Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

# Cp\*Rh(III) Catalyzed *Ortho*-Halogenation of *N*-Nitrosoanilines by Solvent-Controlled Regioselective C-H Functionalization

Qiujun Peng,<sup>[a]</sup> Jian Hu,<sup>[a]</sup> Jiyou Huo,<sup>[a]</sup> Hongshun Yuan<sup>[a]</sup> and Lanting Xu,\*<sup>[b]</sup> Xianhua Pan\*<sup>[b]</sup>

[a]School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China

[b] Shanghai Research Institute of Fragrance and Flavor Industry, 480 Nanning Road, Shanghai 200232, P. R. China

# **Supporting Information**

# Contents

| 1.  | General information and materials2                                         |
|-----|----------------------------------------------------------------------------|
| 2.  | Synthesis of substrates                                                    |
| 3.  | Preparation and characterization data of products4                         |
| 4.  | 1 mmol-scale reaction19                                                    |
| 5.  | Optimization of the denitrosation process20                                |
| 6.  | Removal of the NO-directing group with one-pot procedure20                 |
| 7.  | Rh-catalyzed H/D exchange of 1a with C(CH <sub>3</sub> ) <sub>3</sub> OD22 |
| 8.  | Kinetic isotopic effect (KIE) study23                                      |
| 9.  | References                                                                 |
| 10. | Copies of <sup>1</sup> H and <sup>13</sup> C NMR spectrum of products25    |

# 1. General information and materials

**Reagent**: All the reactions were carried out under air atmosphere. All the solvents used for the reactions were dried according to standard procedures. All commercial materials were used as received unless otherwise noted. [RhCp\*Cl<sub>2</sub>]<sub>2</sub>, AgSbF<sub>6</sub>, Zn(NTf<sub>2</sub>)<sub>2</sub>, NBS, NIS were used in Rh-catalyzed reactions. The starting materials N-nitrosoanilines<sup>1-4</sup> were prepared according to the reported procedure. All the reactions were monitored by thin layer chromatography (TLC, Silica gel Merck 60 F<sub>254</sub>); The spots were visualized by UV light. Purification of products was conducted by flash chromatography on silica gel (particle size 40-63 µm, 230-400 mesh SiliaFlash<sup>®</sup> P60 (Silicycle Inc.)).

**Instruments**: NMR spectra were recorded on Bruker Ultrashield<sup>TM</sup> 500 MHz. Chemical shifts were given relative to CDCl<sub>3</sub> (7.26 ppm for <sup>1</sup>H NMR, 77.16 ppm for <sup>13</sup>C NMR), DMSO-*d*<sub>6</sub> (2.50 ppm for <sup>1</sup>H NMR, 39.52 ppm for <sup>13</sup>C NMR); For the characterization of the observed signal multiplicities, the following abbreviations were applied: s (singlet), d (doublet), dd (double doublet), t (triplet), td (triple doublet), q (quartet), m (multiplet), as well as br (broad); High resolution ESI mass experiments were operated on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument.

# 2. Synthesis of Substrates

# 2.1 General procedure A for preparation of N-nitroso aniline substrates<sup>1</sup>



The aniline (5.0 mmol, 1.0 equiv.) was dissolved in a 1:2 mixture of acetonitrile and water (15 mL) and cooled to 0 °C (ice bath). Concentrated aqueous HCl (2.0 mL, 24.0 mmol) was added dropwise. The mixture was stirred vigorously for half an hour, while maintained at 0 °C. To this mixture was added an aqueous solution (5.0 mL) of NaNO<sub>2</sub> (0.35 g, 5.0 mmol) over the course of 10 min. The reaction was allowed to proceed for 1 h. The mixture was then extracted with EtOAc. The combined organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated under reduced pressure, and purified by flash silica gel column chromatography (petroleum ether / ethyl acetate = 20:1) to give the corresponding N-nitroso aniline substrates 1.

# 2.2 General procedure B for preparation of N-nitroso aniline substrates<sup>2</sup>



A mixture of cesium carbonate (0.5 equiv.) and the amine (7.0 mmol, 1.0 equiv.) in anhydrous DMF (5.0 mL) was stirred at 25 °C for 30 min. Then added the benzyl bromide (1.0 equiv.) in one portion, and the resulting reaction mixture was stirred for overnight. The mixture was then poured into a lot of water and extracted with EtOAc. The combined organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated under reduced pressure, and purified by flash silica gel column chromatography (petroleum ether / ethyl acetate = 20:1) to give the N-benzylaniline substrates. The N-benzylaniline (2.0 mmol, 1.0 equiv.) was dissolved in a 1:2 mixture of acetonitrile and water (15.0 mL) and cooled to 0 °C (ice bath). Concentrated aqueous HCl (0.8 mL, 1.0 mmol) was added dropwise. The mixture was stirred vigorously for half an hour, while maintained at 0 °C. To this mixture was added an aqueous solution (5 mL) of NaNO<sub>2</sub> (0.14 g, 2.0 mmol) over the course of 10 min. The reaction was allowed to proceed for 1 h. The mixture was then extracted with EtOAc. The combined organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated under reduced pressure to afford corresponding N-benzyl-N-phenylnitrous amide substrates. They were pure enough to be used without further purification.

# 2.3 General procedure C for preparation of N-nitroso aniline substrates<sup>3-4</sup>



A mixture of aniline (7.0 mmol, 1.0 equiv.) and benzaldehyde (0.71mL, 1.0 equiv.), in ethanol (10 mL) was stirred at room temperature. Triethylamine (1.16 mL, 1.2 equiv.) was added to the mixture and refluxed overnight. The solution was then cooled to 0 °C, and NaBH<sub>4</sub> (1.5 equiv.) was added slowly. The resulting solution was allowed to warm to r.t and stirred until the intermediate imine had been completely consumed, as judged by TLC analysis. The reaction mixture was diluted with water and acidified with AcOH to pH 5, then extracted with EtOAc. The combined

organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated under reduced pressure, and purified by flash silica gel column chromatography to give the N-benzylaniline substrates. The N-benzylaniline (2.0 mmol, 1.0 equiv.) was dissolved in a 1:2 mixture of acetonitrile and water (15 mL) and cooled to 0 °C (ice bath). Concentrated aqueous HCl (0.80 mL, 1.0 mmol) was added dropwise. The mixture was stirred vigorously for half an hour, while maintained at 0 °C. To this mixture was added an aqueous solution (5 mL) of NaNO<sub>2</sub> (0.14 g, 2.0 mmol) over the course of 10 min. The reaction was allowed to proceed for 1 h. The mixture was then extracted with EtOAc. The combined organic layer was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated under reduced pressure to afford corresponding N-benzyl-N-phenylnitrous amide substrates. They were pure enough to be used without further purification.

# 3. Preparation and characterization Data of Products



**1a** (27.2 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (6.2 mg, 5 mol %), AgSbF<sub>6</sub> (13.8 mg, 20 mol %), and NXS (1.2 eq) were weighed into a pressure tube, to which was added t-BuOH (1.0 mL) under air. The reaction mixture was stirred for 12 h at 30 °C. Purification was performed by flash column chromatography on silica gel using n-hexane and tetrahydrofuran to afford the product **3a** as a pale yellow liquid (38.3 mg, 89%).

## N-(2-Bromophenyl)-N-methylnitrous amide (3a)



Pale yellow liquid (89% yield, 38.3 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1: 0.11. <sup>1</sup>H NMR (500 MHZ,CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.75 (dd, J = 8.0 Hz, 0.8 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H × 0.11), 7.47 (td, J = 7.8 Hz, 1.1 Hz, 1H), 7.40-7.38 (m, 1H + 1H × 0.11), 7.36 (td, J = 7.9 Hz, 1.5 Hz, 1H), 7.29 (td, J = 8.0 Hz, 1.4 Hz, 1H × 0.11), 7.03 (dd, J = 1.3 Hz, 1H × 0.11), 4.09 (s, 3H × 0.11), 3.40 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  141.70, 133.98, 133.69, 131.02, 130.74, 128.72, 128.53, 128.37, 128.34, 120.74, 120.03, 40.05, 35.37. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>8</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 214.9820, found 214.9820.

