SUPPORTING INFORMATION

Rhodium(III)-catalyzed CF₃-Carbenoid C-H Functionalization of 6-Arylpurines

Daria V. Vorobyeva, Mikhail M. Vinogradov, Yulia V. Nelyubina, Dmitry A. Loginov, Alexander S. Peregudov and Sergey N. Osipov*

*To whom correspondence should be addressed. E-mail: osipov@ineos.ac.ru

Table of contents

1.	¹ H NMR and ¹³ C NMR Spectra	S1-S43
2.	Typical procedure for scale up synthesis	S44
3.	X-ray Diffraction Study of Compounds 3a and 4	

1. ¹H and ¹³C NMR Spectra

¹H NMR spectra of compound **2a** in CDCl3

 ^{13}C NMR spectra of compound 2a in CDCl_3

¹H NMR spectra of compound 2b in CDCl₃

¹³C NMR spectra of compound **2b** in CDCl₃

¹H NMR spectra of compound 2c in CDCl₃

 ^{13}C NMR spectra of compound 2c in CDCl_3

 ^1H NMR spectra of compound 2d in CDCl_3

F

 13 C NMR spectra (*J*-mod) of compound **2d** in CDCl₃

¹H NMR spectra of compound 2e in CDCl₃

 ^{13}C NMR spectra of compound 2e in CDCl_3

 ^1H NMR spectra of compound 2f in CDCl_3

 ^{13}C NMR spectra of compound 2f in CDCl_3

49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 (ppm)

 ^{19}F NMR spectra of compound 2f in CDCl_3

 ^{19}F NMR spectra of reaction mixture for 2f in CDCl_3

 ^1H NMR spectra of compound $\mathbf{2g}$ in CDCl_3

 ^{13}C NMR spectra of compound 2g in CDCl_3

 ^1H NMR spectra of compound 2h in CDCl_3

¹³C NMR spectra of compound **2h** in (CD₃)₂CO

¹H NMR spectra of compound 2i in (CD₃)₂CO

 ^{13}C NMR spectra of compound **2i** in (CD₃)₂CO

 ^1H NMR spectra of compound 2j in CDCl_3

¹³C NMR spectra of compound **2j** in CDCl₃

 ^1H NMR spectra of compound 2k in CDCl_3

 ^{13}C NMR spectra of compound 2k in CDCl_3

¹H NMR spectra of compound **2l** in CDCl₃

¹³C NMR spectra of compound **2l** in CDCl₃

¹H NMR spectra of compound 2m in CDCl₃

¹³C NMR spectra of compound **2m** in CDCl₃

¹H NMR spectra of compound **3a** in CDCl₃

¹³C NMR spectra of compound **3a** in (CD₃)₂CO

¹H NMR spectrum of compound **3b** in CDCl₃

 13 C NMR spectrum (*J*-mod) of compound **3b** in CDCl₃

¹H NMR spectrum of compound **3c** in CDCl₃

 ^{13}C NMR spectrum of compound 3c in CDCl_3

¹H NMR spectrum of compound **3d** in CDCl₃

 13 C NMR spectrum (*J*-mod) of compound **3d** in CDCl₃

 1 H NMR spectra of compound **3e** in (CD₃)₂CO

¹³C NMR spectra of compound **3e** in (CD₃)₂CO

 ^1H NMR spectrum of compound 3f in CDCl_3

¹³C NMR spectrum (*J*-mod) of compound **3f** in CDCl₃

 ^1H NMR spectra of compound 3g in CDCl_3

 ^{13}C NMR spectra of compound 3g in CDCl₃

 1 H NMR spectra of compound 4 in CDCl₃

 ^{13}C NMR spectra of compound 4 in CDCl_3

2. Scale up synthesis of 2a

A dried 50 mL Schlenk flask equipped with a magnetic stirrer was charged with 6-phenylpurine (2.01 g, 8.4 mmol), DCE (20 mL), $[Cp*RhCl_2]_2$ (0.13 g, 0.21 mmol), AgSbF₆ (0.29 g, 0.84 mmol), and diazo compound (1.69 g, 10 mmol) under Ar. The reaction mixture was stirred at 80 °C for 4 h. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2/1) to give 1.81 g (57% yield) of the analytically pure product.

3. X-ray Diffraction Study of Compounds 3a and 4

Experimental details: Intensities of 25772 and 15832 reflections were measured for **3a** and **4** with a Bruker APEX2 CCD and APEX2 DUO CCD diffractometers [λ (MoK α) = 0.71072Å, ω -scans, 20<60 and 20<58°], respectively; 6036 and 6752 independent reflections [R_{int} = 0.0396 and 0.0275] were used in further refinement. The structure was solved by the direct method and refined by the full-matrix least-squares technique against F² in the anisotropic-isotropic approximation. The positions of hydrogen atoms were calculated, and they were refined in the isotropic approximation within the riding model. For **3a**, the refinement converged to wR2 = 0.1180 and GOF = 1.007 for all the independent reflections (R1 = 0.0460 was calculated against F for 4931 observed reflections with I>2 σ (I)). **4**, the refinement converged to wR2 = 0.1261 and GOF = 1.005 for all the independent reflections (R1 = 0.0457 was calculated against F for 5494 observed reflections with I>2 σ (I)). All calculations were performed using SHELXTL PLUS 5.0 [G.M. Sheldrick. A short history of SHELX. *Acta Cryst. A*, 2008, **64**, 112-122].

