Supplementary Information

for

Design of RGD-ATWLPPR peptide conjugates for dual targeting of $\alpha_{v} \beta_{3}$ integrin and neuropilin-1

Fabien Thoreau, ${ }^{\text {a,b }}$ Laetitia Vanwonterghem, ${ }^{b}$ Maxime Henry, ${ }^{\text {b }}$ Jean-Luc Coll ${ }^{* b}$ and Didier Boturyn*a
${ }^{\text {a. }}$ Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-380oo Grenoble, France
${ }^{\text {b. }}$ Univ. Grenoble Alpes, INSERM U1209 - UMR CNRS 5309, Institute for Advanced Biosciences, F-38700 Grenoble, France

TABLE OF CONTENTS

1) Reagents and materials. 3
2) General procedures for peptide synthesis 4
a) General Procedure for Solid-Phase Peptide Synthesis 4
b) General Procedure for Cyclization Reactions 4
3) Synthesis of peptide conjugate 1 5
a) Synthesis of linear decapeptide intermediate 8 5
b) Synthesis of cyclodecapeptide 5 6
c) Synthesis of RGD derivative 11 8
d) Synthesis of Cy5.5 RGD derivative 12 10
e) Synthesis of peptide A7R 7 12
f) Synthesis of conjugate 1 14
4) Synthesis of fluorescent peptide conjugates $\mathbf{2}$ and $\mathbf{4}$ 16
a) Synthesis of linear decapeptide intermediate $\mathbf{1 3}$ 16
b) Synthesis of cyclodecapeptide 14 17
c) Synthesis of RGD derivative 15 19
d) Synthesis of R $\beta A D$ derivative 16 21
e) Synthesis of fluorescent RGD peptide conjugate 2 23
f) Synthesis of fluorescent R β AD peptide conjugate 4 25
5) Synthesis of fluorescent A7R peptide $\mathbf{3}$ 27
a) Synthesis of peptide intermediate $\mathbf{1 8}$ 27
b) Synthesis of fluorescent A7R peptide 3 29
6) U87MG Cell line culture 31
7) Animals 31
8) Fluorescence of organs (ex vivo imaging) 31

1) Reagents and materials

All Fmoc amino acid derivatives and resins were purchased from Advanced ChemTech Europe Brussels, Belgium), Bachem Biochimie SARL (Voisins-Les-Bretonneux, France) and France Biochem S.A. (Meudon, France). PyBOP was purchased from France Biochem.

Tetrasulfate-Cyanine 5.5 was obtained from Interchim (Montluçon, France), and other reagents were obtained from either Aldrich (Saint Quentin Fallavier, France) or Acros (Noisy-Le-Grand, France).

RP-HPLC analyses were performed on Waters equipment consisting of a Waters 600 controller, a Waters 2487 Dual Absorbance Detector and a Waters In-Line Degasser. The analytical column used was a Nucleosil $120 \AA 3 \mu \mathrm{~m}$ C18 particles, $125 \times 4 \mathrm{~mm}$ operated at $1 \mathrm{~mL} / \mathrm{min}$ with linear gradient programs in 20 min run time (routine program: 5% to $100 \% \mathrm{~B}$ in 20 min).
UV monitoring was performed most of the time at 214 nm and 250 nm . Solvent A consisted of $\mathrm{H}_{2} \mathrm{O}$ containing 0.1% TFA and solvent B consisted of $\mathrm{CH}_{3} \mathrm{CN}$ containing $9.9 \% \mathrm{H}_{2} \mathrm{O}$ and 0.1% TFA. Water was of Milli-Q quality. $\mathrm{CH}_{3} \mathrm{CN}$ and TFA were of HPLC use quality.