#### N-(2-Bromophenyl)-N-ethylnitrous amide (3b)



Pale yellow liquid (93% yield, 42.6 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be

approximately 1:0.45. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (syn and anti isomers)  $\delta$  7.76 (d, J = 7.9 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H × 0.45), 7.47 (t, J = 7.5 Hz, 1H), 7.42-7.34 (m, 2H + 1H × 0.45), 7.29  $(t, J = 7.8 \text{ Hz}, 1 \text{H} \times 0.45), 6.99 \text{ (d}, J = 7.7 \text{ Hz}, 1 \text{H} \times 0.45), 4.67-4.64 \text{ (m}, 1 \text{H} \times 0.45), 4.44-4.42 \text{ (m}, 1.43 \text{ H} \times 0.45), 4.44-4.44 \text{ (m}, 1.44 \text{ H} \times 0.45), 4.44 \text{ (m}, 1.44 \text{ H} \times 0.45), 4.44 \text{ (m}, 1.44 \text{ H} \times 0.44 \text{ H} \times 0.45), 4.44 \text{ (m}, 1.44 \text{ H} \times 0.45), 4.44 \text{ (m}, 1.44 \text{ H} \times 0.45)$  $1H \times 0.45$ , 4.01 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz,  $3H \times 0.45$ ), 1.08 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (syn and anti isomers) δ 140.20, 137.64, 133.96, 133.72, 130.90, 130.81, 129.55, 129,29, 128.40 (overlapped), 121.50, 121.40, 48.39, 41.73, 14.11, 11.14. HRMS (ESI) m/z calculated for C<sub>8</sub>H<sub>10</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 228.9971, found 228.9978.

#### *N*-(2-Bromophenyl)-*N*-propylnitrous amide (3c)



Yellow liquid (82% yield, 40.0 mg). The title compound was obtained as an inseparable mixture of syn and anti isomers, and the syn:anti ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.53. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (syn and anti isomers)  $\delta$  7.76 (dd, J = 8.5 Hz, 0.9 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H × 0.53), 7.47 (td, J = 7.6 Hz, 0.6 Hz, 1H), 7.41-7.34 (m, 2H + 1H × 0.53), 7.29 (td, J = 8.1 Hz, 1.0 Hz, 1H × 0.53), 6.99 (dd, J = 7.8 Hz, 0.8 Hz, 1H × 0.53), 4.59-4.54 (m,  $1H \times 0.53$ , 4.31-4.28 (m,  $1H \times 0.53$ ), 3.91 (t, J = 7.7 Hz, 2H), 1.83-1.77 (m,  $2H \times 0.53$ ), 1.54-1.46 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H × 0.53), 0.88 (t, J = 7.5 Hz, 3H). <sup>13</sup>C NMR (125 MHz, **CDCl**<sub>3</sub>) (syn and anti isomers) δ 140.58, 137.93, 134.01, 133.76, 130.85, 130.72, 129.38, 129.20, 128.38 (overlapped), 121.36, 121.25, 55.07, 48.20, 21.86, 19.62, 11.57, 11.24. HRMS (ESI) m/z calculated for C<sub>9</sub>H<sub>12</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 243.0128, found 243.0128.

#### *N*-Benzyl-*N*-(2-bromophenyl)nitrous amide (3d)



Yellow liquid (89% yield, 51.8 mg). The title compound was obtained as an inseparable mixture of syn and anti isomers, and the syn:anti ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.44. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (syn and anti isomers)  $\delta$  7.74 (dd, J = 7.4 Hz, 1.6 Hz, 1H), 7.65 (dd, *J* = 7.9 Hz, 1.4 Hz, 1H × 0.44), 7.34-7.29 (m, 3H + 3H × 0.44), 7.26-7.24 (m, 2H + 2H × 0.44), 7.22-7.16 (m,  $2H \times 0.44$ ), 7.12-7.08 (m, 3H), 6.50 (dd, J = 7.6 Hz, 1.6 Hz,  $1H \times 0.44$ ), 6.07  $(d, J = 14.5 \text{ Hz}, 1\text{H} \times 0.44), 5.21-5.16 \text{ (m, } 2\text{H} + 1\text{H} \times 0.44).$  <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (syn and anti isomers) & 140.08, 137.32, 134.59 (overlapped), 133.89, 133.58, 130.91, 130.83, 130.02, 129.78, 129.19, 129.10, 128.85, 128.63, 128.60, 128.23, 128.07, 127.98, 121.28, 121.17, 57.20, 49.57. HRMS (ESI) m/z calculated for C<sub>13</sub>H<sub>12</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 291.0127, found 291.0143.

N-(2-Bromophenyl)-N-isopropylnitrous amide (3e)



Yellow liquid (41% yield, 20.0 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.47. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.79 (d, J = 7.9 Hz, 1H × 0.47), 7.69 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H × 0.47), 7.41-7.33 (m, 1H + 2H × 0.47), 7.29 (td, J = 7.9 Hz, 0.7 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 5.11-5.06 (m, 1H × 0.47), 4.85-4.80 (m, 1H), 1.69 (d, J = 6.8 Hz, 6H × 0.47), 1.51 (d, J = 6.7 Hz, 3H), 1.18 (d, J = 6.7 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  137.70, 134.10, 133.79, 130.95, 130.80, 129.98, 129.38, 128.28, 128.07, 124.05, 122.17, 56.82, 48.05, 22.70, 21.52, 19.52. HRMS (ESI) m/z calculated for C<sub>9</sub>H<sub>12</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 243.0128, found 243.0129.

## N-(2-Bromo-4-methylphenyl)-N-methylnitrous amide (3g)



Yellow liquid (85% yield, 38.9 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.55 (s, 1H), 7.49 (s, 1H × 0.12), 7.28-7.24 (m, 2H), 7.20 (d, J = 7.8 Hz, 1H × 0.12), 6.90 (d, J = 8.0 Hz, 1H × 0.12), 4.07 (s, 3H × 0.12), 3.38 (s, 3H), 2.41 (s, 3H), 2.36 (s, 3H × 0.12). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  141.38, 139.19 (overlapped), 134.26, 134.08, 129.47, 129.17, 127.96, 127.82, 120.27, 119.70, 40.15, 35.45, 20.96, 20.90. HRMS (ESI) m/z calculated for C<sub>8</sub>H<sub>10</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 228.9971, found 228.9977.

#### N-(2-Bromo-6-chlorophenyl)-N-methylnitrous amide (3r)



Yellow liquid (30% yield, 15.0 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.23. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.68 (dd, J = 8.1 Hz, 0.9 Hz, 1H), 7.57-7.53 (m, 1H + 1H× 0.23), 7.44 (dd, J = 8.1 Hz, 0.8 Hz, 1H × 0.23), 7.32 (t, J = 8.2 Hz, 1H), 7.24 (t, J = 8.2 Hz, 1H × 0.23), 4.09 (s, 3H× 0.23), 3.33 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  139.23, 134.49, 132.96, 132.11, 131.88, 131.67, 131.61, 129.62, 129.36, 124.08, 122.31, 38.33, 33.85. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>BrClN<sub>2</sub>O [M+H]<sup>+</sup>, 250.9403, found 250.9411.

## N-(1-Bromonaphthalen-2-yl)-N-methylnitrous amide (3t)



Brown liquid (51% yield, 27.0 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.15. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.40 (d, J = 8.5 Hz, 1H), 8.31 (d, J = 8.2 Hz, 1H × 0.15), 7.97-7.92 (m, 2H), 7.90-7.86 (m, 2H × 0.15), 7.70 (t, J = 8.2 Hz, 1H),

7.66-7.61 (m, 1H + 2H × 0.15), 7.47 (d, J = 8.6 Hz, 1H), 7.06 (d, J = 8.6 Hz, 1H × 0.15), 4.19 (s, 3H × 0.15), 3.50 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  139.71, 134.30, 134.16, 132.62, 131.71, 129.43, 129.07, 128.47 (overlapped), 128.33, 128.30, 128.13, 127.93, 127.84, 127.69, 124.96, 124.19, 121.53, 120.94, 39.87, 35.56. HRMS (ESI) m/z calculated for C<sub>11</sub>H<sub>10</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 264.9971, found 264.9981.

#### N-(2,5-Dibromophenyl)-N-methylnitrous amide (3u)



White solid (70% yield, 41.2 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.61 (d, J = 8.6 Hz, 1H), 7.56-7.52 (m, 1H + 1H × 0.12), 7.49 (dd, J = 8.5 Hz, 1.9 Hz, 1H), 7.42 (dd, J = 8.3 Hz, 1.6 Hz, 1H × 0.12), 7.17 (d, J = 1.9 Hz, 1H × 0.12), 4.09 (s, 3H × 0.12), 3.38 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  142.72, 135.03, 134.75, 134.06, 133.66, 131.39, 131.31, 121.70 (overlapped), 119.81, 118.73, 39.86, 35.22. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>Br<sub>2</sub>N<sub>2</sub>O [M+H]<sup>+</sup>, 294.8899, found 294.8914.

