Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Cyrene as a Bio-based Solvent for HATU mediated Amide Coupling

Kirsty L. Wilson,¹ Jane Murray,² Craig Jamieson¹ and Allan J. B. Watson^{*3}

¹Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, UK; ²Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany; ³EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. Email: aw260@st-andrews.ac.uk

Contents

- 1. General
 - 1.1 Purification of Solvents
 - 1.2 Experimental Details
 - 1.3 Purification of Products
 - 1.4 Analysis of Products
- 2. General Experimental Procedures
 - 2.1 General Procedure A: Optimized Conditions
- 3. Reaction Optimization Data
 - 3.1 Time Study
 - 3.2 Stirring Rate Study
 - 3.3 Base Equivalency Study
 - 3.4 Stirring Rate Study 2
 - 3.5 Variation of Coupling Reagent
 - 3.6 Variation of Base
 - 3.7 Solvent Comparison
- 4. Procedure for the Large Scale Synthesis of Boc-Ile-Phe-OMe, 6c
- 5. Compound Characterization Data
 - 5.1 Products from Scheme 1
 - 5.2 Products from Scheme 2
- 6. Evidence of Enantiopurity
- 7. References
- 8. NMR Spectra for Products

Abbreviations

HATU 1-[bis(dimethylamino)methylene]-1*H*-1,2,3-triazolo[4,5-*b*]pyridinium-3-oxide hexafluorophosphate

1. General

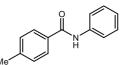
All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated. Purification was carried out according to standard laboratory methods.

1.1 Purification of Solvents

Cyrene was supplied directly by Circa and used as obtained. DMF was dried by heating to reflux over previously activated 4 Å molecular sieves and distilling under vacuum before being purged with, and stored under N_2 in a septum-sealed oven-dried flask over previously activated 4 Å molecular sieves. THF was obtained from a PureSolv SPS-400-5 solvent purification system and transferred to and stored in a septum-sealed oven-dried flask over previously activated 4 Å molecular sieves and purged with and stored under N_2 . CH₂Cl₂, Et₂O, EtOAc, MeCN, and petroleum ether 40-60° for purification purposes were used as obtained from suppliers without further purification.

1.2 Experimental Details

Reactions were carried out using conventional glassware equipped with a Biotage magnetic stirrer bar (10-20 mL, product number 353930). Room temperature was generally *ca.* 20 °C. Reactions were carried out at elevated temperatures using a temperature-regulated hotplate/stirrer.


1.3 Purification of Products

Thin layer chromatography was carried out using Merck silica plates coated with fluorescent indicator UV254. These were analyzed under 254 nm UV light or developed using vanillin solution. Normal phase flash chromatography was carried out using ZEOprep 60 HYD 40-63 μ m silica gel. Reverse phase flash chromatography was carried out using IST Isolute C18 cartridges.

1.4 Analysis of Products

Fourier Transformed Infra-Red (FTIR) spectra were obtained on a Shimadzu IRAffinity-1 machine. ¹H, ¹³C, and ¹⁹F spectra were obtained on either a Bruker DRX 500 spectrometer (Avance III HD console, Ascend 500 MHz magnet, BBO smart probe) at 500 MHz, 126 MHz, and 471 MHz respectively, or Bruker AV 400 at 400 MHz, 101 MHz and 376 MHz, respectively. Chemical shifts are reported in ppm and coupling constants are reported in Hz with CDCl₃ referenced at 7.26 (¹H) and 77.1 ppm (¹³C) and DMSO-d₆ referenced at 2.50 (¹H) and 39.5 (¹³C). Samples for quantitative NMR analysis were prepared through the addition of 1 mL of a 0.0625 M 1,4-dinitrobenzene standard to the organics prior to concentration. The conversion to product **4a** was calculated from the peak ratio of 4-methyl-N-phenylbenzamide (δ 2.40 ppm), and 1,4-dinitrobenzene (δ 8.39 ppm). High-resolution mass spectra were obtained through analysis at the EPSRC UK National Mass Spectrometry Facility at Swansea University.

2. General Experimental Procedures General Procedure A: Optimized Conditions

For example, synthesis of 4-methyl-N-phenylbenzamide, 3a.

To a 5 mL round-bottomed flask was added *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), and Cyrene (1.25 mL, 0.2 M). The reaction mixture was stirred at room temperature for 10 mins before the addition of aniline (25 μ L, 0.275 mmol, 1.1 equiv) and subsequently maintained at this temperature for 1 h with stirring. The solution was then diluted with EtOAc (20 mL), and washed with 2 M HCl (2 x 20 mL), sat. solution NaHCO₃ (2 x 20 mL), H₂O (20 mL), and brine (20 mL). The organics were then dried over Na₂SO₄ and concentrated under reduced pressure to give a residue which was subsequently purified by flash chromatography (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (51 mg, 97%).

¹H NMR (CDCl₃, 400 MHz): δ 7.86 (br s, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.36 (t, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (CDCl₃, 101 MHz): δ 165.8, 142.5, 138.2, 132.3, 129.6, 129.2, 127.2, 124.6, 120.3, 21.6.

Characterization data is consistent with literature reported values.¹

3. Reaction Optimization Data

3.1. Time Study

Reactions were carried out according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (87 μ L, 0.5 mmol, 2 equiv), aniline (25 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After **X** h at room temperature, the reaction mixture was subjected to the purification and sampling methods outlined in the General Procedure. Note that these experiments were run before stirring rate was identified as a key factor (see **3.2**).

Entry	Time (h)	Conversion $\mu \pm \sigma$ (%) ^a
1	1	84 ± 21
2	2	83 ± 27
3	4	81 ± 0
4	8	98 ± 2
5	16	91 ± 13
6	24	87 ± 13
7	48	86 ± 7

^a % conversion calculated by ¹H NMR using an internal standard. Presented as an average with standard deviation as a measure of consistency. n=3.

3.2. Stirring Rate Study

Reactions were carried out according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (87 μ L, 0.5 mmol, **2 equiv**), aniline (25 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). The reaction mixture was stirred at **X** rpm for 1 h. After 1 h at room temperature, the reaction mixture was subjected to the purification and sampling methods outlined in the General Procedure.

Entry	Stirring Rate (rpm)	Conversion $\mu \pm \sigma (\%)^a$
1	100	51 ± 10
2	200	73 ± 3
3	400	71 ± 3
4	800	96 ± 7
5	1200	91 ± 11

^a % conversion calculated by ¹H NMR using an internal standard. Presented as an average with standard deviation as a measure of consistency. n=3.

3.3. Base Equivalency Study

Reactions were carried out according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (**X** equiv), aniline (25 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). The reaction mixture was stirred at 400 rpm for 1 h. After 1 h at room temperature, the reaction mixture was subjected to the purification and sampling methods outlined in the General Procedure.