RP-UHPLC analyses were performed on Waters equipment consisting of a Waters Acquity H-Class Bio UPLC combined to a Waters SQ Detector 2 mass spectrometer. The analytical column used was a ACQUITY UPLC BEH C18 Column, $130 \AA$, 1.7 $\mu \mathrm{m}, 2.1 \mathrm{~mm} \times 50 \mathrm{~mm}$ operated at $0.6 \mathrm{~mL} / \mathrm{min}$ with linear gradient programs in 2.20 min run time (routine program: 5% to 100 \% B in 2.20 min).
UV monitoring was performed at 214 nm or 678 nm . Solvent A consisted of $\mathrm{H}_{2} \mathrm{O}$ containing 0.1% formic acid (FA) and solvent B consisted of $\mathrm{CH}_{3} \mathrm{CN}$ containing o.1\% FA.

Water was of Milli-Q quality. $\mathrm{CH}_{3} \mathrm{CN}$ and FA were LC-MS grade.
RP-HPLC purifications were either performed on Gilson GX-281 (high quantities, hundreds of mg, starting material) or GX-271 equipment (low quantities, few mg, molecular assemblies).
For GX-281, the preparative column, Macherey-Nagel $100 \AA 7 \mu \mathrm{~m}$ C18 particles, 250 x 21 mm was operated at 20.84 $\mathrm{mL} / \mathrm{min}$. For GX-271, the preparative column, Macherey-Nagel $100 \AA 7 \mu \mathrm{~m} \mathrm{C} 18$ particles, 250 x 10 mm was operated at 4.65 $\mathrm{mL} / \mathrm{min}$. For very polar and complex compounds, a C_{5} column was used to improve the resolution: Discovery BIO $300 \AA$ $10 \mu \mathrm{~m} \mathrm{C}_{5}$ particles, D. $250 \times 10 \mathrm{~mm}$. Linear gradient programs in 20 min run time were used and solvents A and B were the same as the ones used in RP-HPLC analysis.

Electron spray ionization (ESI-MS) mass spectra were obtained on an Esquire 3000 (Bruker).
The multiply charged data produced by the mass spectrometer on the m / z scale were converted to the molecular weight.
NMR spectra were recorded on BRUKER Avance 400 spectrometers. Chemical shifts are expressed in ppm and calculated taking the solvent peak as an internal reference.

2) General procedures for peptide synthesis

a) General Procedure for Solid-Phase Peptide Synthesis

Assembly of all protected peptides was carried out using the Fmoc/t-Bu strategy manually in a glass reaction vessel fitted with a sintered glass frit or automatically on a peptide synthesizer (Biotage - Syro II) using 2-chlorotritylchloride ${ }^{\circledR}$ resin. Coupling reactions were performed manually by using 2 eq. of N -Fmoc-protected amino acid (relative to the resin loading) activated in situ with 2 eq. of PyBOP and $3-5$ eq. of diisopropylethylamine (DIPEA) in DMF ($10 \mathrm{~mL} / \mathrm{g}$ resin) for 30 min. The coupling efficiency in manual synthesis was assessed by TNBS tests. N-Fmoc protecting groups were removed by treatment with a piperidine/DMF solution ($1: 4$) for 10 min ($10 \mathrm{~mL} / \mathrm{g}$ resin). The process was repeated three times and the deprotection was verified by reading the absorbance of the piperidine washings at 299 nm . The linear peptides were then released from the resin by treatments with a solution of trifluoroacetic acid/dichloromethane ($1: 99,10 \mathrm{~mL} / \mathrm{mg}$ resin, 2×30 min). After evaporation of the cleavage solution, the crude peptide was solubilized in a minimum of DCM and added dropwise to ether for precipitation.

Then they were triturated and washed three times with diethyl ether to obtain crude materials.

b) General Procedure for Cyclization Reactions

All linear peptides were dissolved in DMF (0.5 mM) and the pH values were adjusted to 8-9 by addition of DIPEA. PyBOP (1.3 eq.) was added and the solution stirred at room temperature for 1 h . Solvent was removed under reduced pressure and the residue dissolved in a minimum of dichloromethane. Diethyl ether was added to precipitate peptides. They were then triturated and washed three times with diethyl ether to obtain crude materials.