## N-(2,3-Dibromophenyl)-N-methylnitrous amide (3u')



Yellow liquid (20% yield, 11.8 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.15. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.78-7.76 (m, 1H), 7.70 (dd, J = 8.1 Hz, 1.3 Hz, 1H × 0.15), 7.35-7.34 (m, 2H), 7.30-7.26 (m, 1H × 0.15), 6.97 (dd, J = 7.8 Hz, 1.3 Hz, 1H × 0.15), 4.10 (s, 3H × 0.15), 3.38 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  143.47, 134.73, 134.52, 129.27, 129.05, 127.24, 127.08, 126.92 (overlapped), 123.76 (overlapped), 39.83, 35.29. HRMS (ESI) m/zcalculated for C<sub>7</sub>H<sub>7</sub>Br<sub>2</sub>N<sub>2</sub>O [M+H]<sup>+</sup>, 294.8899, found 294.8914.

#### N-(2-Bromo-5-chlorophenyl)-N-methylnitrous amide (3v)



White solid (59% yield, 29.4 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.68 (d, J = 8.6 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H × 0.12), 7.42 (d, J = 2.3 Hz, 1H), 7.36 (dd, J = 8.6 Hz, 2.4 Hz, 1H), 7.29 (dd, J = 8.6 Hz, 2.4 Hz, 1H × 0.12), 7.03 (d, J = 2.4 Hz, 1H × 0.12), 4.09 (s, 3H × 0.12), 3.39 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  142.55, 134.76, 134.47, 134.33, 134.28, 131.16, 130.72, 128.58, 128.48, 117.94 (overlapped), 39.83, 35.20. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>BrClN<sub>2</sub>O, [M+H]<sup>+</sup>, 250.9403, found 250.9412.

N-(2-Bromo-3-chlorophenyl)-N-methylnitrous amide (3v')



Yellow liquid (27% yield, 13.5 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.17. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.62 (dd, J = 8.1 Hz, 1.3 Hz, 1H), 7.54 (dd, J = 8.1 Hz, 1.1 Hz, 1H × 0.17), 7.42 (t, J = 8.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H × 0.17), 7.31 (dd, J = 7.9 Hz, 1.3 Hz, 1H), 6.94 (dd, J = 7.8 Hz, 1.2 Hz, 1H × 0.17), 4.10 (s, 3H × 0.17), 3.39 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  143.59, 136.75, 136.65, 131.37, 131.12, 128.98, 128.73, 126.59, 126.46, 121.46 (overlapped), 39.85, 35.31. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>BrClN<sub>2</sub>O [M+H]<sup>+</sup>, 250.9403, found 250.9412.

#### N-(2-Bromo-5-methylphenyl)-N-methylnitrous amide (3w)



White solid (97% yield, 44.4 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.11. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.59 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 8.2 Hz, 1H × 0.11), 7.20 (s, 1H), 7.16 (d, J = 8.1 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H × 0.11), 6.82 (s, 1H × 0.11), 4.07 (s, 3H × 0.11), 3.38 (s, 3H). 2.37 (s, 3H), 2.31 (s, 3H × 0.11). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  141.33, 139.18, 138.99, 133.54, 133.26, 131.90, 131.54, 128.99, 128.72, 117.04, 116.36, 40.09, 35.38, 20.79 (overlapped). HRMS (ESI) m/z calculated for C<sub>8</sub>H<sub>10</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 228.9971, found 228.9979.

#### N-Benzyl-N-(4-bromo-[1,1'-biphenyl]-3-yl)nitrous amide (3x)



Yellow liquid (92% yield, 67.4 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.42. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.79 (d, J = 8.3 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H × 0.42), 7.54 (dd, J = 8.3 Hz, 2.1 Hz, 1H), 7.43-7.42 (m, 3H + 3H × 0.42), 7.40-7.33 (m, 3H + 3H × 0.42), 7.30-7.27 (m, 3H + 3H × 0.42), 7.25-7.23 (m, 2H × 0.42), 7.18-7.17 (m, 2H), 6.67 (d, J = 2.0 Hz, 1H × 0.42). 6.13 (d, J = 14.4 Hz, 1H × 0.42), 5.26-5.22 (m, 2H + 1H × 0.42). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  141.72, 141.52, 140.35, 138.61, 138.58, 137.67, 134.67, 134.13, 133.94, 133.76, 129.45, 129.40, 129.32, 129.30, 129.23 (overlapped), 129.08, 128.95, 128.71, 128.57, 128.30 (overlapped), 128.11, 128.07, 126.94, 126.81, 119.93 (overlapped), 57.32, 49.65. HRMS (ESI) m/z calculated for C<sub>19</sub>H<sub>16</sub>BrN<sub>2</sub>O [M+H]<sup>+</sup>, 367.0440, found 367.0460.

N-Benzyl-N-(2-bromo-5-(hydroxymethyl)phenyl)nitrous amide (3zb)



Yellow liquid (78% yield, 50.1 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.44. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.66 (d, J = 8.3 Hz, 1H), 7.55 (d, J = 8.3 Hz, 1H × 0.44), 7.31-7.30 (m, 1H + 1H × 0.44), 7.26-7.22 (m, 4H + 2H × 0.44), 7.16 (d, J = 8.1 Hz, 1H × 0.44), 7.10-7.09 (m, 2H + 2H × 0.44), 6.50 (d, J = 0.9 Hz, 1H × 0.44), 5.96 (d, J = 14.6 Hz, 1H × 0.44), 5.26 (d, J = 14.6 Hz, 1H × 0.44), 5.13 (s, 2H), 4.54 (s, 2H), 4.40 (s, 2H × 0.44). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  141.99, 141.81, 139.98, 137.23, 134.33, 133.82, 133.72, 133.49, 129.21, 129.20, 129.05, 128.99, 128.84, 128.63, 128.00 (overlapped), 127.90, 127.64, 119.61, 119.58, 63.51 (overlapped), 57.37, 49.84. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>14</sub>BrN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>, 321.0233, found 321.0249.

#### 3-(Benzyl(nitroso)amino)-4-bromobenzoic acid (3zc)



White solid (37% yield, 24.8 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.60. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) (*syn* and *anti* isomers)  $\delta$  7.98 (d, J = 8.4 Hz, 1H), 7.93 (dd, J = 8.3 Hz, 1.7 Hz, 1H), 7.86-7.82 (m, 1H + 2H × 0.60), 7.35-7.33 (m, 2H + 3H × 0.60), 7.29-7.23 (m, 1H + 3H × 0.60), 7.15 (d, J = 6.8 Hz, 2H), 5.94 (d, J = 14.8 Hz, 1H × 0.60), 5.55 (d, J = 14.8 Hz, 1H × 0.60), 5.18 (s, 2H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>) (*syn* and *anti* isomers)  $\delta$  166.17, 166.07, 140.18, 137.88, 134.77, 134.20, 134.01 (overlapped), 132.12, 132.04, 132.00, 131.95, 130.20, 130.17, 129.68, 129.28, 129.16, 128.99, 128.91, 128.34, 126.78, 126.49, 57.00, 49.91. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>, 335.0025, found 335.0046.

#### N-(2-Iodophenyl)-N-methylnitrous amide (4a)



Pale yellow liquid (95% yield, 49.8 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.00 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H × 0.12), 7.50 (td, J = 7.8 Hz, 1.2 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H × 0.12), 7.34 (dd, J = 7.8 Hz, 1.3 Hz, 1H), 7.20 (td, J = 7.9 Hz, 1.4 Hz, 1H), 7.12 (d, J = 7.9 Hz, 1.4 Hz, 1H × 0.12), 6.98 (d, J = 7.8 Hz, 1H × 0.12), 4.09 (s, 3H × 0.12), 3.38 (s, 3H). <sup>13</sup>C NMR (125

**MHz**, **CDCl**<sub>3</sub>) (*syn* and *anti* isomers) δ 145.11, 140.32, 140.02, 131.01, 130.92, 129.66, 129.44, 127.96, 127.75, 95.43, 95.17, 40.13, 35.54. **HRMS (ESI) m/z** calculated for C<sub>7</sub>H<sub>8</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 262.9675, found 262.9688.