Entry	Base equiv	Base Vol (μL)	Conversion $\mu \pm \sigma (\%)^a$
1	1	44	83 ± 4
2	2	87	96 ± 7
3	3	131	92 ± 2
4	5	220	90 ± 6
5	10	440	96 ± 4
6	20	880	76 ± 2

^a % conversion calculated by ¹H NMR using an internal standard. Presented as an average with standard deviation as a measure of consistency. n=3.

3.4. Stirring Rate Study 2

Reactions were carried out according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, **3 equiv**), aniline (25 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). The reaction mixture was stirred at **X** rpm for 1 h. After 1 h at room temperature, the reaction mixture was subjected to the purification and sampling methods outlined in the General Procedure.

Entry	Stirring Rate (rpm)	Conversion $\mu \pm \sigma (\%)^a$
1	200	92 ± 5
2	400	92 ± 2
3	800	100 ± 0

^a % conversion calculated by ¹H NMR using an internal standard. Presented as an average with standard deviation as a measure of consistency. n=3.

3.5. Variation of Coupling Reagent

Reactions were carried out according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), **coupling reagent** (0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), aniline (25 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). The reaction mixture was stirred at 400 rpm for 1 h. After 1 h at room temperature, the reaction mixture was subjected to the purification and sampling methods outlined in the General Procedure.

Entry	Coupling Reagent	Conversion $\mu \pm \sigma (\%)^a$
1	HATU	92 ± 2
2	COMU	14 ± 2
3	DIC/HOBt	9 ± 7
4	РуВОР	29 ± 1
5	ТЗР	4 ± 2

^a % conversion calculated by ¹H NMR using an internal standard. Presented as an average with standard deviation as a measure of consistency. n=3.

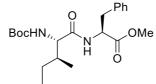
3.6. Variation of Base

Reactions were carried out according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), **base** (0.75 mmol, 3 equiv), aniline (25 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). The reaction mixture was stirred at 400 rpm for 1 h. After 1 h at room temperature, the reaction mixture was subjected to the purification and sampling methods outlined in the General Procedure.

Entry	Base	Conversion $\mu \pm \sigma (\%)^a$
1	DIPEA	92 ± 2
2	Et ₃ N	67 ± 4
3	NMM	43 ± 3
4	Lutidine	35 ± 1

^a % conversion calculated by ¹H NMR using an internal standard. Presented as an average with standard deviation as a measure of consistency. n=3.

3.7. Solvent Comparison


Reactions were carried out according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), aniline (25 μ L, 0.275 mmol, 1.1 equiv), and **Solvent** (1.25 mL, 0.2

M). The reaction mixture was stirred at 400 rpm for 1 h. After 1 h at room temperature, the reaction mixture was subjected to the purification and sampling methods outlined in the General Procedure.

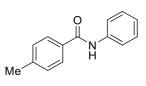
Entry	Solvent	Conversion $\mu \pm \sigma (\%)^a$
1	DMF	94 ± 1
2	Cyrene	92 ± 2
3	СРМЕ	18 ± 2
4	EtOAc	72 ± 6
5	IPA	29 ± 4
6	2-MeTHF	28 ± 5

^a % conversion calculated by ¹H NMR using an internal standard. Presented as an average with standard deviation as a measure of consistency. n=3.

4. Procedure for the Large Scale Synthesis of Boc-Ile-Phe-OMe, 6c

To a 100 mL round-bottomed flask was added Boc-Ile-OH (1 g, 4.3 mmol, 1 equiv), HATU (2 g, 5.2 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (2.2 mL, 12.9 mmol, 3 equiv), and Cyrene (22 mL, 0.2 M). The reaction mixture was stirred at room temperature for 10 mins before the addition of Phe-OMe.HCl (1 g, 4.8 mmol, 1.1 equiv) and subsequently maintained at this temperature for 1 h with stirring. The solution was then diluted with EtOAc (40 mL), and washed with 2 M HCl (2 x 100 mL), sat. solution NaHCO₃ (2 x 100 mL), H₂O (100 mL), and brine (50 mL). The organics were then dried over Na₂SO₄ and concentrated under reduced pressure to give a residue which was subsequently triturated with cold Et₂O to afford the title compound as a white solid (1.7 g, quant).

¹H NMR (CDCl₃, 500 MHz): δ 7.30 – 7.21 (m, 3H), 7.13 – 7.10 (m, 2H), 6.27 (d, *J* = 5.1 Hz, 1H), 4.97 (d, *J* = 4.7 Hz, 1H), 4.87 (dd, *J* = 13.7, 6.0 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.71 (s, 3H), 3.17 – 3.06 (m, 2H), 1.86 – 1.79 (m, 1H), 1.58 (br s, 1H), 1.44 (s, 9H), 1.07 (br s, 1H), 0.89 - 0.86 (m, 6H).

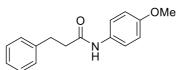

¹³C NMR (CDCl₃, 126 MHz): δ 171.8, 171.3, 155.8, 135.8, 129.4, 128.8, 127.3, 80.0, 59.4, 53.2, 52.4, 38.1, 37.4, 28.4, 24.8, 15.6, 11.6.

Characterization data is consistent with literature reported values.²

5. Compound Characterisation Data

5.1. Products from Schemes 1

3a: 4-Methyl-*N*-phenylbenzamide

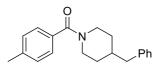


Prepared according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), aniline (25 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (51 mg, 97%).

¹H NMR (CDCl₃, 400 MHz): δ 7.86 (br s, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.36 (t, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (CDCl₃, 101 MHz): δ 165.8, 142.5, 138.2, 132.3, 129.6, 129.2, 127.2, 124.6, 120.3, 21.6.

Characterization data is consistent with literature reported values.¹

3b: *N*-(4-Methoxyphenyl)-3-phenylpropanamide


Prepared according to General Procedure A using 3-phenylpropanoic acid (37.5 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), 4-methoxyaniline (33.9 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (60.5 mg, 95%).

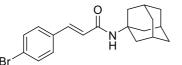
¹H NMR (CDCl₃, 500 MHz): δ 7.33 – 7.20 (m, 7H), 6.89 (s, 1H), 6.84 (d, *J* = 9.0 Hz, 2H), 3.78 (s, 3H), 3.06 (t, *J* = 7.6 Hz, 2H), 2.64 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (CDCl₃, 126 MHz): δ 170.3, 156.6, 140.9, 130.9, 128.8, 128.6, 126.5, 122.0, 114.3, 55.6, 39.5, 31.8.