3) Synthesis of peptide conjugate 1

a) Synthesis of linear decapeptide intermediate 8

Linear decapeptide 8 was assembled on 2-chlorotritylchloride ${ }^{\circledR}$ resin (500 mg , loading of $0.54 \mathrm{mmol} / \mathrm{g}$) using the general procedure and modified amino acid 9 and 10 that were produced as described. ${ }^{1}$ The anchoring of the first amino acid ($\mathrm{Fmoc}-\mathrm{Gly}-\mathrm{OH}$) was performed following the standard procedure yielding a convenient resin loading of $0.6 \mathrm{mmol} / \mathrm{g}$. The peptide was released from the resin using a $\mathrm{TFE} / \mathrm{AcOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 / 1 / 7)$ cleavage solution. The linear protected peptide was obtained as a light brown powder after precipitation, triturating and washing with diethyl ether ($554 \mathrm{mg}, 0.3 \mathrm{mmol}$).

[^0]
b) Synthesis of cyclodecapeptide 5

The cyclization reaction was carried out as described in the general procedure using crude linear peptide 8 (554 mg , 0.3 mmol). Precipitation from ether afforded cyclic peptide 5 as a light brown powder ($550 \mathrm{mg}, 0.3 \mu \mathrm{~mol}$). This crude material was used without further purification.
For further analysis, compound 5 was deprotected under mild TFA conditions.
RP-UHPLC: RT $=0.97 \mathrm{~min}(\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.20 min$)$
MS (ESI-MS, positive mode): C63H1o9N20O19 Calcd : $\mathrm{MW}=1449.8 \mathrm{~g} . \mathrm{mol}-1$; Found $\mathrm{MW}=145 \mathrm{o} .2 \mathrm{~g} . \mathrm{mol}-1$

Figure Si: RP-UHPLC profile of deprotected compound 5

Figure S2: ESI analysis of deprotected compound 5

c) Synthesis of RGD derivative 11

Cyclopetapeptide c[-Arg-Gly-Asp-D Phe-Lys(COCHO)-] 6 was obtained as described. ${ }^{2}$
Cyclodecapeptide $5(20 \mathrm{mg}, 11 \mu \mathrm{~mol})$ and 6 equiv of $6(44 \mathrm{mg}, 66 \mu \mathrm{~mol})$ were dissolved in 1.2 mL of a TFA/ $\mathrm{H}_{2} \mathrm{O}(7 / 3)$ solution. The mixture was stirred for 30 min and the product was purified by RP-HPLC affording pure conjugate $\mathbf{1 1}$ as a white powder in 41% yield ($18 \mathrm{mg}, 4.48 \mu \mathrm{~mol}$).
RP-UHPLC: RT = $1.37 \mathrm{~min}(\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.30 min$)$
MS (ESI-MS, positive mode): $\mathrm{C}_{179} \mathrm{H}_{264} \mathrm{~N}_{56} \mathrm{O}_{51}$ Calcd MW $=4016.4 \mathrm{~g} . \mathrm{mol}^{-1}$; Found MW $=4016.0 \mathrm{~g} . \mathrm{mol}^{-1}$

Figure S3: RP-UHPLC profile of $\mathbf{1 1}$

[^1]Figure S_{4} : ESI analysis of 11

d) Synthesis of Cy5.5 RGD derivative 12

RGD dericative 11 ($4.1 \mathrm{mg}, 1 \mu \mathrm{~mol}$) and 2 equiv of tetrasulfo-Cy5.5-mono-NHS-ester ($3.4 \mathrm{mg}, 2 \mu \mathrm{~mol}$) were dissolved in 2 mL of a DMF/DIPEA $(\mathrm{pH}=9)$ solution. The mixture was stirred for 30 min and the product was purified by RP-HPLC affording pure conjugate 12 as a blue powder in 80% yield ($3.2 \mathrm{mg}, \mathrm{o} .8 \mu \mathrm{~mol}$).
RP-UHPLC: RT = $1.28 \mathrm{~min}(\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \%$ B in 2.30 min$)$
MS (ESI-MS, positive mode): $\mathrm{C}_{220} \mathrm{H}_{307} \mathrm{~N}_{58} \mathrm{O}_{64} \mathrm{~S}_{4}$ Calcd $\mathrm{MW}=4916.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; Found $\mathrm{MW}=4915.2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Figure S_{5} : RP-UHPLC profile of $\mathbf{1 2}$