#### *N*-Ethyl-*N*-(2-iodophenyl)nitrous amide (4b)



Pale yellow liquid (94% yield, 52.0 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.44. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.02 (dd, J = 8.0 Hz, 1.1 Hz, 1H), 7.93 (dd, J = 8.0 Hz, 1.0 Hz, 1H × 0.44), 7.50 (td, J = 7.7 Hz, 1.2 Hz, 1H), 7.43 (td, J = 7.6 Hz, 1.1 Hz, 1H × 0.44), 7.30 (dd, J = 7.8 Hz, 1.0 Hz, 1H), 7.20 (td, J = 7.8 Hz, 1.4 Hz, 1H), 7.13 (td, J = 7.8 Hz, 1.3 Hz, 1H × 0.44), 6.93 (dd, J = 7.8 Hz, 1.1 Hz, 1H × 0.44), 4.73-4.66 (m, 1H × 0.44), 4.40-4.33 (m, 1H × 0.44), 3.98 (q, J = 7.3 Hz, 2H), 1.45 (t, J = 7.3 Hz, 3H × 0.44), 1.08 (t, J = 7.3 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  143.54, 141.63, 140.33, 140.12, 130.93, 130.89, 129.25 (overlapped), 129.04, 128.96, 96.83, 96.41, 48.45, 42.01, 14.30, 11.13. HRMS (ESI) m/z calculated for C<sub>8</sub>H<sub>10</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 276.9832, found 276.9846.

#### N-(2-Iodophenyl)-N-propylnitrous amide (4c)



Pale yellow liquid (80% yield, 46.5 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.50. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.01 (d, J = 7.9 Hz, 1H), 7.93 (d, J = 7.9 Hz, 1H × 0.50), 7.49 (t, J = 7.7 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H × 0.50), 7.30 (dd, J = 7.7 Hz, 0.7 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 7.12 (td, J = 7.8 Hz, 0.9 Hz, 1H × 0.50), 6.92 (d, J = 7.8 Hz, 1H × 0.50), 4.62-4.57 (m, 1H × 0.50), 4.26-4.21 (m, 1H × 0.50), 3.88 (t, J = 7.8 Hz, 2H), 1.88-1.75 (m, 2H × 0.50), 1.54-1.46 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H × 0.50), 0.88 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  143.91, 141.91, 140.39, 140.17, 130.85 (overlapped), 129.23, 129.21, 128.89 (overlapped), 96.61, 96.22, 55.12, 48.54, 22.00, 19.59, 11.62, 11.29. HRMS (ESI) m/z calculated for C<sub>9</sub>H<sub>12</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 290.9989, found 290.9994.

#### N-Benzyl-N-(2-iodophenyl)nitrous amide (4d)



Yellow liquid (97% yield, 65.6 mg). The title compound was obtained as an inseparable mixture of

*syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.44. <sup>1</sup>H NMR (**500** MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.98 (dd, J = 8.0 Hz, 1.0 Hz, 1H), 7.88 (dd, J = 7.9 Hz, 0.8 Hz, 1H × 0.44), 7.35-7.31 (m, 2H + 1H × 0.44), 7.27-7.23 (m, 3H + 2H × 0.44), 7.18 (td, J = 7.7 Hz, 1.1 Hz, 1H × 0.44), 7.15-7.09 (m, 2H + 2H × 0.44), 7.03 (td, J = 7.9 Hz, 1.4 Hz, 1H × 0.44), 6.99 (dd, J = 7.8 Hz, 1.3 Hz, 1H), 6.36 (dd, J = 7.8 Hz, 1.2 Hz, 1H × 0.44), 6.08 (d, J = 14.5 Hz, 1H × 0.44), 5.14-5.10 (m, 2H + 1H × 0.44). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  143.39, 141.25, 140.28, 139.98, 134.59, 133.80, 130.96, 130.93, 129.60, 129.46, 129.30, 129.05, 128.92, 128.88, 128.66, 128.64, 128.04 (overlapped), 96.70, 96.14, 57.26, 49.91. HRMS (ESI) m/z calculated for C<sub>13</sub>H<sub>12</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 338.9988, found 339.0002.

*N*-(2-Iodophenyl)-*N*-isopropylnitrous amide (4e)



Yellow liquid (69% yield, 40.0 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.55. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.04 (dd, J = 7.9 Hz, 0.8 Hz, 1H × 0.55), 7.94 (dd, J = 8.0 Hz, 0.8 Hz, 1H), 7.49 (td, J = 7.8 Hz, 1.1 Hz, 1H × 0.55), 7.42 (td, J = 7.8 Hz, 1.0 Hz, 1H), 7.32 (dd, J = 7.8 Hz, 1.1 Hz, 1H × 0.55), 7.20 (td, J = 7.9 Hz, 1.3 Hz, 1H × 0.55), 7.12 (td, J = 7.9 Hz, 1.3 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1.1 Hz, 1H), 5.07-5.02 (m, 1H × 0.55), 4.75-4.70 (m, 1H), 1.77 (d, J = 6.8 Hz, 6H × 0.55), 1.53 (d, J = 6.7 Hz, 3H), 1.18 (d, J = 6.7 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  142.12, 141.97, 140.50, 140.26, 130.98, 130.74, 129.11 (overlapped), 128.98, 128.94, 97.19 (overlapped), 56.91, 48.07, 22.84, 21.78, 19.67. HRMS (ESI) m/z calculated for C<sub>9</sub>H<sub>12</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 290.989, found 290.9992.

# N-(2-Iodo-4-methylphenyl)-N-methylnitrous amide (4g)



Yellow liquid (82% yield, 45.3 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.81 (s, 1H), 7.73 (s, 1H × 0.12), 7.29 (d, J = 7.9 Hz, 1H), 7.23-7.19 (m, 1H + 1H × 0.12), 6.84 (d, J = 8.0 Hz, 1H × 0.12), 4.07 (s, 3H × 0.12), 3.35 (s, 3H), 2.39 (s, 3H), 2.33 (s, 3H × 0.12). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  142.67, 141.46 (overlapped), 140.59, 140.42, 130.44, 130.10, 127.47, 127.18, 95.12, 95.02, 40.23, 35.63, 20.73, 20.68. HRMS (ESI) m/z calculated for C<sub>8</sub>H<sub>10</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 276.9832, found 276.9844.

## N-(4-Chloro-2-iodophenyl)-N-methylnitrous amide (4h)



Yellow liquid (84% yield, 49.8 mg). The title compound was obtained as an inseparable mixture of

syn and anti isomers, and the syn:anti ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.14. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (syn and anti isomers)  $\delta$  8.00 (d, J = 1.7 Hz, 1H), 7.91 (d, J = 1.6 Hz, 1H × 0.14), 7.50 (dd, J = 8.4 Hz, 1.8 Hz, 1H), 7.43 (dd, J = 8.4 Hz, 1.8 Hz, 1H × 0.14), 7.28 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H × 0.14), 4.08 (s, 3H × 0.14), 3.36 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (syn and anti isomers)  $\delta$  143.89, 141.80, 139.66, 139.49, 136.04, 135.92, 129.92, 129.59, 128.43, 128.39, 95.93, 95.49, 39.97, 35.42. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>ClIN<sub>2</sub>O [M+H]<sup>+</sup>, 296.9286, found 296.9295.

#### N-(4-Fluoro-2-iodophenyl)-N-methylnitrous amide (4i)



Yellow liquid (96% yield, 53.8 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.14. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.72 (dd, J = 7.6 Hz, 2.2 Hz, 1H), 7.63 (dd, J = 7.6 Hz, 2.0 Hz, 1H × 0.14), 7.33-7.30 (m, 1H), 7.21 (td, J = 8.7 Hz, 2.4 Hz, 1H), 7.15 (td, J = 8.7 Hz, 2.2 Hz, 1H × 0.14), 6.95-6.92 (m, 1H × 0.14), 4.08 (s, 3H × 0.14), 3.35 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  163.10 (d,  $J_{C-F} = 253.5$  Hz), 163.07 (d,  $J_{C-F} = 253.3$  Hz), 141.73 (d,  $J_{C-F} = 3.4$  Hz), 139.31 (d,  $J_{C-F} = 3.8$  Hz), 128.90 (d,  $J_{C-F} = 8.9$  Hz), 128.80 (d,  $J_{C-F} = 9.1$  Hz), 127.25 (d,  $J_{C-F} = 24.7$  Hz), 127.19 (d,  $J_{C-F} = 24.6$  Hz), 116.96 (d,  $J_{C-F} = 22.3$  Hz), 116.54 (d,  $J_{C-F} = 22.3$  Hz), 95.55 (d,  $J_{C-F} = 8.7$  Hz) (overlapped), 40.12, 35.50. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>FIN<sub>2</sub>O [M+H]<sup>+</sup>, 280.9581, found 280.9593.