Characterization data is consistent with literature reported values.³

3c: (4-Benzylpiperidin-1-yl)(*p*-tolyl)methanone

Prepared according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), 4-benzylpiperidine (48 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-25% EtOAc in petroleum ether) to afford the title compound as a colourless oil (73.7 mg, quant).


 v_{max} (liquid film): 2916, 2849, 1625, 1434 cm⁻¹.

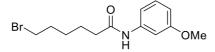
¹H NMR (DMSO- d_6 , 500 MHz): δ 7.21 (m, 6H), 7.20 – 7.16 (m, 3H), 4.00 (s, 2H), 2.87 (t, J = 12.6 Hz, 2H), 2.57 (d, J = 7.1 Hz, 2H), 2.34 (s, 3H), 1.88 – 1.79 (m, 1H), 1.62 (d, J = 12.8 Hz, 2H), 1.17 (qd, J = 12.6, 4.2 Hz, 2H).

¹³C NMR (DMSO-*d*₆, 126 MHz): δ 168.6, 139.5, 138.2, 133.4, 128.3, 128.2, 127.5, 126.1, 125.2, 43.9, 41.5, 36.7, 31.2, 20.2.

HRMS: exact mass calculated for $[M+H]^+$ (C₂₀H₂₄NO) requires *m/z* 294.1852, found *m/z* 294.1852.

3d: (E)-N-((3s,5s,7s)-Adamantan-1-yl)-3-(4-bromophenyl)acrylamide

Prepared according to General Procedure A using (*E*)-3-(4-bromophenyl)acrylic acid (56.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), 1-adamantylamine (41.6 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-15% EtOAc in petroleum ether) to afford the title compound as a white solid (83.8 mg, 93%).


v_{max} (solid): 3304, 2901, 2854, 1659, 1616, 1536 cm⁻¹.

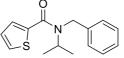
¹H NMR (CDCl₃, 500 MHz): δ 7.50 – 7.45 (m, 3H), 7.32 (d, J = 8.4 Hz, 2H), 6.32 (d, J = 15.5 Hz, 1H), 5.36 (br s, 1H), 2.10 (app s, 3H), 2.07 (app s, 6H), 1.70 (app s, 6H).

¹³C NMR (CDCl₃, 126 MHz): δ 164.6, 139.0, 134.1, 132.1, 129.2, 123.6, 123.0, 52.4, 41.8, 36.5, 29.6.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₉H₂₃BrNO) requires *m/z* 362.0937, found *m/z* 352.0940.

3e: 6-Bromo-N-(3-methoxyphenyl)hexanamide

Prepared according to General Procedure A using 6-bromohexanoic acid (48.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), 3-methoxyaniline (31 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-30% EtOAc in petroleum ether) to afford the title compound as a colourless oil (70.4 mg, 94%).


υ_{max} (liquid film): 3291, 2929, 2856, 1659, 1597, 1543 cm⁻¹.

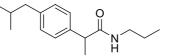
¹H NMR (CDCl₃, 500 MHz): δ 7.42 (br s, 1H), 7.31 (s, 1H), 7.19 (t, *J* = 8.1 Hz, 1H), 6.96 (d, *J* = 7.7 Hz, 1H), 6.65 (d, *J* = 8.1 Hz, 1H), 3.78 (s, 3H), 3.40 (t, *J* = 6.7 Hz, 2H), 2.35 (t, *J* = 7.5 Hz, 2H), 1.91 – 1.84 (m, 2H), 1.74 (m, 2H), 1.51 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz): δ 171.2, 160.3, 139.3, 129.8, 112.0, 110.2, 105.7, 55.4, 37.6, 33.7, 32.6, 27.8, 24.7.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₃H₁₉BrNO₂) requires *m/z* 302.0573, found *m/z* 302.0574.

3f: N-Benzyl-N-isopropylthiophene-2-carboxamide

Prepared according to General Procedure A using 2-thiophenecarboxylic acid (32 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), *N*-isopropylbenzylamine (46 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-15% EtOAc in petroleum ether) to afford the title compound as a colourless oil (61.3 mg, 95%).


v_{max} (liquid film): 2966, 2931, 1601 cm⁻¹.

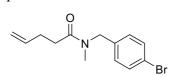
¹H NMR (DMSO- d_6 , 500 MHz): δ 7.67 (d, J = 5.0 Hz, 1H), 7.35 – 7.28 (m, 5H), 7.23 (t, J = 6.9 Hz, 1H), 7.07 (t, J = 8.7 Hz, 1H), 4.68 (s, 2H), 4.48 (hept, J = 6.7 Hz, 1H), 1.18 (d, J = 6.7 Hz, 6H).

¹³C NMR (DMSO-*d*₆, 126 MHz): δ 163.6, 138.9, 138.1, 128.4, 127.8, 127.4, 126.5, 126.2, 126.2, 49.1, 45.7, 20.2.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₅H₁₈NOS) requires m/z 260.1104, found m/z 260.1104.

3g: 2-(4-Isobutylphenyl)-N-propylpropanamide

Prepared according to General Procedure A using 2-(4-isobutylphenyl)propanoic acid (51.6 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), propylamine (23 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-30% EtOAc in petroleum ether) to afford the title compound as a colourless oil (48.4 mg, 78%).


υ_{max} (liquid film): 3286, 2955, 2927, 2867, 1644, 1547 cm⁻¹.

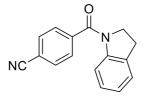
¹H NMR (CDCl₃, 500 MHz): δ 7.18 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.1 Hz, 2H), 5.33 (br s, 1H), 3.52 (q, J = 7.2 Hz, 1H), 3.14 (q, J = 7.0 Hz, 2H), 2.45 (d, J = 7.2 Hz, 2H), 1.91 – 1.79 (m, 1H), 1.51 (d, J = 7.2 Hz, 3H), 1.45 – 1.37 (m, 2H), 0.89 (d, J = 6.6 Hz, 6H), 0.80 (t, J = 7.4 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 174.6, 140.8, 138.8, 129.7, 127.5, 46.9, 45.1, 41.4, 30.3, 22.9, 22.5, 18.6, 11.3.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₆H₂₆NO) requires m/z 248.2009, found m/z 248.2011.

3h: N-(4-Bromobenzyl)-N-methylpent-4-enamide

Prepared according to General Procedure A using 4-pentenoic acid (25.5 μ L, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), (4-bromobenzyl)methylamine (55 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-30% EtOAc in petroleum ether) to afford the title compound as a colourless oil (67.1 mg, 95%).


v_{max} (liquid film): 2920, 1634, 1488, 1400 cm⁻¹.