Figure S6: ESI analysis of 12

e) Synthesis of peptide A7R 7

Protected peptide is assembled on 2-chlorotrytilchloride ${ }^{\circledR}$ resin (20 mg , loading of $0,54 \mathrm{mmol} / \mathrm{g}$) using the general procedure and $\mathrm{N}_{3}-\mathrm{PEG} 24-\mathrm{OH}$. The anchoring of the first amino acid ($\mathrm{Fmoc}-\mathrm{Arg}(\mathrm{Pbf})-\mathrm{OH}$) was performed following the standard procedure yielding a resin loading of $0.35 \mathrm{mmol} / \mathrm{g}$. The protected peptide was released from the resin using a TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 99)$ cleavage solution, and stirred 4 h in a TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}(95 / 2.5 / 2.5)$ deprotection solution. The linear peptide 7 was obtained in 20% yield as a white powder after RP-HPLC and lyophilisation ($3.3 \mathrm{mg}, 1.4 \mu \mathrm{~mol}$).
RP-UHPLC: $\mathrm{RT}=1.78 \mathrm{~min}$ (C18, $214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.20 min)
MS (ESI-MS, positive mode): $\mathrm{C}_{91} \mathrm{H}_{160} \mathrm{~N}_{14} \mathrm{O}_{34}$ Calcd $\mathrm{MW}=1994.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; Found $\mathrm{MW}=1994.8 \mathrm{~g} . \mathrm{mol}^{-1}$

Figure S_{7} : RP-UHPLC profile of 7

そ

Figure S8: ESI analysis of 7

f) Synthesis of conjugate 1

To a stirred solution of Cy5.5 RGD derivative $12(1.2 \mathrm{mg}, 245 \mathrm{nmol})$ and peptide 7 (1.2 eq., $640 \mu \mathrm{~g}$, 318 nmol) in $200 \mu \mathrm{~L}$ DMF/PBS ($\mathrm{pH}=7.4,1 \mathrm{mM}$) ($5 / 5$) was added a solution of $\mathrm{CuSO}_{4}(66 \mu \mathrm{~g}, 265 \mathrm{nmol}, 1 \mathrm{eq}$.$) and THPTA (345 \mu \mathrm{~g}, 795 \mathrm{nmol}, 3$ eq) in $30 \mu \mathrm{~L}$ of PBS ($7 \cdot 4,1 \mathrm{mM}$). All solutions were degased under argon. To this blue stirred solution, was added a solution of ascorbate ($233 \mu \mathrm{~g}, 1.325 \mu \mathrm{~mol}, 5$ eq.) in $30 \mu \mathrm{~L}$ PBS ($7.4,1 \mathrm{mM}$). Both solutions were degased under argon. The uncolored resulting solution is stirred 4 h at $40^{\circ} \mathrm{C}$. The final compound $\mathbf{1}$ was obtained pure as a blue powder in 25% yield after RP-HPLC purification and lyophilisation ($420 \mu \mathrm{~g}, 61 \mathrm{nmol}$).

RP-UHPLC: $\mathrm{RT}=1.54 \mathrm{~min}(\mathrm{C} 18,678 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.3 min$)$
MS (ESI-MS, positive mode): $\mathrm{C}_{31} \mathrm{H}_{468} \mathrm{~N}_{72} \mathrm{O}_{38} \mathrm{~S}_{4}$ Calcd MW $=6910.9 \mathrm{~g} . \mathrm{mol}^{-1}$; Found $\mathrm{MW}=6910.5 \mathrm{~g} . \mathrm{mol}^{-1}$