## N-(2-Iodo-4-(trifluoromethyl)phenyl)-N-methylnitrous amide (4j)



Yellow liquid (93% yield, 61.4 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. The <sup>13</sup>C NMR data listed here represent peak information only for the major syn isomer. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.25 (s, 1H), 8.15 (s, 1H × 0.12), 7.78 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H × 0.12), 7.46 (d, J = 8.2 Hz, 1H), 7.11 (d, J = 8.2 Hz, 1H × 0.12), 4.12 (s, 3H × 0.12), 3.40 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  148.11, 137.49 (q, J<sub>C-F</sub> = 3.7 Hz), 132.82 (q, J<sub>C-F</sub> = 33.2 Hz), 127.97, 126.55 (q, J<sub>C-F</sub> = 3.5 Hz), 123.52 (q, J<sub>C-F</sub> = 271.3 Hz), 94.83, 35.30. HRMS (ESI) m/z calculated for C<sub>8</sub>H<sub>7</sub>F<sub>3</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 330.9549, found 330.9570.

### N-(2-iodo-4-nitrophenyl)-N-methylnitrous amide (41)



Yellow liquid (97% yield, 59.7 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. The <sup>13</sup>C NMR data listed here represent peak information only for the major syn isomer. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.84 (d, *J* = 2.3 Hz, 1H), 8.73 (d, *J* = 2.3 Hz, 1H) 1H × 0.12), 8.37 (dd, J = 8.6 Hz, 2.4 Hz, 1H), 8.30 (dd, J = 8.6 Hz, 2.3 Hz, 1H × 0.12), 7.51 (d, J = 8.6 Hz, 1H), 7.17 (d, J = 8.6 Hz, 1H × 0.12), 4.14 (s, 3H × 0.12), 3.41 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  150.23, 147.73, 135.60, 127.82, 124.46, 94.11, 35.37. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>IN<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup>, 307.9527, found 307.9533.

*N*-Benzyl-*N*-(3-iodo-[1,1'-biphenyl]-4-yl)nitrous amide (4m)



Yellow liquid (85% yield, 70.4 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.45. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.21 (d, J = 1.7 Hz, 1H), 8.11 (d, J = 1.7 Hz, 1H × 0.45), 7.57-7.54 (m, 2H + 2H × 0.45), 7.50-7.34 (m, 5H + 8H × 0.45), 7.29-7.28 (m, 2H + 1H × 0.45), 7.18-7.17 (m, 2H), 7.08 (d, J = 8.1 Hz, 1H), 6.46 (d, J = 8.2 Hz, 1H × 0.45), 6.14 (d, J = 14.6 Hz, 1H × 0.45), 5.21-5.17 (m, 2H + 1H × 0.45). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  144.11, 144.09, 142.38, 140.14, 138.72, 138.46, 138.39, 138.28, 134.67, 133.89, 129.50, 129.43, 129.32 (overlapped), 129.08, 128.99, 128.92, 128.70, 128.67, 128.47, 128.38, 128.06, 127.68, 127.65, 127.21, 127.19, 97.05, 96.56, 57.36, 49.98. HRMS (ESI) m/z calculated for C<sub>19</sub>H<sub>16</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 415.0301, found 415.0323.

#### N-(4-Acetyl-2-iodophenyl)-N-benzylnitrous amide (4n)



Yellow liquid (78% yield, 59.3 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.45. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.53 (d, J = 1.6 Hz, 1H), 8.42 (d, J = 1.4 Hz, 1H × 0.45), 7.91 (dd, J = 8.1 Hz, 1.6 Hz, 1H), 7.75 (dd, J = 8.1 Hz, 1.5 Hz, 1H × 0.45), 7.35-7.33 (m, 1H + 1H × 0.45), 7.28-7.24 (m, 2H + 4H × 0.45), 7.10-7.08 (m, 3H), 6.48 (d, J = 8.2 Hz, 1H × 0.45), 6.10 (d, J = 14.6 Hz, 1H × 0.45), 5.20 (d, J = 14.6 Hz, 1H × 0.45), 5.14 (s, 2H), 2.61 (s, 3H), 2.54 (s, 3H × 0.45). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  195. 57, 195.51, 146.91, 145.38, 140.31, 139.77, 138.78, 138.62, 134.19, 133.44, 129.67, 129.31, 129.26, 129.21, 128.99, 128.82, 128.81, 128.76, 128.56, 128.22, 96.73, 96.62, 57.03, 49.50, 26.66, 26.58. HRMS (ESI) m/z calculated for C<sub>15</sub>H<sub>14</sub>IN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>, 381.0094, found 381.0113.

#### Methyl 4-(benzyl(nitroso)amino)-3-iodobenzoate (40)



Yellow liquid (84% yield, 66.6 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.45. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.63 (d, J = 1.6 Hz, 1H), 8.52 (d, J = 1.4 Hz, 1H × 0.45), 8.00 (dd, J = 8.2 Hz, 1.7 Hz, 1H), 7.84 (dd, J = 8.2 Hz, 1.6 Hz, 1H × 0.45), 7.33-7.32 (m, 1H + 1H × 0.45), 7.26-7.23 (m, 2H + 4H × 0.45), 7.09-7.05 (m, 3H), 6.45 (d, J = 8.2 Hz, 1H × 0.45), 6.08 (d, J = 14.6 Hz, 1H × 0.45), 5.19 (d, J = 14.6 Hz, 1H × 0.45), 5.13 (s, 2H), 3.92 (s, 3H), 3.88 (s, 3H × 0.45). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  164.65 (overlapped), 146.89, 145.36, 141.49, 140.99, 134.18, 133.43, 132.39, 132.24, 130.17, 129.95, 129.42, 129.28, 129.23, 129.08, 128.98, 128.81, 128.75, 128.21, 96.13, 96.07, 57.04, 52.73, 52.66, 49.54. HRMS (ESI) m/z calculated for C<sub>15</sub>H<sub>14</sub>IN<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>, 397.0043, found 397.0061.

# N-Benzyl-N-(4-(hydroxymethyl)-2-iodophenyl)nitrous amide (4p)



Yellow liquid (84% yield, 61.9 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.49. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.98 (s, 1H), 7.88 (s, 1H × 0.49), 7.33-7.24 (m, 4H + 5H × 0.49), 7.15-7.10 (m, 2H + 1H × 0.49), 6.95 (d, *J* = 7.9 Hz, 1H), 6.33 (d, *J* = 8.0 Hz, 1H × 0.49), 6.06 (d, *J* = 14.5 Hz, 1H × 0.49), 5.15-5.10 (m, 2H + 1H × 0.49), 4.67 (s, 2H), 4.59 (s, 2H × 0.49). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  144.27, 144.26, 142.33, 140.09, 138.19, 137.94, 134.44, 133.70, 129.34, 129.31 (2C, overlapped), 129.20, 128.89, 128.67 (overlapped), 128.06, 127.14, 127.08, 96.67, 96.10, 63.47, 63.44, 57.38, 50.00. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>14</sub>IN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>, 369.0094, found 369.0111.

#### N-(2-Fluoro-6-iodophenyl)-N-methylnitrous amide (4q)



Yellow liquid (45% yield, 25.4 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.30. The <sup>13</sup>C NMR data listed here represent peak information only for the major syn isomer. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.79 (d, J = 7.9 Hz, 1H), 7.68-7.67 (m, 1H × 0.30), 7.28-7.25 (m, 1H), 7.24-7.19 (m, 1H), 7.16-7.14 (m, 2H × 0.30), 4.09 (s, 3H × 0.30), 3.33 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  159.01 (d,  $J_{C-F} = 254.6$  Hz), 135.27 (d,  $J_{C-F} = 3.8$  Hz), 133.57 (d,  $J_{C-F} = 13.6$  Hz), 132.45 (d,  $J_{C-F} = 8.3$  Hz), 117.00 (d,  $J_{C-F} = 20.4$  Hz), 98.09, 34.45.

# N-(2-Chloro-6-iodophenyl)-N-methylnitrous amide (4r)



Yellow liquid (43% yield, 25.5 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.31. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.91 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H × 0.31), 7.57 (d, J = 8.1 Hz, 1H), 7.47 (d, J = 8.1 Hz, 1H × 0.31), 7.16 (t, J = 8.0 Hz, 1H), 7.07 (t, J = 8.1 Hz, 1H × 0.31), 4.10 (s, 3H × 0.31), 3.32 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  142.34, 140.50, 138.37, 138.22, 133.53 (overlapped), 132.06, 131.98, 130.53, 130.27, 98.84, 96.69, 38.25, 33.89. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>ClIN<sub>2</sub>O [M+H]<sup>+</sup>, 296.9286, found 296.9298.