¹H NMR (DMSO- d_6 , 500 MHz): δ 7.51 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.3 Hz, 2H), 5.91 – 5.81 (m, 1H), 5.04 (d, J = 17.2 Hz, 1H), 4.96 (d, J = 10.2 Hz, 1H), 4.51 (s, 2H), 2.90 (s, 3H), 2.45 (t, J = 7.3 Hz, 2H), 2.32 (q, J = 7.1 Hz, 2H).

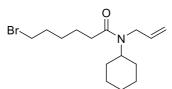
¹³C NMR (DMSO-*d*₆, 126 MHz): δ 171.1, 137.4, 136.9, 130.8, 128.9, 119.5, 114.2, 49.6 (br s), 33.9 (br s), 31.3, 28.1.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₃H₁₇BrNO) requires *m/z* 284.0468, found *m/z* 248.0467.

3i: 4-(Indoline-1-carbonyl)benzonitrile

Prepared according to General Procedure A using 4-cyanobenzoic acid (36.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), indoline (28.1 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-15% EtOAc in petroleum ether) to afford the title compound as a white solid (57 mg, 92%).

v_{max} (solid): 2921, 2226, 1640, 1597, 1398 cm⁻¹.


¹H NMR (DMSO- d_6 , 500 MHz, 300 K): δ 8.10 (app s, 1H), 7.98 (d, J = 8.0 Hz, 2H), 7.79 (app s, 2H), 7.29 (d, J = 7.2 Hz, 1H), 7.23 (app s, 1H), 7.08 (app s, 1H), 3.95 (app s, 2H), 3.09 (t, J = 8.1 Hz, 2H).

¹H NMR (DMSO- d_6 , 500 MHz, 355 K): δ 7.94 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 7.4 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 3.98 (t, J = 8.3 Hz, 2H), 3.11 (t, J = 8.3 Hz, 2H). Indicated proton is not observed.

¹³C NMR (DMSO-*d*₆, 126 MHz, 355 K): δ 165.9, 141.9, 140.9, 132.3, 132.1, 127.4, 126.4, 124.6, 123.6, 117.7, 115.9, 112.3, 49.6, 27.2.

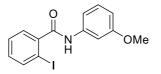
HRMS: exact mass calculated for $[M+H]^+$ (C₁₃H₁₆NO) requires *m/z* 249.1022, found *m/z* 249.1022.

3j: N-Allyl-6-bromo-N-cyclohexylhexanamide

Prepared according to General Procedure A using 6-bromohexanoic acid (48.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), allylcyclohexylamine (40 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a colourless oil (70.6 mg, 90%).

υ_{max} (liquid film): 2925, 2853, 1633, 1413 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 5.87 – 5.70 (m, 1H), 5.19 – 5.02 (m, 2H), 4.47 – 4.37 (m, 0.58H), 3.88 (app d, J = 5.6 Hz, 0.74H), 3.83 – 3.79 (m, 1.23H), 3.56 (tt, J = 11.8, 3.6 Hz, 0.38H), 3.40 (app q, J = 7.0 Hz, 2H), 2.38 – 2.33 (m, 0.73H), 2.28 – 2.24 (m, 1.23H), 1.93 – 1.60 (m, 9H), 1.54 – 1.24 (m, 6H), 1.14 – 0.99 (m, 1H). Rotamers observed

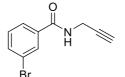

¹³C NMR (CDCl₃, 126 MHz): δ 173.1, 172.1, 135.9, 135.8, 116.2, 115.6, 57.4, 53.4, 45.6, 44.1, 33.9, 33.5, 33.4, 32.8, 32.1, 30.9, 28.1, 28.1, 26.1, 25.9, 25.7, 25.4, 24.6. Rotamers observed

¹H NMR (DMSO- d_6 , 500 MHz, 373 K): δ 5.86 – 5.76 (m, 1H), 5.16 – 5.04 (m, 2H), 3.86 (d, J = 5.0 Hz, 2H), 3.50 (t, J = 6.7 Hz, 2H), 2.29 (app s, 2H), 1.87 – 1.80 (m, 2H), 1.76 (d, J = 13.2 Hz, 2H), 1.65 – 1.55 (m, 6H), 1.50 – 1.40 (m, 4H), 1.35-1.27 (m, 2H), 1.15 – 1.05 (m, 1H).

¹³C NMR (DMSO-*d*₆, 126 MHz, 373 K): δ 171.0, 136.2, 114.6, 60.3, 49.1, 34.0, 32.1, 31.7, 30.3, 26.9, 25.1, 24.5, 23.6.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₅H₂₇BrNO) requires *m/z* 316.1271, found *m/z* 316.1273.

3k: 2-Iodo-*N*-(3-methoxyphenyl)benzamide


Prepared according to General Procedure A using 2-iodobenzoic acid (62 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), 3-methoxyaniline (31 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (62.9 mg, 71%).

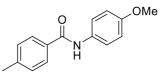
¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.53 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.45 – 7.40 (m, 3H), 7.27 (t, *J* = 8.1 Hz, 1H), 7.15 (td, *J* = 7.8, 1.5 Hz, 1H), 7.10 (d, *J* = 7.1 Hz, 1H), 6.73 (dd, *J* = 8.3, 2.0 Hz, 1H), 3.84 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 167.3, 160.4, 142.3, 140.2, 138.9, 131.7, 129.9, 128.7, 128.53, 112.3, 110.9, 105.9, 92.4, 55.6.

Characterization data is consistent with literature reported values.⁴

3l: 3-Bromo-*N*-(prop-2-yn-1-yl)benzamide

Prepared according to General Procedure A using 3-bromobenzoic acid (50.3 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), propargylamine (17.6 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (37.6 mg, 63%).

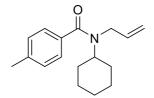

υ_{max} (solid): 3280, 3065, 2914, 2847, 1638, 1536 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 7.93 (t, J = 1.8 Hz, 1H), 7.70 (dt, J = 7.8, 1.4 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 7.9 Hz, 1H), 6.23 (br s, 1H), 4.25 (dd, J = 5.2, 2.6 Hz, 2H), 2.30 (t, J = 2.6 Hz, 1H).

¹³C NMR (CDCl₃, 126 MHz): δ 165.8, 135.9, 134.9, 130.4, 130.4, 125.7, 123.0, 79.3, 72.4, 30.1.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₀H₉BrNO) requires *m/z* 239.9842, found *m/z* 239.9845.

3m: *N*-(4-Methoxyphenyl)-4-methylbenzamide


Prepared according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), 4-methoxyaniline (33.9 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (61.5 mg, 95%).

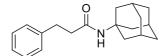
¹H NMR (CDCl₃, 400 MHz): δ 7.78 (br s, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 8.9 Hz, 2H), 7.26 (d, *J* = 7.9 Hz, 2H), 6.89 (d, *J* = 9.0 Hz, 2H), 3.81 (s, 3H), 2.41 (s, 3H).