Figure S9: RP-UHPLC profile of $\mathbf{1}$

Figure Sı: ESI analysis of $\mathbf{1}$

4) Synthesis of fluorescent peptide conjugates 2 and 4

a) Synthesis of linear decapeptide intermediate 13

The linear decapeptide 13 was assembled on 2 -chlorotritylchloride ${ }^{\circledR}$ resin (1 g , loading of $0.7 \mathrm{mmol} / \mathrm{g}$) using the general procedure and modified amino acid 9. The anchoring of the first amino acid (Fmoc-Gly-OH) was performed following the standard procedure yielding a convenient resin loading of $0.68 \mathrm{mmol} / \mathrm{g}$. The peptide was released from the resin using cleavage solution of $\mathrm{TFE} / \mathrm{AcOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1: 7)$. Linear protected peptide was obtained as a white solid powder after precipitation, triturating and washing with diethyl ether ($1.04 \mathrm{~g}, 605 \mu \mathrm{~mol}$).
b) Synthesis of cyclodecapeptide 14

The cyclization reaction was carried out as described in general procedure using the crude linear peptide 13 ($1.04 \mathrm{~g}, 605$ $\mu \mathrm{mol})$. Solubilisation in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dropwise addition in $\mathrm{Et}_{2} \mathrm{O}$ afforded precipitation of cyclic decapeptide 14 as a white solid powder ($922 \mathrm{mg}, 544 \mu \mathrm{~mol}$). This crude material was used without further purification.
RP-HPLC: $\mathrm{RT}=\mathbf{2 . 1 2} \min (\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.20 min$)$
MS (ESI-MS, positive mode): $\mathrm{C}_{76} \mathrm{H}_{129} \mathrm{~N}_{19} \mathrm{O}_{24}$ Calcd MW $=1693.0 \mathrm{~g} . \mathrm{mol}^{-1}$; Found MW $=1693.1 \mathrm{~g} . \mathrm{mol}^{-1}$

Figure Sı1: RP-UHPLC profile of $\mathbf{1 4}$

Figure Sı2: ESI analysis of $\mathbf{1 4}$

c) Synthesis of RGD derivative 15

The cyclodecapeptide 14 ($10 \mathrm{mg}, 6.0 \mu \mathrm{~mol}$) and 6 equiv. of peptide $6(23.5 \mathrm{mg}, 36 \mu \mathrm{~mol})$ were dissolved in 1 mL of TFA/ $\mathrm{H}_{2} \mathrm{O}(7 / 3)$ solution. The mixture was stirred for 2 h and the product was purified by RP-HPLC affording pure conjugate 15 as a white powder in 42% yield ($9.78 \mathrm{mg}, 2.52 \mu \mathrm{~mol}$).
RP-UHPLC: RT = $1.17 \mathrm{~min}\left(\mathrm{C}_{1} 8,214 \mathrm{~nm}, 5-100 \%\right.$ B in 2.20 min$)$
MS (ESI-MS, positive mode): $\mathrm{C}_{171} \mathrm{H}_{253} \mathrm{~N}_{55} \mathrm{O}_{50}$ Calcd MW $=3879.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; Found MW $=3878.6 \mathrm{~g} . \mathrm{mol}^{-1}$

Figure S13: RP-UHPLC profile of $\mathbf{1 5}$

Figure S14: ESI analysis of $\mathbf{1 5}$

d) Synthesis of RßAD derivative 16

Cyclopentapeptide c[-Arg- β Ala-Asp-D Phe-Lys(COCHO)-] 17 was obtained as described. ${ }^{2}$
The cyclodecapeptide 14 ($10 \mathrm{mg}, 6.0 \mu \mathrm{~mol}$) and 6 equiv. of peptide $17(23.5 \mathrm{mg}, 36 \mu \mathrm{~mol})$ were dissolved in 1 mL of TFA/ $\mathrm{H}_{2} \mathrm{O}(7 / 3)$ solution. The mixture was stirred for 2 h and the product was purified by RP-HPLC affording pure conjugate 16 as a white powder in 34% yield ($8 \mathrm{mg}, 2.52 \mu \mathrm{~mol}$).

