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 156.31, 138.73, 135.12, 132.01, 129.52, 128.71, 128.54, 128.01, 82.76, 78.52, 75.27, 60.98, 28.18, 21.16; HRMS (ESI) m/z calcd. for $C_{21}H_{26}N_2NaO_5^+$ [M+Na]⁺: 409.1734, found 409.1743.

HPLC: Chiralpak AS-H ('PrOH/n-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; rac-form: t_r = 16.585 and 19.123 min.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
25	OC-11	0 °C	90%	15.862	17.913	92	27	OC-12	0 °C	91%	16.318	18.616	90
26	OC-11	r.t.	91%	15.830	17.875	87	28	OC-12	r.t.	90%	16.452	18.899	82

3h: colorless oil, $[\alpha]_{D}^{20}$ -8.16° (c = 2.5, CH₂Cl₂); the product **3h** with BnONHBoc as 1:1 mixture, ¹H NMR (400 MHz, CDCl₃) δ: 7.38 (br, 9H); 7.32 (br, 2H), 7.29 (m, 1H), 7.12 (bs, 1H), 6.89 (br, 1H), 5.81 (d, J = 5.08 Hz, 1H), 5.10-5.03 (m, 1H), 4.89 (br, 2H), 4.80-4.70 (m, 2H), 4.66 (br, 1H), 3.82 (s, 3H), 1.50 (s, 18H); 13 C NMR (100 MHz, CDCl₃) δ : 159.92,

156.72, 156.31, 135.75, 135.04, 129.48, 129.43, 128.70, 128.51, 126.92, 114.15, 82.81, 81.76, 78.50, 75.34, 60.65, 55.28, 28.21, 28.17; HRMS (ESI) *m/z* calcd. for C₂₁H₂₆N₂O₆Na⁺ [M+H]⁺: 425.1683, found 425.1696.

HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; *rac*-form: t_r = 24.326 and 33.528 min. ^aThe pure products **3h** couldn't be separated through a flash column chromatography, but the TLC results indicated full conversion of substrate 2h.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
29	OC-11	0 °C	- ^a	23.851	32.951	89	31	OC-12	0 °C	_ ^a	23.484	32.007	91
30	OC-11	r.t.	- ^a	23.589	32.578	75	32	OC-12	r.t.	_ ^a	25.017	34.344	80
			2: ligh	t vollovy	$1 [\alpha]^{20}$	1.2° (a)	-120		¹ LI NIM	D (10)		$DC1 > 8 \cdot 7$	11 7 27

3i: light yellow oil, $[\alpha]^{20}_D$ -1.3° (c = 1.2, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.44-7.37 (m, 8H), 7.15 (s, 1H), 6.39 (s, 1H), 4.98-4.78 (m, 3H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 156.74, 148.18, 142.80, 135.74, 134.92, 129.47, 129.15, 128.72, 128.52, 110.77, 109.15, 83.16, 81.76, 78.47, 73.52, 55.19, 28.22; HRMS (ESI) m/z calcd. for C₁₈H₂₂N₂NaO₆⁺

[M+Na]⁺: 385.1370, found 385.1384.

HPLC: Chiralpak AS-H (ⁱPrOH/n-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; rac-form: t_r = 15.769 and 20.060 min.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
33	OC-11	0 °C	93%	15.181	19.348	91	35	OC-12	0 °C	92%	16.283	20.703	93
34	OC-11	r.t.	92%	15.490	19.930	82	36	OC-12	r.t.	95%	16.455	21.307	74

3*j*: light yellow oil, $[\alpha]_{D}^{20}$ +15.6° (c = 0.25, CH₂Cl₂); the product **3***j* with BnONHBoc as 1:1 mixture, ¹H NMR (400 MHz, CDCl₃) δ: 7.40 (br, 10H), 7.16 (br, 1H), 6.89 (br, 1H), 6.86 (br, 1H), 6.78 (m, 1H), 5.97 (br, 2H), 5.76 (d, J = 4.96 Hz, 1H), 5.05-5.01 (m, 1H), 4.88 (br, 2H), 4.81-4.65 (m, 3H), 1.51 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ: 156.74, 156.26, 148.02,

147.97, 135.76, 134.94, 129.55, 129.14, 128.77, 128.57, 128.51, 121.84, 108.57, 108.39, 101.32, 82.94, 81.74, 78.60, 78.46, 75.37, 60.90, 28.21; HRMS (ESI) m/z calcd. for $C_{21}H_{24}N_2O_7Na$ $[M+Na]^+$: 439.1476, found 439.1495.

HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm; *rac*-form: t_r = 31.435 and 36.199 min. ^aThe pure products **3**j couldn't be separated through a flash column chromatography, but the TLC results indicated full conversion of substrate 2j.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
37	OC-11	0 °C	_ ^a	31.791	36.713	89	39	OC-12	0 °C	_ ^a	31.003	35.892	89
38	OC-11	r.t.	- ^a	31.478	36.327	84	40	OC-12	r.t.	- ^a	31.430	35.927	83

Boc、OBn	
\bigvee NO ₂	
 3k	

3k: light yellow oil, $[\alpha]_{D}^{20} + 1.88^{\circ}$ (c = 0.40, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ : 7.41 (m, 5H), 5.00 (d, J = 9.8 Hz, 1H), 4.83 (d, J = 9.8 Hz, 1H), 4.71 (dd, J = 1.56, 10.92 Hz, 1H), 4.57-4.45 (m, 2H), 2.08-1.99 (m, 1H), 1.54 (s, 9H), 1.02 (t, J = 6.40 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ: 156.88, 135.44, 129.06, 128.55, 128.49, 82.29, 78.10, 75.29, 64.85, 29.06, 28.21, 19.83, 19.66; HRMS (ESI) m/z calcd. for $C_{17}H_{26}N_2NaO_5^+$ [M+Na]⁺: 361.1734, found 361.1749.

HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 1.5:98.5, flow rate = 0.5 mL/min, 210 nm; rac-form: $t_r = 13.353$ and 14.337 min.

Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]	Entry	Cat.	Т	Yield	t _r [minor]	t _r [major]	ee[%]
41	OC-11	0 °C	92%	12.816	13.708	93	43	OC-12	0 °C	92%	12.619	13.456	92
42	OC-11	r.t.	95%	11.955	12.708	92	44	OC-12	r.t.	93%	14.484	16.478	90

References

- 1. A. J. Brouwer, L. van Der, J. Heiko, R. M. J. Liskamp, J. Org. Chem., 2000, 65, 1750.
- 2. B. Marco, S. Gianluca, F. Cristina, G. Andrea, C. Francesca, Synlett, 2009, 5, 747.
- Y. Wang, J. Sun, K.-L. Ding, Tetrahedron, 2000, 56, 4447. 3.
- 4. H.-F. Nie, L. Yao, B. Li, S.-Y. Zhang, W.-P. Chen, Organometallics, 2014, 33, 2109.
- 5. C. Li, P.-F. Ma, Y. Lei, H. Chen, S.-Y. Guan, R. Jiang, W.-P. Chen, Catal. Lett., 2016, 146, 1429.
- K. Souichirou, Y. Kazuki, S. Yuichi, O. Takeshi, Tetrahedron Lett., 2015, 56, 410. 6.
- 7. R. Kowalczyk, A. E. Nowak, J. Skarzewski, Tetrahedron: Asymmetry, 2013, 24, 505.
- a) B.-K. Qiao, Y.-Q. An, Q. Liu, W.-G. Yang, H.-J. Liu, J. Shen, L. Yan, Z.-Y. Jiang, Org. Lett., 2013, 15, 8. 2358; b) S.-B. Duan, S.-L. Li, X.-Y. Ye, N.-N. Du, C.-H. Tan, Z-Y. Jiang, J. Org. Chem., 2015, 80, 7770.
- R. Kowalczyk, P. J. Boratyński, Adv. Synth. Catal., 2016, 358, 1289. 9.
- 10. J.-K. Xie, Y. Wang, J.-B. Lin, X.-H. Ren, P.-F. Xu, Chem. Eur. J., 2017, 23, 6752.
- 11. L.-J. Wang, S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed., 2011, 50, 5327.

NMR spectra copies of all new compounds

5

S39

210 200

190 180 170

160 150 140 130 120

80

70

60 50

40 30 20

5

10

S46

Bruker Compass DataAnalysis 4.0 printed: 7/7/2017 10:02:21 AM Page 1 of 1

Bruker Compass DataAnalysis 4.0 printed: 7/7/2017 10:24:56 AM Page 1 of 1

Bruker Compass DataAnalysis 4.0 printed: 1/12/2018 9:52:19 AM Page 1 of 1

Bruker Compass DataAnalysis 4.0 printed: 1/12/2018 10:00:50 AM Page 1 of 1

HPLC copies of all amination products 3a~3k

3b: HPLC: Chiralpak AS-H (i PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm.

3c: HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm.

83.10224 92.1788

0.6962 3712.61938

2 23.446 BB

3e: HPLC: Chiralpak AS-H (ⁱPrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm.

1 17.131 VB 0.4851 625.55426 20.38276 9.1247 2 21.706 BB 0.7303 6230.07178 132.55443 90.8753

3f: HPLC: Chiralpak AS-H (i PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm.

3g: HPLC: Chiralpak AS-H (i PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm.

3h: HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm.

3i: HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm.

3j: HPLC: Chiralpak AS-H (^{*i*}PrOH/*n*-Hexane) = 3.2:96.8, flow rate = 0.5 mL/min, 210 nm.