¹³C NMR (CDCl₃, 101 MHz): δ 165.7, 156.7, 142.3, 132.3, 131.3, 129.5, 127.1, 122.2, 114.4, 55.6, 21.6.

Characterization data is consistent with literature reported values.⁵

3n: *N*-Allyl-*N*-cyclohexyl-4-methylbenzamide

Prepared according to General Procedure A using *p*-toluic acid (34 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), allylcyclohexylamine (40 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (41.5 mg, 63%).

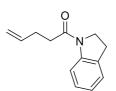

 v_{max} (solid): 2925, 2853, 1625, 1409 cm⁻¹.

¹H NMR (DMSO- d_6 , 500 MHz): δ 7.22 (app s, 4H), 5.84 (m, 1H), 5.14 (d, J = 17.2 Hz, 1H), 5.07 (dd, J = 10.3, 1.5 Hz, 1H), 3.92 (d, J = 5.2 Hz, 2H), 3.71 (app s, 1H), 2.34 (s, 3H), 1.76 – 1.65 (m, 4H), 1.63 – 1.51 (m, 3H), 1.08 (m, 3H).

¹³C NMR (DMSO-*d*₆, 126 MHz): δ 170.2, 137.9, 135.8, 134.5, 128.3, 125.6, 115.1, 56.5, 44.8, 30.4, 25.1, 24.4, 20.3.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₇H₂₄NO) requires m/z 258.1852, found m/z 258.1853.

30: N-((3s,5s,7s)-Adamantan-1-yl)-3-phenylpropanamide



Prepared according to General Procedure A using 3-phenylpropanoic acid (37.5 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), 1-adamantylamine (41.6 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was diluted with EtOAc (20 mL), and washed with 2 M HCl (2 x 20 mL), sat. solution NaHCO3 (2 x 20 mL), H₂O (20 mL), and brine (20 mL). The organics were then dried over Na₂SO₄ and concentrated under reduced pressure to give a residue which was recrystallized from EtOAc/petroleum ether to afford the title compound as a white solid (71.6 mg, quant.).

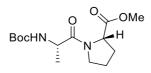
¹H NMR (CDCl₃, 500 MHz): δ 7.30 – 7.25 (m, 2H), 7.21 – 7.17 (m, 3H), 4.99 (br s, 1H), 2.92 (t, *J* = 7.6 Hz, 2H), 2.37 (t, *J* = 7.6 Hz, 2H), 2.04 (app s, 3H), 1.92 (app d, *J* = 2.7 Hz, 6H), 1.65 (app s, 6H).

¹³C NMR (CDCl₃, 126 MHz): δ 171.3, 141.2, 128.6, 126.2, 51.9, 41.7, 39.7, 36.5, 31.9, 29.5. Characterization data is consistent with literature reported values.⁶

3p: 1-(Indolin-1-yl)pent-4-en-1-one

Prepared according to General Procedure A using 4-pentenoic acid (25.5 μ L, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), indoline (28.1 μ L, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the

General Procedure (silica gel, 0-25% EtOAc in petroleum ether) to afford the title compound as a white solid (47.8 mg, 95%).

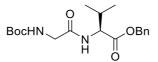

¹H NMR (CDCl₃, 500 MHz): δ 8.24 (d, J = 8.0 Hz, 1H), 7.21 – 7.16 (m, 2H), 7.01 (td, J = 7.5, 0.7 Hz, 1H), 5.98 – 5.89 (m, 1H), 5.11 (d, J = 17.2 Hz, 1H), 5.03 (d, J = 10.2 Hz, 1H), 4.06 (t, J = 8.5 Hz, 2H), 3.20 (t, J = 8.4 Hz, 2H), 2.52 (app s, 4H).

¹³C NMR (CDCl₃, 126 MHz): δ 170.6, 143.2, 137.6, 131.1, 127.7, 124.6, 123.7, 117.2, 115.5, 48.1, 35.4, 28.7, 28.2.

Characterization data is consistent with literature reported values.⁷

5.2. Products from Scheme 2

6a: Boc-Ala-Pro-OMe


Prepared according to General Procedure A using Boc-Ala-OH (47.3 mg, 0.25 mmol, 1 equiv), HATU (238 mg, 0.625 mmol, 2.5 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Pro-OMe.HCl (45.5 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-30% EtOAc in petroleum ether) to afford the title compound as a colourless oil (67.2 mg, 89%).

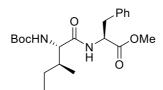
¹H NMR (CDCl₃, 500 MHz): δ 5.33 (d, *J* = 7.8 Hz, 1H), 4.56 – 4.41 (m, 2H), 3.71 (s, 3H), 3.74 – 3.67 (m, 1H), 3.63 – 3.56 (m, 1H), 2.27 – 2.17 (m, 1H), 2.10 – 1.95 (m, 3H), 1.42 (s, 9H), 1.35 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (CDCl₃, 126 MHz): δ 172.6, 171.9, 155.4, 79.7, 58.8, 52.4, 47.9, 46.9, 29.1, 28.5, 25.1, 18.5.

Characterization data is consistent with literature reported values.⁸

6b: Boc-Gly-Val-OBn

Prepared according to General Procedure A using Boc-Gly-OH (43.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Val-OBn.HCl (67 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-35% EtOAc in petroleum ether) to afford the title compound as a colouless oil (50 mg, 56%).

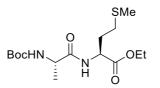

Prepared according to General Procedure A using Boc-Gly-OH (43.8 mg, 0.25 mmol, 1 equiv), HATU (238 mg, 0.625 mmol, 2.5 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Val-OBn.HCl (67 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the

General Procedure (silica gel, 0-35% EtOAc in petroleum ether) to afford the title compound as a colouless oil (50 mg, 77%).

¹H NMR (CDCl₃, 500 MHz): δ 7.42 – 7.31 (m, 5H), 6.60 (d, J = 7.9 Hz, 1H), 5.17 (q, J = 12.2 Hz, 2H), 5.15 (br s, 1H), 4.61 (dd, J = 8.8, 4.7 Hz, 1H), 3.82 (ddd, J = 44.0, 16.7, 5.8 Hz, 2H), 2.24 – 2.16 (m, 1H), 1.45 (s, 9H), 0.92 (d, J = 6.9 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 171.8, 169.6, 156.2, 135.4, 128.8, 128.6, 128.5, 80.5, 67.2, 57.1, 44.7, 31.5, 28.4, 19.1, 17.6.

Characterization data is consistent with literature reported values.⁹

6c: Boc-Ile-Phe-OMe


Prepared according to General Procedure A using Boc-Ile-OH (57.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Phe-OMe.HCl (59.3 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (93 mg, 95%).