RP-UHPLC: RT $=1.06 \mathrm{~min}(\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.20 min$)$
MS (ESI-MS, positive mode): $\mathrm{C}_{175} \mathrm{H}_{261} \mathrm{~N}_{55} \mathrm{O}_{50}$ Calcd $\mathrm{MW}=3935 \cdot 4 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; Found $\mathrm{MW}=3935 \cdot 1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Figure S15: RP-UHPLC profile of $\mathbf{1 6}$

Figure S16: ESI analysis of $\mathbf{1 6}$

e) Synthesis of fluorescent RGD peptide conjugate 2

The RGD derivative 15 (2 mg , 515 nmol) and 2 equiv. of Cy5.5-NHS ($1.05 \mathrm{mg}, 1.03 \mu \mathrm{~mol}$) were dissolved in 1 mL of DMF/DIPEA solution ($\mathrm{pH}=9$). The mixture was stirred for 2 h and the product was purified by RP-HPLC affording pure conjugate 2 as a blue powder in 90% yield after lyophilisation ($2.21 \mathrm{mg}, 464 \mathrm{nmol}$).
RP-UHPLC: $\mathrm{RT}=1.33 \mathrm{~min}(\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.30 min)
MS (ESI-MS, positive mode): $\mathrm{C}_{212} \mathrm{H}_{297} \mathrm{~N}_{57} \mathrm{O}_{63} \mathrm{~S}_{4}$ Calcd MW $=4778.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; Found $\mathrm{MW}=4778.0 \mathrm{~g} . \mathrm{mol}^{-1}$

Figure Sı7: RP-UHPLC profile of 2

Figure Si8: ESI analysis of 2

f) Synthesis of fluorescent R $\boldsymbol{\beta} A D$ peptide conjugate 4

The RAD derivative $16(4 \mathrm{mg}, 1 \mu \mathrm{~mol})$ and 2 equiv. of Cy5.5-NHS ($2.03 \mathrm{mg}, 2 \mu \mathrm{~mol}$) were dissolved in 2 mL of DMF/DIPEA solution ($\mathrm{pH}=9$). The mixture was stirred for 2 h and the product was purified by RP-HPLC affording pure conjugate 4 as a blue powder in 92% yield after lyophilisation ($4.45 \mathrm{mg}, 920 \mathrm{nmol}$).
RP-UHPLC: $\mathrm{RT}=1.31 \mathrm{~min}(\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.3 min)
MS (ESI-MS, positive mode): $\mathrm{C}_{216} \mathrm{H}_{303} \mathrm{~N}_{57} \mathrm{O}_{63} \mathrm{~S}_{4}$ Calcd MW $=4834.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; Found MW $=4834.8 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Figure S19: RP-UHPLC profile of 4

Figure S20: ESI analysis of 4

5) Synthesis of fluorescent A7R peptide 3

3

a) Synthesis of peptide intermediate 18

18

Linear peptide 18 was assembled on 2-chlorotritylchloride ${ }^{\otimes}$ resin (2 g , loading of $0.7 \mathrm{mmol} / \mathrm{g}$) using the general procedure and automatised synthesis. The anchoring of the first amino acid ($\mathrm{Fmoc}-\mathrm{Arg}(\mathrm{Pbf})-\mathrm{OH}$) was performed manually following the standard procedure yielding a resin loading of $0.37 \mathrm{mmol} / \mathrm{g}$. The peptide was released from the resin using a $\mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (99/1) cleavage solution and stirred 4 h in a TFA/TIS/ $\mathrm{H}_{2} \mathrm{O}$ (95/2.5/2.5) deprotection solution. The linear peptide was obtained in 85% yield after RP-HPLC and lyophilisation ($600 \mathrm{mg}, 630 \mu \mathrm{~mol}$).