## N-(5-Bromo-2-iodophenyl)-N-methylnitrous amide (4u)



White solid (81% yield, 55.2 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.85 (d, J = 8.5 Hz, 1H), 7.75 (d, J = 8.5 Hz, 1H × 0.12), 7.49 (d, J = 2.1 Hz, 1H), 7.34 (dd, J = 8.5 Hz, 2.1 Hz, 1H), 7.25-7.24 (m, 1H × 0.12), 7.11 (d, J = 2.1 Hz, 1H × 0.12), 4.08 (s, 3H × 0.12), 3.36 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  146.21, 141.29, 141.02, 134.15, 133.95, 131.01, 130.87, 123.01, 122.94, 93.29 (overlapped), 39.95, 35.42. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>BrIN<sub>2</sub>O [M+H]<sup>+</sup>, 340.8780, found 340.8795.

#### N-(3-Bromo-2-iodophenyl)-N-methylnitrous amide (4u')



White solid (17% yield, 11.7 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.16. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.77 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H × 0.16), 7.38 (t, J = 7.9 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H × 0.16), 7.26-7.24 (m, 1H), 6.89 (d, J = 7.9 Hz, 1H × 0.16), 4.10 (s, 3H × 0.16), 3.36 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  147.28, 133.55 (overlapped), 132.11, 132.00, 130.49, 130.20, 126.45, 126.05, 104.46 (overlapped), 39.88, 35.47. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>BrIN<sub>2</sub>O [M+H]<sup>+</sup>, 340.8780, found 340.8794.

## N-(5-Chloro-2-iodophenyl)-N-methylnitrous amide (4v)



White solid (67% yield, 39.7 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.12. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.92 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H × 0.12), 7.35 (d, J = 2.2 Hz, 1H), 7.21 (dd, J = 8.5 Hz, 2.2 Hz, 1H), 7.13 (dd, J = 8.5 Hz, 2.1 Hz, 1H × 0.12), 6.98 (d, J = 2.2 Hz, 1H × 0.12), 4.09 (s, 3H × 0.12), 3.36 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  146.09, 141.04, 140.76, 135.52, 135.43, 131.23, 131.01, 128.20, 128.10, 92.96, 92.35, 39.89, 35.35. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>ClIN<sub>2</sub>O [M+H]<sup>+</sup>, 296.9286, found 296.9295.

# N-(3-Chloro-2-iodophenyl)-N-methylnitrous amide (4v')



White solid (27% yield, 16.0 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.16. The <sup>13</sup>C NMR data listed here represent peak information only for the major syn isomer. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.59 (dd, J = 8.1 Hz, 1.1 Hz, 1H), 7.50 (dd, J = 8.1 Hz, 1.2 Hz, 1H × 0.16), 7.45 (t, J = 7.9 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H × 0.16), 7.22 (dd, J = 7.8 Hz, 1.1 Hz, 1H), 6.85 (dd, J = 7.8 Hz, 1.1 Hz, 1H × 0.16), 4.11 (s, 3H × 0.16), 3.37 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  147.32, 140.81, 130.10, 129.98, 125.98, 101.31, 35.48. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>7</sub>CIIN<sub>2</sub>O [M+H]<sup>+</sup>, 296.9286, found 296.9296.

#### N-(2-Iodo-5-methylphenyl)-N-methylnitrous amide (4w)



White solid (98% yield, 54.1 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.11. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.84 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H × 0.11), 7.15 (s, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H × 0.11), 6.78 (s, 1H × 0.11), 4.07 (s, 3H × 0.11), 3.36 (s, 3H), 2.37 (s, 3H), 2.31 (s, 3H × 0.11). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  144.89, 140.21, 139.98, 139.90, 139.62, 132.04, 131.87, 128.75, 128.30, 90.98, 90.75, 40.14, 35.54, 27.65, 20.82. HRMS (ESI) m/z calculated for C<sub>8</sub>H<sub>10</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 276.9832, found 276.9845.

# N-Benzyl-N-(4-iodo-[1,1'-biphenyl]-3-yl)nitrous amide (4x)



Yellow liquid (94% yield, 77.9 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.42. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.04 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H × 0.42), 7.42-7.34 (m, 6H + 8H × 0.42), 7.30-7.28 (m, 3H + 1H × 0.42), 7.21-7.18 (m, 3H + 2H × 0.42), 6.55 (d, J = 2.0 Hz, 1H × 0.42), 6.16 (d, J = 14.5 Hz, 1H × 0.42), 5.21-5.19 (m, 2H + 1H × 0.42). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  143.76, 142.53, 142.35, 141.73, 140.51, 140.15, 138.62, 138.60, 134.71, 133.88, 129.52, 129.48, 129.46 (overlapped), 129.08, 128.98, 128.94, 128.73, 128.33, 128.22, 128.14 (overlapped), 128.09 (overlapped), 126.89, 126.75, 94.94, 94.46, 57.36, 49.95. HRMS (ESI) m/z calculated for C<sub>19</sub>H<sub>16</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>, 415.0301, found 415.0320.

#### N-(5-Acetyl-2-iodophenyl)-N-benzylnitrous amide (4y)



Yellow liquid (85% yield, 64.6 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.52. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.11 (d, J = 8.2 Hz, 1H), 8.01 (d, J = 8.3 Hz, 1H × 0.52), 7.69 (dd, J = 8.2 Hz, 1.4 Hz, 1H), 7.61 (dd, J = 8.3 Hz, 1.4 Hz, 1H), 7.36-7.35 (m, 1H + 1H × 0.52), 7.29-7.26 (m, 2H +4H × 0.52), 7.12-7.11 (m, 2H), 6.82 (d, J = 1.4 Hz, 1H × 0.52), 6.12 (d, J = 14.5 Hz, 1H × 0.52), 5.19-5.14 (m, 2H + 1H × 0.52), 2.44 (s, 3H), 2.28 (s, 3H × 0.52). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  195.91, 143.79, 141.75, 140.79, 140.41, 137.81, 137.68, 134.27, 133.47, 129.82, 129.81, 129.41, 129.37, 129.08, 129.00, 128.88, 128.82, 128.77, 128.28, 103.40, 103.15, 57.22, 49.61, 26.40, 26.18. HRMS (ESI) m/z calculated for C<sub>15</sub>H<sub>14</sub>IN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>, 381.0094, found 381.0106.

#### Methyl 3-(benzyl(nitroso)amino)-4-iodobenzoate (4za)



Yellow liquid (85% yield, 67.4 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.44. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  8.08 (dd, J = 8.2 Hz, 1.5 Hz, 1H), 7.97 (dd, J = 8.2 Hz, 1.5 Hz, 1H × 0.44), 7.77 (d, J = 8.3 Hz, 1H), 7.68-7.67 (m, 1H + 1H × 0.44), 7.34 (br, 1H + 1H × 0.44), 7.29-7.25 (m, 2H + 4H × 0.44), 7.12-7.09 (m, 2H + 1H × 0.44), 6.01 (d, J = 14.6 Hz, 1H × 0.44), 5.30 (d, J = 14.6 Hz, 1H × 0.44), 5.14 (s, 2H), 3.88 (s, 3H), 3.81 (s, 3H × 0.44). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  165.38, 165.25, 143.77, 141.71, 140.67, 140.27, 134.11, 133.34, 131.43, 131.34, 131.32, 131.26, 130.11, 129.85, 129.32, 129.28, 128.96, 128.78, 128.75, 128.20, 103.12, 103.01, 57.29, 52.60, 52.46, 49.87. HRMS (ESI) m/z calculated for C<sub>15</sub>H<sub>14</sub>IN<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>, 397.0043, found 397.0058.



Yellow liquid (94% yield, 69.2 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.44. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.91 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H × 0.44), 7.32-7.31 (m, 1H + 1H × 0.44), 7.26-7.23 (m, 3H + 2H × 0.44), 7.12-7.09 (m, 2H + 2H × 0.44), 7.01 (br, 1H + 1H × 0.44), 6.38 (s, 1H × 0.44), 6.00 (d, J = 14.5 Hz, 1H × 0.44), 5.20 (d, J = 14.6 Hz, 1H × 0.44), 5.10 (s, 2H), 4.54 (s, 2H), 4.39 (s, 2H × 0.44). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  143.40, 142.88, 142.71, 141.30, 140.23, 139.93, 134.36, 133.63, 129.35, 129.28, 129.25, 129.16, 128.87, 128.69, 128.65, 128.06, 127.53, 127.41, 94.67, 94.23, 63.59 (overlapped), 57.43, 50.16. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>14</sub>IN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>, 369.0094, found 369.0108.