¹H NMR (CDCl₃, 500 MHz): δ 7.30 – 7.21 (m, 3H), 7.13 – 7.10 (m, 2H), 6.27 (d, *J* = 5.1 Hz, 1H), 4.97 (d, *J* = 4.7 Hz, 1H), 4.87 (dd, *J* = 13.7, 6.0 Hz, 1H), 3.96 – 3.87 (m, 1H), 3.71 (s, 3H), 3.17 – 3.06 (m, 2H), 1.86 – 1.79 (m, 1H), 1.58 (br s, 1H), 1.44 (s, 9H), 1.07 (br s, 1H), 0.89 - 0.86 (m, 6H).

¹³C NMR (CDCl₃, 126 MHz): δ 171.8, 171.3, 155.8, 135.8, 129.4, 128.8, 127.3, 80.0, 59.4, 53.2, 52.4, 38.1, 37.4, 28.4, 24.8, 15.6, 11.6.

Characterization data is consistent with literature reported values.²

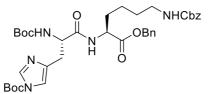
6d: Boc-Ala-Met-OEt

Prepared according to General Procedure A using Boc-Ala-OH (47.3 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Met-OEt.HCl (58.8 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-30% EtOAc in petroleum ether) to afford the title compound as a white solid (47.3 mg, 54%).

Prepared according to General Procedure A using (*tert*-butoxycarbonyl)-*L*-alanine (47.3 mg, 0.25 mmol, 1 equiv), HATU (238 mg, 0.625 mmol, 2.5 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), ethyl *L*-methioninate hydrochloride (58.8 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the

purification method outlined in the General Procedure (silica gel, 0-30% EtOAc in petroleum ether) to afford the title compound as a white solid (87.3 mg, quant.).

 $[\alpha]_D^{20} = -6.97$ (c 0.01, CH₂Cl₂).


υ_{max} (solid): 3331, 3308, 2975, 2927, 1746, 1679, 1651, 1515, 1158 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 6.78 (d, J = 7.3 Hz, 1H), 5.02 (br s, 1H), 4.65 (td, J = 7.6, 5.1 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 4.16 (br s, 1H), 2.52 – 2.47 (m, 2H), 2.20 – 2.11 (m, 1H), 2.08 (s, 3H), 2.03 – 1.93 (m, 1H), 1.44 (s, 9H), 1.35 (d, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H).

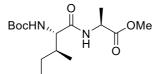
¹³C NMR (CDCl₃, 126 MHz): δ 172.6, 171.8, 155.6, 80.3, 61.8, 51.7, 50.2, 31.9, 30.0, 28.4, 18.2, 15.6, 14.3.

HRMS: exact mass calculated for $[M+H]^+$ (C₁₅H₃₀N₂O₅S) requires *m/z* 349.1792, found *m/z* 349.1792.

6e: Boc-His(Boc)-Lys(CBz)-OBn

Prepared according to General Procedure A using Boc-His(Boc)-OH (88.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Lys(CBz)-OBn.HCl (111.9 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-50% EtOAc in petroleum ether) to afford the title compound as a white gum (140.8 mg, 80%).

 $[\alpha]_D^{20} = +3.7$ (c 0.01, CH₂Cl₂).

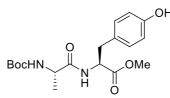

υ_{max} (solid): 3331, 3282, 3308, 2977, 2927, 1748, 1681, 1651, 1517, 1158 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 7.98 (s, 1H), 7.36 – 7.28 (m, 11H), 7.14 (s, 1H), 6.08 (s, 1H), 5.17 – 5.08 (m, 4H), 4.91 (s, 1H), 4.59 – 4.53 (m, 1H), 4.43 (s, 1H), 3.12 – 2.88 (m, 4H), 1.86 (s, 1H), 1.80 – 1.71 (m, 1H), 1.67 – 1.59 (m, 2H), 1.58 (s,9H), 1.43 (s, 9H), 1.20 - 1.14 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz): δ 171.89, 171.49, 156.6, 155.8, 147.1, 139.3, 136.9, 136.8, 135.4, 128.7, 128.6, 128.5, 128.3, 128.2, 114.9, 85.9, 80.2, 67.2, 66.7, 54.3, 52.0, 40.7, 32.1, 30.2, 29.2, 28.4, 28.0, 22.1. CBz carbonyl not observed.

HRMS: exact mass calculated for $[M+H]^+$ (C₃₇H₅₀N₅O₉) requires *m/z* 708.3603, found *m/z* 708.3598.

6f: Boc-Ile-Ala-OMe

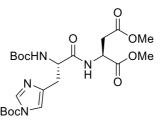


Prepared according to General Procedure A using Boc-Ile-OH (57.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Ala-OMe.HCl (38.4 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (55.4 mg, 72%).

¹H NMR (CDCl₃, 500 MHz): δ 6.46 (d, J = 5.8 Hz, 1H), 5.06 (d, J = 5.4 Hz, 1H), 4.58 (p, J = 7.2 Hz, 1H), 3.98 – 3.91 (m, 1H), 3.74 (s, 3H), 1.86 (s, 1H), 1.50 (s, 1H), 1.44 (s, 9H), 1.40 (d, J = 7.2 Hz, 3H), 1.19 – 1.09 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 173.3, 171.2, 155.9, 80.1, 59.3, 52.6, 48.1, 37.5, 28.4, 24.9, 18.5, 15.6, 11.6.

Characterization data is consistent with literature reported values.¹⁰

6g: Boc-Ala-Tyr-OMe



Prepared according to General Procedure A using Boc-Ala-OH (47.3 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Tyr-OMe.HCl (63.7 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-30% EtOAc in petroleum ether) to afford the title compound as a colourless oil (64.4 mg, 70%).

¹H NMR (CDCl₃, 500 MHz): δ 6.93 (d, J = 8.4 Hz, 2H), 6.71 (d, J = 8.3 Hz, 2H), 6.60 (d, J = 7.1 Hz, 1H), 6.15 (s, 1H), 5.01 (s, 1H), 4.81 (dt, J = 7.9, 5.8 Hz, 1H), 4.14 (s, 1H), 3.72 (s, 3H), 3.11 – 2.96 (m, 2H), 1.44 (s, 9H), 1.30 (d, J = 6.6 Hz, 3H).