RP-UHPLC: RT = $0.88 \mathrm{~min}(\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.20 min$)$
MS (ESI-MS, positive mode): $\mathrm{C}_{46} \mathrm{H}_{72} \mathrm{~N}_{12} \mathrm{O}_{10}$ Calcd $\mathrm{MW}=953.2 \mathrm{~g} . \mathrm{mol}^{-1}$; Found $\mathrm{MW}=953.6 \mathrm{~g} . \mathrm{mol}^{-1}$

Figure S21: RP-UHPLC profile of $\mathbf{1 8}$

Figure S22: ESI analysis of $\mathbf{1 8}$

b) Synthesis of fluorescent A7R peptide 3

To a stirred mixture of peptide $18(1.32 \mathrm{mg}, 1.38 \mu \mathrm{~mol})$ in DMF and DIPEA ($\mathrm{pH}=9$) was added 2 eq. of tetrasulfo-Cy5.5-mono-NHS-ester ($2.8 \mathrm{mg}, 2.76 \mu \mathrm{~mol}$). The dark blue solution was stirred th at room temperature. After solvents evaporation under reduced pressure, the crude was purified by RP-HPLC, affording the product 3 as a dark blue powder in 70% yield after lyophilisation ($1.78 \mathrm{mg}, 966 \mathrm{nmol}$).
RP-UHPLC: RT $=1.60 \mathrm{~min}(\mathrm{C} 18,214 \mathrm{~nm}, 5-100 \% \mathrm{~B}$ in 2.30 min)
MS (ESI-MS, positive mode): $\mathrm{C}_{86} \mathrm{H}_{114} \mathrm{~N}_{14} \mathrm{O}_{23} \mathrm{~S}_{4}$ Calcd $\mathrm{MW}=1837.2 \mathrm{~g} . \mathrm{mol}^{-1}$; Found MW $=1837.6 \mathrm{~g} . \mathrm{mol}^{-1}$

Figure S23: RP-UHPLC profile of 3

Figure S24: ESI analysis of 3

6) U87MG Cell line culture

Cells were maintained in DMEM $+10 \%$ SVF (from ATCC ${ }^{\circledR}$), which are listed in Table A. Cells were cultured at $37^{\circ} \mathrm{C}$ in a humidified atmosphere containing $5 \% \mathrm{CO} 2$.

7) Animals

Female Naval Medical Research Institute (NMRI) nude mice (5 weeks old) weighting $24.0 \pm 0.5 \mathrm{~g}$ were purchased from Janvier (Le Genest). Before the beginning of the experiment, the animals were acclimatized in a temperature-controlled environment for 1 wk . Facility rooms were maintained at constant temperature $\left(25^{\circ} \mathrm{C}\right)$, humidity ($30-50 \%$ relative humidity), and 12-h light: dark illumination cycle. Access to food and tap water was available ad libitum. Experiments were carried out following Institut National de la Santé et de la Recherche Médicale guidelines regarding the fair treatment of animals with approval of the Comité d'Éthique en Expérimentation Animale de Grenoble.

8) Fluorescence of organs (ex vivo imaging)

- Fluorescence of organs at $t=5 \mathrm{~h}$ post-injection

RGD peptide 2 was injected to mice S_{4} to S_{6}, RGD-A7R peptide 1 was injected to mice Sıo to Sı2. 5h after injection, mice S_{4}, S_{5}, S6, S10, S11 and S12 were sacrificed. Immediately after sacrifice, dissection and ex vivo imaging of organs (on Hamamtsu ${ }^{\oplus}$) were performed.

Organs are placed on a paper as disclosed in the following table:

Heart	Lung	Brain	Skin
Muscle	Kidney	Adrenal	Bladder
Intestine	Spleen	Pancreas	Fat
Stomach	Uterus- Ovary	Liver	Tumour

Table Sı Organ repartition for ex vivo fluorescence imaging

Ex vivo fluorescence imaging realised for each mice are presented above:

Figure $\mathbf{S}_{\mathbf{2 5}}$: $\mathbf{S}_{\mathbf{4}}$ (organs 5h after injection of RGD compound $\mathbf{2}$):

Figure $\mathrm{S}_{2} 6$: $\mathbf{S 5}_{\mathbf{5}}$ (organs 5h after injection of RGD compound $\mathbf{2}$):

Figure S27: S6 (organs 5h after injection of RGD compound 2):

Figure S28: S10 (organs 5h after injection of RGD-A7R compound $\mathbf{1}$):

Figure S29: Sı1 (organs 5h after injection of RGD-A7R compound $\mathbf{1}$):

Figure S30: S12 (organs 5h after injection of RGD-A7R compound $\mathbf{1}$):

Mean fluorescence for Tumour, Skin and Muscle for each mouse (S_{4} to S 6 and Sio to S 12) at $\mathrm{t}=5 \mathrm{~h}$ after injection are reported in the following figure S31. Average Tumour/Skin and Tumour/Muscle ratios for R(RGD) group (S4 to S6) and RGD-ATW group (Sio to Sı2) are also indicated.

