Pedras and To

Interrogation of biosynthetic pathways of the cruciferous phytoalexins nasturlexins with isotopically labelled compounds¹

M. Soledade C. Pedras* and Q. Huy To

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada

*Corresponding author: E-mail: s.pedras@usask.ca; telephone: 1-306-966-4772; fax: 1-306-966-4730

¹ Electronic supplementary information (ESI) available: tables of isotope incorporation data for compounds **18a**, **20a**, **21a**, **5a** and Phe; synthesis of new compounds **18a**, **21a**, **26c**, incorporation schemes with ESI-HR-MS data and ESI spectra; references; ¹H and ¹³C NMR spectra of new compounds.

Table of contents

TABLE OF CONTENTS	2
RESULTS	3
Incorporation tables of compounds 18a, 20a, 21a, 5a and Ph	3
EXPERIMENTAL	5
Synthesis of new compounds	5
[2,3,4,5,6,7,8-D ₇]-(<i>E</i>)-Styryl glucosinolate (18a)	5
[D ₃ CS]Methyl [2,3,4,5,6-D ₅]-(2-hydroxy-2-phenylethyl)dithiocarbamate (21a)	7
[D₃CS]Dihydronasturlexin D (26c)	7
ESI-MS SPECTRA OF INCORPORATION EXPERIMENTS IN UPLAND CRESS (BARBAREA VERNA)	9
Incorporation of [2,3,4,5,6-D₅]gluconasturtiin (8a)	9
Incorporation of [2,4,6-D ₃ , ¹⁵ N]-3-hydroxygluconasturtiin (9a)	10
Incorporation of [2,3,4,5,6-D ₅]phenylethyl isothiocyanate (19a)	11
Incorporation of [2,4,6-D ₃ , ¹⁵ N]-3-hydroxyphenylethyl isothiocyanate (24a)	13
Incorporation of [2,3,4,5,6-D₅]nasturlexin A (1a)	14
Incorporation of [D ₃ CS, 2,4,6-D ₃ , ¹⁵ N]-3-hydroxynasturlexin A (25b)	15
Incorporation of methyl [2,3,4,5,6-D ₅]-(<i>E</i>)-styryl dithiocarbamate (22a)	
Incorporation of [2,3,4,5,6-D₅]dihydronasturlexin C (23a)	17
Incorporation of [D ₃ CS]dihydronasturlexin D (26c)	19
Incorporation of [2,3,4,5,6-D₅]nasturlexin C (11a)	19
ESI-MS SPECTRA OF INCORPORATION EXPERIMENTS IN WATERCRESS (NASTURTIUM OFFICINALE)	20
Incorporation of [D ₃ CS 4,5,6,7-D ₄]brassinin (5a)	
Incorporation of [2,3,4,5,6-D₅]gluconasturtiin (8a)	21
REFERENCES	22
NMR SPECTRA OF NEW COMPOUNDS 18A, 21, 21A,26 AND 26A	22

Results

Isotope incorporation tables of compounds 18a, 20a, 21a, 5a and Phe

Table S1. Metabolism of $[2,3,4,5,6,7,8-D_7]$ -(*E*)-styryl glucosinolate (**18a**) in elicited and non-elicited leaves of upland cress plants (*Barbarea verna*).

	Elicited leaves	Non-elicited leaves		
Metabolites detected in leaf extracts	% of Deuterium (Conc., μ mol/100 g) ^a	% Deuterium (Conc., μmol/100 g) ^a		
[2,3,4,5,6,7,8-D ₇]-(<i>E</i>)-styryl glucosinolate (18a)	ca. 99 ^b (156 ± 40)	ca. 99% ^b (157 ± 54)		
Gluconasturtiin (8)	NI ^c (2,819 ± 507)	NI ^c (6,171 ± 334)		
Dihydronasturlexin C (23)	NI ^c (≤ 0.3)	NI ^c (ND) ^d		
Nasturlexin C (11)	NI^{c} (16 ± 5)	NI ^c (ND) ^d		
Nasturlexin D (13)	$NI^{c}(28 \pm 10)$	NI ^c (ND) ^d		

^a Conc. = total concentration of non-labelled and labelled metabolites (μ mol/100 g of fresh tissue, quantified by HPLC-DAD); values represent the mean and standard deviation of two independent experiments conducted in triplicate.

^b Isotope incorporations calculated from HPLC-ESI-MS (peak intensities in negative mode); % of incorporation = { $[M - 1 + n]^{-}/([M - 1]^{-} + [M - 1 + n]^{-})$ × 100 where n = number of D atoms; values represent the mean and standard deviation of two independent experiments conducted in triplicate.

^c NI = no incorporation means $D\% \le 0.1$, ESI-MS.

 d ND = not detected (HPLC-DAD).

Table S2. Metabolism of $[2,3,4,5,6-D_5]$ -(E,Z)-styryl isothiocyanate (**20a**) in elicited leaves of upland cress plants (*Barbarea verna*).