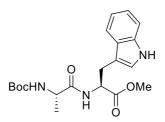
¹³C NMR (CDCl₃, 126 MHz): δ 172.5, 172.0, 155.4, 130.6, 127.4, 115.7, 80.5, 53.5, 52.5, 50.3, 37.3, 28.5, 18.4. C=O of carbamate overlaps with OH bearing carbon. Characterization data is consistent with literature reported values.¹¹

6h: Boc-His(Boc)-Asp(OMe)-OMe

Prepared according to General Procedure A using Boc-His(Boc)-OH (88.8 mg, 0.25 mmol, 1 equiv), HATU (238 mg, 0.625 mmol, 2.5 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Asp(OMe)-OMe.HCl (54.3 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined

in the General Procedure (silica gel, 0-70% EtOAc in petroleum ether) to afford the title compound as a colourless oil (78.1 mg, 63%).

 $[\alpha]_D^{20} = +40.3$ (c 0.002, CH₂Cl₂).


υ_{max} (liquid film): 3338, 2977, 2953, 2927, 1752, 1391, 1255, 1160 cm⁻¹.

¹H NMR (CDCl₃, 500 MHz): δ 7.98 (s, 1H), 7.39 (br s, 1H), 7.15 (s, 1H), 6.06 (br s, 1H), 4.83 – 4.73 (m, 1H), 4.45 (br s, 1H), 3.71 (s, 3H), 3.64 (s, 3H), 3.08 (d, *J* = 10.8 Hz, 1H), 2.93 (dd, *J* = 17.2, 4.6 Hz, 2H), 2.71 (dd, *J* = 17.1, 4.5 Hz, 1H), 1.60 (s, 9H), 1.45 (s, 9H).

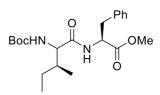
¹³C NMR (CDCl₃, 126 MHz): δ 171.4, 171.2, 170.9, 155.7, 147.1, 139.1, 136.9, 114.9, 85.8, 80.2, 54.4, 52.8, 52.1, 48.7, 36.2, 30.3, 28.4, 28.0.

HRMS: exact mass calculated for $[M+H]^+$ (C₂₂H₃₅N₄O₉) requires *m/z* 499.2399, found *m/z* 499.2391.

6i: Boc-Ala-Trp-OMe

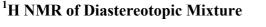
Prepared according to General Procedure A using Boc-Ala-OH (47.3 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Trp-OMe.HCl (70 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-35% EtOAc in petroleum ether) to afford the title compound as a white solid (85.6 mg, 88%).

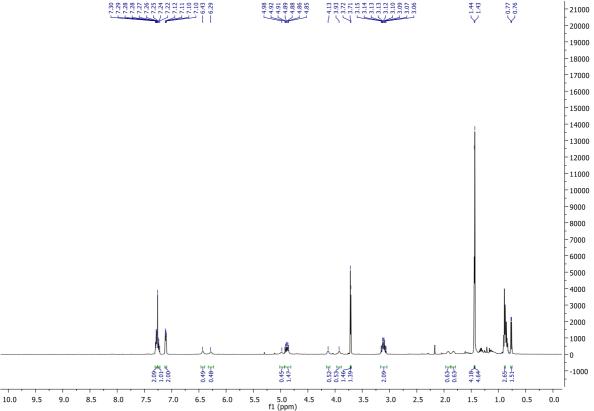
¹H NMR (CDCl₃, 500 MHz): δ 8.22 (br s, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.02 (s, 1H), 6.56 (d, *J* = 7.7 Hz, 1H), 4.94 (br s, 1H), 4.90 (dt, *J* = 7.7, 5.4 Hz, 1H), 4.13 (br s, 1H), 3.66 (s, 3H), 3.32 (d, *J* = 5.4 Hz, 2H), 1.41 (s, 9H), 1.29 (d, *J* = 6.3 Hz, 3H).

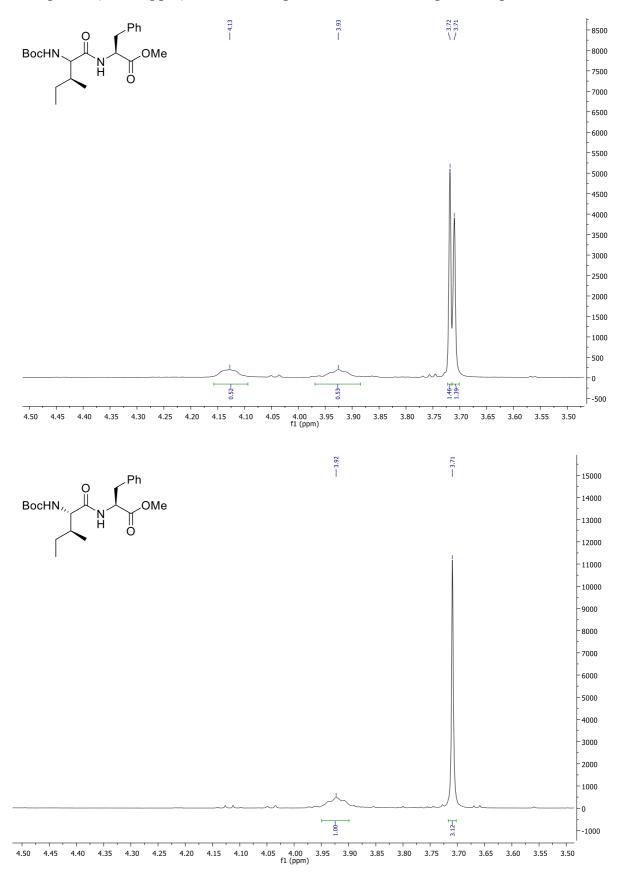

¹³C NMR (CDCl₃, 126 MHz): δ 172.4, 172.2, 155.5, 136.2, 127.8, 123.1, 122.4, 119.8, 118.7, 111.4, 110.0, 80.1, 60.5, 53.1, 52.5, 28.4, 27.7, 18.5.

Characterization data is consistent with literature reported values.¹²

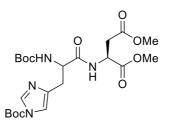
6. Evidence of Enantiopurity

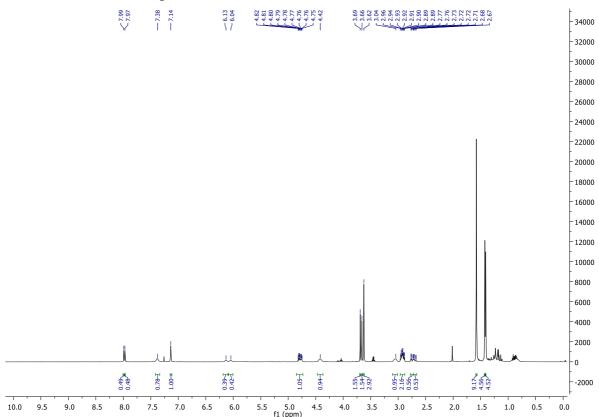

The DL-L enantiomers of the following peptides were synthesized and the 1H NMR of the diastereotopic mixture compared to those of the enantiopure analogues.