#### 3-(Benzyl(nitroso)amino)-4-iodobenzoic acid (4zc)



White solid (93% yield, 71.1 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.54. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) (*syn* and *anti* isomers)  $\delta$  13.26 (br, 1H), 8.19 (d, *J* = 8.1 Hz, 1H), 8.07 (d, *J* = 8.2 Hz, 1H × 0.54), 7.74-7.71 (m, 2H), 7.64 (dd, *J* = 8.2 Hz, 1.6 Hz, 1H × 0.54), 7.35-7.34 (m, 2H + 1H × 0.54), 7.30-7.23 (m, 1H + 4H × 0.54), 7.15-7.14 (m, 2H), 7.12 (d, *J* = 1.5 Hz, 1H × 0.54), 5.99 (d, *J* = 14.7 Hz, 1H × 0.54), 5.43 (d, *J* = 14.7 Hz, 1H × 0.54), 5.16 (s, 2H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>) (*syn* and *anti* isomers)  $\delta$  166.41, 166.29, 143.72, 142.05, 141.12, 140.62, 134.82, 133.95, 132.46, 132.33, 131.70 (overlapped), 129.77, 129.61, 129.45, 129.28, 129.18, 128.99, 128.92, 128.35, 104.63, 104.53, 57.07, 50.10. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>12</sub>IN<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>, 382.9887, found 382.9912.

#### 3-(Benzyl(nitroso)amino)-4-iodobenzamide (4zd)



White solid (86% yield, 65.6 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.47. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ) (*syn* and *anti* isomers)  $\delta$  8.15-8.13 (m, 2H), 8.02-8.00 (m,

2H × 0.47), 7.82 (d, J = 1.7, 1H), 7.72 (dd, J = 8.1 Hz, 1.4 Hz, 1H), 7.62 (dd, J = 8.1 Hz, 1.3 Hz, 1H × 0.47), 7.57 (br, 1H), 7.48 (br, 1H × 0.47), 7.33 (br, 2H + 1H × 0.47), 7.29-7.24 (m, 1H + 5H × 0.47), 7.16-7.15 (m, 2H), 5.90 (d, J = 14.7 Hz, 1H × 0.47), 5.53 (d, J = 14.7 Hz, 1H × 0.47), 5.17 (s, 2H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>) (*syn* and *anti* isomers)  $\delta$  166.59, 166.52, 143.53, 141.85, 140.65, 140.05, 135.80, 135.71, 134.74, 133.92, 130.12, 130.01, 129.82, 129.42, 129.11, 128.94, 128.86, 128.29, 128.22, 127.88, 102.18, 102.07, 57.17, 50.18. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>13</sub>IN<sub>3</sub>O<sub>2</sub> [M+H]<sup>+</sup>, 382.0046, found 382.0062.

#### N-Benzyl-N-(5-ethyl-2-iodophenyl)nitrous amide (4ze)



Yellow liquid (85% yield, 62.3 mg). The title compound was obtained as an inseparable mixture of *syn* and *anti* isomers, and the *syn:anti* ratio was determined by <sup>1</sup>H NMR to be approximately 1:0.40. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  7.87 (d, J = 8.1 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H × 0.40), 7.34-7.33 (m, 1H + 1H × 0.40), 7.28-7.25 (m, 2H + 4H × 0.40), 7.13-7.12 (m, 2H), 7.00 (d, J = 8.0 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H × 0.40), 6.81 (s, 1H), 6.15 (s, 1H × 0.40), 6.09 (d, J = 14.4 Hz, 1H × 0.40), 5.12-5.10 (m, 2H + 1H × 0.40), 2.55 (q, J = 7.6 Hz, 2H), 2.41 (q, J = 7.6 Hz, 2H × 0.40 ), 1.12 (t, J = 7.5 Hz, 3H), 0.98 (t, J = 7.4 Hz, 3H × 0.40). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (*syn* and *anti* isomers)  $\delta$  145.84, 145.59, 143.19, 141.15, 139.89, 139.56, 134.67, 133.89, 130.77, 130.75, 129.44, 129.41, 129.32, 128.98, 128.80, 128.58, 127.99 (overlapped), 92.55, 91.93, 57.33, 49.92, 28.06, 27.96, 15.08, 14.83. HRMS (ESI) m/z calculated for C<sub>15</sub>H<sub>16</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>,367.0301, found 367.0320.

# 4. 1 mmol-scale reaction



1a (136.0 mg, 1.0 mmol),  $[Cp*RhCl_2]_2$  (30.9 mg, 5 mol %), AgSbF<sub>6</sub> (68.8 mg, 20 mol %), and NXS (1.2 eq) were weighed into a pressure tube, to which was added t-BuOH (5.0 mL) under air. The reaction mixture was stirred for 12 h at 30 °C. Purification was performed by flash column chromatography on silica gel using n-hexane and tetrahydrofuran to afford the product **3a/4a** as a pale yellow liquid (189.2 mg, 88%/243.7 mg, 93%).

# 5. Optimization of the denitrosation process

We have chosen 4a as model substrate to investigate the denitrosation process of halogenated N-nitrosamine. Condition screening showed that SnCl<sub>2</sub>·2H<sub>2</sub>O/HCl (table1, entry 2) gave the best results while CuCl/HCl, NiCl<sub>2</sub>·6H<sub>2</sub>O/NaBH4 and TiCl<sub>4</sub>/NaBH<sub>4</sub> were found to be inferior (entries 1, 3, 4). Therefor we used SnCl<sub>2</sub>·2H<sub>2</sub>O/HCl system as the optimized condition to remove the nitroso

group.

|                | N<br>Denitrosation                                     |         |                                 |
|----------------|--------------------------------------------------------|---------|---------------------------------|
|                | 4a                                                     | 6a      |                                 |
| Entry          | Denitrosation Condition                                | Solvent | Yie <b>l</b> d (%) <sup>e</sup> |
| 1 <sup>a</sup> | CuCI/HCI                                               | MeOH    | 55                              |
| 2 <sup>b</sup> | SnCl <sub>2</sub> :2H <sub>2</sub> O/HCl               | MeOH    | 81                              |
| 3 <sup>c</sup> | NiCl <sub>2</sub> ·6H <sub>2</sub> O/NaBH <sub>4</sub> | THF     | 15                              |
| 4 <sup>d</sup> | TiCl <sub>4</sub> /NaBH <sub>4</sub>                   | DME     | 10                              |

<sup>a</sup>Reaction conditions: **4a** (0.20 mmol), concentrated HCl (2.0 mL), CuCl (20 mol %), MeOH (2.0 mL), 30 °C, 1 h. Then using NaOH to pH=9~10. <sup>b</sup>SnCl<sub>2</sub>·2H<sub>2</sub>O (0.50 mmol) instead of CuCl. <sup>c</sup>NiCl<sub>2</sub>·6H<sub>2</sub>O (0.40 mmol), NaBH<sub>4</sub> (0.80 mmol), THF (5.0 mL), 30 °C, 6 h. <sup>d</sup>TiCl<sub>4</sub> (0.40 mmol) instead of NiCl<sub>2</sub>·6H<sub>2</sub>O, DME (5.0 mL) instead of THF, 14 h. <sup>e</sup>Yield of isolated product.

# 6. Removal of the NO-directing group with one-pot procedure



1a (136.0 mg, 1.0 mmol),  $[Cp*RhCl_2]_2$  (30.9 mg, 5 mol %), AgSbF<sub>6</sub> (68.8 mg, 20 mol %), and NXS (1.2 eq) were weighed into a pressure tube, to which was added t-BuOH (5.0 mL) under air. The reaction mixture was stirred for 12 h at 30 °C. After that, MeOH (5.0 mL) and SnCl<sub>2</sub>·2H<sub>2</sub>O (565.0 mg, 2.5 mmol) was added followed by addition of HCl (12 N, 6.0 mL). The mixture was stirred at 30 °C for 1h. 10 mol/L NaOH was added slowly at 0 °C to pH 9~10. Then extracted with EA. The combined organic layers were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated under reduced pressure, purification was performed by flash column chromatography on silica gel using n-hexane and tetrahydrofuran to afford the desired product **5a** as a pale yellow liquid (134.7 mg, 72% yield).

## 2-Bromo-N-methylaniline (5a)



Pale yellow liquid (72% yield, 134.7 mg). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.43 (d, J = 7.8 Hz, 1H),  $\delta$  7.22 (t, J = 7.5 Hz, 1H),  $\delta$  6.65 (d, J = 8.0 Hz, 1H),  $\delta$  6.59 (t, J = 7.5 Hz, 1H),  $\delta$  4.50 (br, 1H),  $\delta$  2.90 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  145.92, 132.31, 128.60, 117.69, 110.83, 109.67, 30.67. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>8</sub>BrN [M+H]<sup>+</sup>,185.9913, found 185.9918.