Crystal data for **3a**: C₂₁H₂₄N₄O₄, M = 396.44, monoclinic, space group P2₁/n, at 120 K: a = 9.7486(10), b = 10.5135(11), c = 19.312(2) Å, $\beta = 100.750(2)^{\circ}$, V = 1944.6(4) Å³, Z = 4 (Z' = 1), d_{calc} = 1.354 gcm⁻³, μ (MoK α) = 0.96 cm⁻¹, F(000) = 840.

Crystal data for **4**: C₂₅H₂₇F₃N₄O₆, M = 536.50, triclinic, space group P-1, at 120 K: a = 9.0578(5), b = 9.3785(5), c = 15.7048(9) Å, α = 103.1670(10), β = 101.3370(10), γ = 91.8400(10)°, V = 1269.54(12) Å³, Z = 2 (Z' = 1), d_{calc} = 1.403 gcm⁻³, μ (MoK α) = 1.15 cm⁻¹, F(000) = 560.

CCDC 1826774 and 1826773 contain the supplementary crystallographic information for **3a** and **4**.

Figure S1. Structure of compound 3a. Ellipsoids are shown at 50% level. Selected bond lengths [Å] and angles $[\circ]$: O1-C16 1.2013(14), O2-C16 1.3412(14), O2-C17 1.4537(14), O3-C19 1.2055(14), O4-C19 1.3368(14), O4-C20 1.4608(14), N1-C8 1.3443(14), N1-C7 1.3484(14), N2-C9 1.3345(14), N2-C8 1.3355(15), N3-C10 1.3673(15), N3-C9 1.3758(14), N3-C12 1.4742(14), N4-C10 1.3156(15), N4-C11 1.3903(14), C1-C2 1.3992(15), C1-C6 1.4112(15), C1-C7 1.4833(14), C2-C3 1.3867(15), C3-C4 1.3868(16), C4-C5 1.3913(16), C5-C6 1.3958(15), C6-C15 1.5257(15), C7-C11 1.3980(15), C9-C11 1.4068(15), C15-C16 1.5221(15), C15-C19 1.5269(15), C8-N1-C7 118.61(10), C9-N2-C8 111.78(9), C10-N3-C9 105.48(9), C10-N3-C12 123.99(9), C9-N3-C12 129.21(10), C10-N4-C11 103.33(10), C2-C1-C6 119.57(10), C2-C1-C7 118.25(9), C6-C1-C7 122.17(10), C3-C2-C1 121.00(10), C2-C3-C4 119.54(10), C3-C4-C5 120.08(10), C4-C5-C6 121.25(10), C5-C6-C1 118.47(10), C5-C6-C15 119.90(9), C1-C6-C15 121.53(9), N1-C7-C11 118.39(10), N1-C7-C1 117.97(9), C11–C7–C1 123.63(10), N2-C8-N1 128.48(10), N2-C9-N3 128.31(10), N2-C9-C11 125.93(10), N3-C9-C11 105.76(9), N4-C10-N3 115.08(10), N4-C11-C7 132.86(10), N4-C11-C9 110.35(9), C7-C11-C9 116.75(10), C16-C15-C6 114.04(9), C16-C15-C19 108.49(9), C6-C15-C19 109.57(9).

Figure S2. Structure of compound 4. Ellipsoids are shown at 50% level. Selected bond lengths [Å] and angles [°]: F1-C16 1.3473(19), F2-C16 1.3316(18), F3-C16 1.3472(18), N1-C8 1.3455(18), N1-C7 1.3473(17), N2-C9 1.3328(18), N2-C8 1.3407(19), N3-C9 1.3717(17), N3-C10 1.3743(17), N3-C12 1.4800(17), N4-C10 1.3152(18), N4-C11 1.3838(17), O1-C17 1.1991(19), O2-C17 1.3317(19), O2-C18 1.449(2), O3-C20 1.196(2), O4-C20 1.3365(19), O4-C21 1.467(2), O5-C23 1.2008(17), O6-C23 1.3423(16), O6-C24 1.4608(18), C1-C6 1.4030(19), C1-C2 1.4058(18), C1-C7 1.4978(18), C2-C3 1.3961(19), C2-C15 1.5227(19), C3-C4 1.384(2), C4-C5 1.385(2), C5-C6 1.4011(19), C6-C19 1.5178(18), C7-C11 1.3906(18), C9-C11 1.4081(18), C15-C16 1.515(2), C15-C17 1.523(2), C19-C20 1.5274(19), C19-C23 1.528(2), C8-N1-C7 118.12(12), C9-N2-C8 111.73(12), C9-N3-C10 105.64(11), C9-N3-C12 126.01(11), C10-N3-C12 128.34(12), C10-N4-C11 103.81(11), C6-C1-C2 C6-C1-C7 118.85(12), C2-C1-C7 121.90(12), C3-C2-C1 119.24(12), 119.60(13), C3-C2-C15 118.79(12), C1-C2-C15 121.54(12), C4-C3-C2 120.91(13), C3-C4-C5 119.89(13), C4-C5-C6 120.24(13), C5-C6-C1 120.08(12), C5-C6-C19 118.96(12), C1-C6-C19 120.96(12), N1-C7-C11 118.62(12), N1-C7-C1 119.44(12), C11-C7-C1 121.84(12), N2-C8-N1 128.65(13), N2-C9-N3 128.79(12), N2-C9-C11 125.48(12), N3-C9-C11 105.73(11), N4-C10-N3 114.45(12), N4-C11-C7 132.39(12), N4-C11-C9 110.35(12), C7-C11-C9 117.16(12), N3-C12-C13 110.13(12), C16-C15-C2 110.46(12), C16-C15-C17 111.16(12), C2-C15-C17 111.84(11), C6-C19-C20 110.65(11), C6-C19-C23 112.76(11), C20-C19-C23 108.66(11).