Boc-(DL)Ile-Phe-OMe

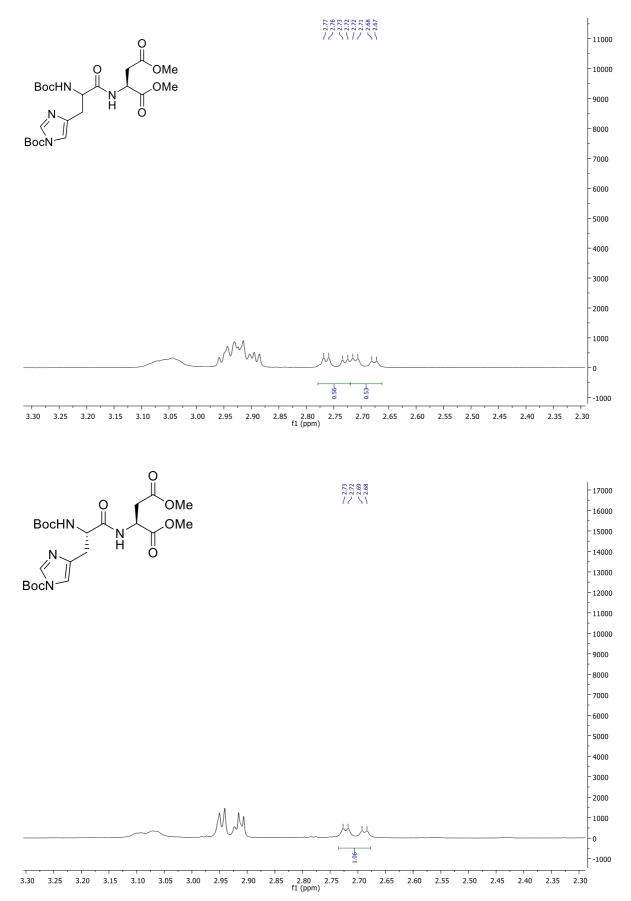


Prepared according to General Procedure A using Boc-(DL)Ile-OH (57.8 mg, 0.25 mmol, 1 equiv), HATU (114 mg, 0.3 mmol, 1.2 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Phe-OMe.HCl (59.3 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-20% EtOAc in petroleum ether) to afford the title compound as a white solid (102 mg, quant).


¹H NMR (CDCl₃, 500 MHz): δ 1H NMR (500 MHz, CDCl₃) δ 7.31 – 7.21 (m, 3H), 7.11 (m, 2H), 6.43 (DL br s, 0.5H), 6.29 (LL br s, 0.5H), 4.98 (LL br s, 0.5H), 4.89 (m, 1.5H), 4.13 (DL br s, 0.5H), 3.93 (LL br s, 0.5H), 3.72 (DL s, 1.5H), 3.71 (LL s, 1.5H), 3.17 – 3.05 (m, 2H), 1.92 (DL br s, 0.5H), 1.83 (LL br s, 0.5H), 1.44 (LL s, 4.5H), 1.43 (DL s, 4.5H), 0.88 (m, 6.5H), 0.76 (DL d, J = 6.9 Hz, 1.5H).



¹H Spectra (4.5-3.5 ppm) of diastereotopic mixture vs enantiopure compound


Prepared according to General Procedure A using Boc-(DL)His(Boc)-OH (88.8 mg, 0.25 mmol, 1 equiv), HATU (238 mg, 0.625 mmol, 2.5 equiv), *N*,*N*-diisopropylethylamine (131 μ L, 0.75 mmol, 3 equiv), Asp(OMe)-OMe.HCl (54.3 mg, 0.275 mmol, 1.1 equiv), and Cyrene (1.25 mL, 0.2 M). After 1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure (silica gel, 0-70% EtOAc in petroleum ether) to afford the title compound as a colourless oil (74.2 mg, 59%).

¹H NMR (CDCl₃, 500 MHz): δ 1H NMR (500 MHz, CDCl₃) δ 7.99 (DL s, 0.5H), 7.97 (LL s, 0.5H), 7.38 (br s, 1H), 7.14 (s, 1H), 6.13 (DL br s, 0.5H), 6.04 (LL br s, 0.5H), 4.84 – 4.73 (m, 1H), 4.42 (br s, 1H), 3.69 (LL s, 1.5H), 3.66 (DL s, 1.5H), 3.62 (s, 3H), 3.04 (br s, 1H), 2.92 (m, 2H), 2.75 (DL dd, J = 17.3, 4.6 Hz, 0.5H), 2.69 (LL dd, J = 17.1, 4.5 Hz, 0.5H), 1.58 (s, 9H), 1.42 (LL s, 4.5H), 1.41 (DL s, 4.5H).

¹H NMR of Diastereotopic Mixture

7. References

- 1 Y.-C. Teo, F.-F. Yong, I. K. Ithnin, S.-H. T. Yio and Z. Lin, *Eur. J. Org. Chem.*, 2013, **3**, 515–524.
- 2 A. Banerjee, G. Palui and A. Banerjee, *Soft Matter*, 2008, 4, 1430–1437.
- 3 S. Hanada, E. Tsutsumi, Y. Motoyama and H. Nagashima, *J. Am. Chem. Soc.*, 2009, **131**, 15032–15040.
- 4 K. Dev and R. Maurya, *RSC Adv.*, 2015, **5**, 13102–13106.
- 5 T. Ben Halima, J. K. Vandavasi, M. Shkoor and S. G. Newman, *ACS Catal.*, 2017, 7, 2176–2180.
- 6 I. Shiina and Y. Kawakita, *Tetrahedron*, 2004, **60**, 4729–4733.
- 7 G. Ma, W. Wan, J. Li, Q. Hu, H. Jiang, S. Zhu, J. Wang and J. Hao, *Chem. Commun.*, 2014, **50**, 9749–9752.
- 8 M. Inman, H. L. Dexter and C. J. Moody, Org. Lett., 2017, 19, 3454–3457.
- 9 F.-C. Wu, C.-S. Da, Z.-X. Du, Q.-P. Guo, W.-P. Li, L. Yi, Y.-N. Jia and X. Ma, *J*. *Org. Chem.*, 2009, **74**, 4812–4818.
- 10 J. C. Slootweg, E. F. van Herwerden, M. F. M. Van Doremalen, E. Breukink, R. M. J. Liskamp and D. T. S. Rijkers, *Org. Biomol. Chem.*, 2015, **13**, 5997–6009.
- 11 R. Ramesh, K. De, S. Gupta and S. Chandrasekaran, *J. Chem. Sci.*, 2008, **120**, 163–173.
- 12 S. M. Mali and H. N. Gopi, J. Org. Chem., 2014, 79, 2377–2383.