## 2-Iodo-N-methylaniline (6a)



Pale yellow liquid (74% yield, 172.4 mg). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (dd, J = 7.8 Hz, 0.9 Hz, 1H),  $\delta$  7.26 (t, J = 8.3 Hz, 1H),  $\delta$  6.59 (d, J = 8.0 Hz, 1H),  $\delta$  6.47 (t, J = 7.7 Hz, 1H),  $\delta$  4.22 (br, 1H),  $\delta$  2.90 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  148.22, 138.93, 129.54, 118.54, 110.07, 85.21, 31.05. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>8</sub>IN [M+H]<sup>+</sup>,233.9768, found 233.9774.

4-chloro-2-iodo-N-methylaniline (6h)



Yellow liquid (60% yield, 32.1 mg). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, J = 2.2 Hz, 1H),  $\delta$  7.21 (dd, J = 8.7 Hz, 2.2 Hz, 1H),  $\delta$  6.46 (d, J = 8.7 Hz, 1H),  $\delta$  4.18 (br, 1H),  $\delta$  2.87 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  146.99, 137.77, 129.28, 121.83, 110.25, 84.37, 31.17. HRMS (ESI) m/z calculated for C<sub>7</sub>H<sub>8</sub>ClIN [M+H]<sup>+</sup>,267.9384, found 267.9389.

## 1-(3-(benzylamino)-4-iodophenyl)ethenone (6y)



Yellow solid (80% yield, 56.2 mg). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 8.1 Hz, 1H),  $\delta$  7.38-7.35 (m, 4H),  $\delta$  7.31-7.29 (m, 1H),  $\delta$  7.12 (d, J = 1.5 Hz, 1H),  $\delta$  7.01 (dd, J = 8.0 Hz, 1.7 Hz, 1H),  $\delta$  4.72 (br, 1H),  $\delta$  4.45 (s, 2H),  $\delta$  2.49 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  197.96, 147.30, 139.19, 138.29, 138.08, 128.87, 127.62, 127.44, 118.69, 109.50, 91.71, 48.42, 26.62. HRMS (ESI) m/z calculated for C<sub>15</sub>H<sub>15</sub>INO [M+H]<sup>+</sup>,352.0193, found 352.0219.

## Methyl 3-(benzylamino)-4-iodobenzoate (6za)



Yellow solid (84% yield, 61.7 mg). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, J = 8.1 Hz, 1H),  $\delta$  7.39-7.36 (m, 4H),  $\delta$  7.32-7.30 (m, 1H),  $\delta$  7.23 (d, J = 1.5 Hz, 1H),  $\delta$  7.01 (dd, J = 8.2 Hz, 1.8 Hz, 1H),  $\delta$  4.65 (br, 1H),  $\delta$  4.44 (s, 2H),  $\delta$  3.87 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  167.09, 147.20, 139.07, 138.15, 131.42, 128.85, 127.60, 127.49, 119.56, 111.13, 91.23, 52.21, 48.41. HRMS (ESI) m/z calculated for C<sub>15</sub>H<sub>15</sub>INO<sub>2</sub> [M+H]<sup>+</sup>,368.0142, found 368.0150.

# 3-(benzylamino)-4-iodobenzoic acid (6zc)



Yellow solid (75% yield, 52.6 mg). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  12.82 (br, 1H),  $\delta$  7.78 (d, *J* = 8.0 Hz, 1H),  $\delta$  7.34-7.31 (m, 4H),  $\delta$  7.25-7.22 (m, 1H),  $\delta$  6.98 (s, 1H),  $\delta$  6.95 (d, *J* = 8.0 Hz, 1H),

δ 5.81 (t, J = 5.3 Hz, 1H), δ 4.47 (d, J = 5.4 Hz, 2H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>) δ 167.82, 147.96, 139.70, 139.55, 132.19, 128.95, 127.30, 127.20, 119.10, 111.28, 90.96, 47.13. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>13</sub>INO<sub>2</sub> [M+H]<sup>+</sup>,353.9985, found 353.9987.

#### 3-(benzylamino)-4-iodobenzamide (6zd)



White solid (73% yield, 51.5 mg). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.85 (br, 1H),  $\delta$  7.70 (d, *J* = 8.1 Hz, 1H),  $\delta$  7.33-7.31 (m, 4H),  $\delta$  7.25-7.21 (m, 2H),  $\delta$  6.97 (d, *J* = 1.3 Hz, 1H),  $\delta$  6.87 (dd, *J* = 8.1 Hz, 1.6 Hz, 1H),  $\delta$  5.61 (t, *J* = 6.0 Hz, 1H),  $\delta$  4.47 (d, *J* = 6.0 Hz, 2H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  168.23, 147.75, 139.92, 139.06, 135.79, 128.89, 127.35, 127.26, 117.41, 110.14, 88.79, 46.97. HRMS (ESI) m/z calculated for C<sub>14</sub>H<sub>14</sub>IN<sub>2</sub>O [M+H]<sup>+</sup>,353.0145, found 353.0150.

# 7. Rh-catalyzed H/D exchange of 1a with C(CH<sub>3</sub>)<sub>3</sub>OD



A sealed tube was charged with **1a** (27.2 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (6.2 mg, 5 mol %), AgSbF<sub>6</sub> (13.8 mg, 20 mol %) and 1.0 mL of C(CH<sub>3</sub>)<sub>3</sub>OD. The reaction mixture was stirred for 12 h at 30 °C, then added 1.0 mL D<sub>2</sub>O to continue the reaction for another 12 h. Filtered through a pad of celite and then washed with EtOAc. Then solution was concentrated under vacuum and the residue was purified by flash chromatography. The extents of deuterium incorporation was measured with <sup>1</sup>H NMR.

-3.4610



<5% D нm <5% D [D], -1a ŝ ģ ġ 7.70 7.20 7.10 7.60 7.50 7.40 fl (ppm) 7.30 2.85-ຮູ່ອີອີ 3.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 fl (ppm) 3.0 2.5 2.0 1.5 1.0 0.5 0.0

# 8. Kinetic isotopic effect (KIE) study



N-nitrosoanilines **1a** or its deuterated analogue  $[D]_3$ -**1a** (0.2 mmol) was added to five separate sealed tubes containing NBS (42.7 mg, 0.24 mmol),  $[Cp*RhCl_2]_2$  (6.2 mg, 5 mol %), AgSbF<sub>6</sub> (13.8 mg, 20 mol %) and t-BuOH (1.0 mL). Each reaction mixture was stirred at 30 °C for 20 min, 40 min, 60 min, 80 min, or 100 min before they were passed through a pad of celite and washed with EtOAc. The resultant solutions were concentrated under reduced pressure and each of the residues was analyzed by <sup>1</sup>H NMR using 3,4,5-trichloropyridine as an internal standard to provide the yields for all reactions. Based on these results  $k_H/k_D$  was determined to be 2.3.

| t/min | <b>3</b> a (%) | [D] <sub>2</sub> -3a (%) |
|-------|----------------|--------------------------|
| 20    | 8.44           | 4.17                     |
| 40    | 13.63          | 5.85                     |
| 60    | 21.74          | 8.25                     |
| 80    | 28.44          | 13.53                    |
| 100   | 38.02          | 16.34                    |



# **KIE experiment (intermolecular competition)**



N-nitrosoanilines **1a** (0.1 mmol) and its deuterated analogue  $[D]_3$ -**1a** (0.1 mmol) was added to a 10 mL sealed tube containing NBS (21.4 mg, 0.12 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 5 mol %), AgSbF<sub>6</sub> (6.9 mg, 20 mol %) and t-BuOH (1.0 mL). The mixture was stirred at 30 °C for 60 min. The product was purified by silica gel flash chromatography (Hexane:THF, 100:1). The ratio of **3a**:  $[D]_2$ -**3a** = 4.3 was determined by <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>).

# 9. References

- [1] B. Liu, Y. Fan, Y. Gao, C. Sun, C. Xu, J. Zhu, J. Am. Chem. Soc., 2013, 135, 468.
- [2] J. Castillo, J. Orrego-Hernández, J. Portilla, Eur. J. Org. Chem., 2016, 22, 3824.
- [3] R. K. Everett, J. P. Wolfe, J. Org. Chem, 2015, 80, 9041.
- [4] M. Gupta, M. Ahmad, R. Singh, Polyhedron, 2015, 101, 86.







































































