Figure S31. Ex vivo mean fluorescence for tumour, skin and muscle ratios along with T / S and T / M ratios at $t=5$ h for $R(R G D)$ peptide group (compound $\mathbf{2}$) and RGD-ATW peptide group (compound $\mathbf{1}$).

- Ex vivo fluorescence of organs at $\mathrm{t}=24 \mathrm{~h}$ post-injection

RGD peptide 2 was injected to mice S_{1} to S_{3}, RGD-A7R peptide 1 was injected to mice S_{7} to $S 9$, R β AD peptide 4 was injected to mice S_{16} to S 18 . 24h after injection, mice $\mathrm{S}_{1}, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9, \mathrm{~S} 16, \mathrm{~S}_{17}$ and S 18 were sacrificed. Immediately after sacrifice, dissection and ex vivo imaging of organs (on Hamamtsu ${ }^{\circledR}$) were performed. Organs are placed on a paper as disclosed in the following table :

Heart	Lung	Brain	Skin
Muscle	Kidney	Adrenal	Bladder
Intestine	Spleen	Pancreas	Fat
Stomach	Uterus- Ovary	Liver	Tumour

Table S2 Organ repartition for ex vivo fluorescence imaging

Ex vivo fluorescence imaging realised for each mice are presented above:

Figure S32: S1 (organs 24h after injection of RGD compound 2):

Figure S33: S2 (organs 24h after injection of RGD compound $\mathbf{2}$):

Figure S34: S3 (organs 24h after injection of RGD compound 2):

Figure S35: \mathbf{S}_{7} (organs 24 h after injection of RGD-A7R compound $\mathbf{1}$):

Figure S36: S8 (organs 24 h after injection of RGD-A7R compound $\mathbf{1}$):

Figure S37: S9 (organs 24 h after injection of RGD-A7R compound $\mathbf{1}$):

Figure S38: S16 (organs 24h after injection of R β AD compound 4):

Figure S39: S17 (organs 24h after injection of R β AD compound 4):

Figure S $_{40}$: S18 (organs 24h after injection of R β AD compound 4):

Mean fluorescence for tumour, skin and muscle for each mouse (S_{1} to S_{3}, S_{7} to S_{9} and S_{16} to S_{18}) at 24h after injection are reported in figure S_{4}. Average Tumour/Skin and Tumour/Muscle ratios for R (RGD) group (S_{1} to S_{3}), RGD-ATW group (S_{7} to S_{9} to S_{12}) and $\mathrm{R}\left(\mathrm{RAD}\right.$) group (S_{16} to S 18) are also indicated.

Left Axes: Tumor, Skin and Muscle ex vivo fluorescence per mouse Right Axes: average ex vivo T/S and T/M ratios per group (S1-S3: R(RGD), S7-S9: RGD-ATW, S16-S18: R(RAD))

Figure S41. Ex vivo Mean Fluorescence for Tumour, Skin and Muscle ratios along with T/S and T/M ratios at $\mathrm{t}=\mathbf{2 4 h}$ for R(RGD) group (compound 2), RGD-ATW group (compound $\mathbf{1}$), and R(RAD) group (compound 4).

[^0]: ${ }^{1}$ M. Galibert, P. Dumy, D. Boturyn. Angew. Chem. Int. Ed. 2009, 48, 2576-2579.

[^1]: ${ }^{2}$ D. Boturyn, J.-L. Coll, E. Garanger, M.-C. Favrot, P. Dumy. J. Am. Chem. Soc. 2004, 126, 5730-5739.