Metabolites detected in leaf extracts	% of Deuterium (Conc., μ mol/100 g) ^a			
$[2,3,4,5,6-D_5]-(E,Z)-$ Styryl isothiocyanate (20a)	NI ^b (ND) ^c			
Dihydronasturlexin C (23)	NI ^b (11 ± 13)			
Nasturlexin C (11)	NI ^b (12 ± 9)			
Nasturlexin D (13)	NI ^b (3 ± 2)			

^a Conc. = total concentration of non-labelled and labelled metabolites (μ mol/100 g of fresh tissue, quantified by HPLC-

DAD); values represent the mean and standard deviation of two independent experiments conducted in triplicate.

^b NI = no incorporation means $D\% \le 0.1$, ESI-MS.

^c ND = not detected (HPLC-DAD).

Table S3. Metabolism of $[D_3CS]$ methyl (2-hydroxy-2- $[2,3,4,5,6-D_5]$ phenylethyl) dithiocarbamate (**21a**) in elicited leaves of upland cress plants (*Barbarea verna*).

Metabolites detected in leaf extracts	% of Deuterium (Conc., μmol/100 g) ^a		
[D ₃ CS]methyl (2-hydroxy-2-[2,3,4,5,6-D ₅]phenylethyl) dithiocarbamate (21a)	NI ^b (ND) ^c		
Dihydronasturlexin C (23)	NI ^b (37 ± 8)		
Nasturlexin C (11)	$NI^{b}(52 \pm 28)$		
Nasturlexin D (13)	NI ^b (99 ± 25)		

^a Conc. = total concentration of non-labelled and labelled metabolites (μ mol/100 g of fresh tissue, quantified by HPLC-DAD); values represent the mean and standard deviation of two independent experiments conducted in triplicate.

^b NI = no incorporation means $D\% \le 0.1$, ESI-MS.

^c ND = not detected (HPLC-DAD).

Table S4. Metabolism of $[2,3,4,5,6-D_5]$ phenylalanine in elicited leaves of watercress (*Nasturtium officinale*).

Metabolites detected in leaf extracts	% of Deuterium (Conc., μmol/100 g) ^a
[2,3,4,5,6-D ₅]Phenylalanine	$52 \pm 14^{\text{b}} (369 \pm 147)$
Gluconasturtiin (8)	NI ^c (467 ± 132)
Nasturlexin B (2)	$NI^{c} (8 \pm 6)$
[2,3,5,6-D ₄]Tridentatol C (3)	NI ^c (≤2)
Cyclonasturlexin (4)	NI ^c (≤5)

^a Conc. = total concentration of natural abundance and labelled metabolites (nmol/g of fresh tissue, quantified by HPLC-DAD); values represent the mean and standard deviation of triplicate samples.

^b Isotope incorporations calculated from HPLC-ESI-MS (peak intensities in positive mode); % of incorporation = $\{[M + 1 + n]^+/([M + 1]^+ + [M + 1 + n]^+)\} \times 100$, where n = number of D atoms; values represent the mean and standard deviation of triplicate samples.

^c NI = no incorporation means $D\% \le 0.1$, ESI-MS.

	Elicited leaves	Non-elicited leaves		
Metabolites	% of Deuterium	% of Deuterium		
	(Conc., µmol/100 g) ^a	(Conc., µmol/100 g) ^a		
[D ₃ CS, 4,5,6,7- D ₄]Brassinin (5 a)	$\geq 97^{\rm b}~(9\pm6)$	$\geq 97^{\rm b} \left(39 \pm 8 \right)$		
$[D_3SC, 5, 6, 7-D_3]$ Cyclonasturlexin (4b)	$62 \pm 17^{b} (74 \pm 26)$	$96 \pm 3^{\rm b} (\le 5)$		

Table S5. Metabolism of $[D_3C-S 4,5,6,7-D_4]$ brassinin (**5a**) in elicited and non-elicited leaves of watercress (*Nasturtium officinale*).

^a Conc. = total concentration of non-labelled and labelled metabolites (nmol/g of fresh tissue, quantified by HPLC-DAD). Values represent the mean and standard deviation of triplicate samples.

^b Isotope incorporations calculated from HPLC-ESI-MS (peak intensities in positive mode); % of incorporation = { $[M + 1 + n]^+/([M + 1]^+ + [M + 1 + n]^+)$ } × 100, where n = number of D atoms, values represent the mean and S.D. of triplicate samples.

Experimental

Synthesis of new compounds

[2,3,4,5,6,7,8-D₇]-(*E*)-Styryl glucosinolate (18a)

Scheme S1. Synthesis of [2,3,4,5,6,7,8-D₇]-(*E*)-styryl glucosinolate (**18a**).

A suspension of LiAlH₄ in dry THF (0.75 mL) was added dropwise to a solution of *trans*-[2,3,4,5,6,7,8-D₇]cinnamic acid (**42a**, 98%D, 150 mg, 0.97 mmol) in dry THF (0.75 mL) at 0 °C.¹After stirring at rt for 30 min, the reaction mixture was added dropwise to a vigorously stirred suspension of PCC (420 mg,

1.94 mmol) in dry DCM (2.5 mL). The mixture was stirred for 2 h and filtered through celite. The filtrate was concentrated and fractionated by FCC (EtOAc-hexane, 1:9) to give *trans*-[2,3,4,5,6,7,8-D₇]cinnamaldehyde (**43a**) (55 mg, 0.40 mmol, 41%). A solution of NH₂OH·HCl (27mg, 0.38 mmol) and NaOAc (31 mg, 0.38 mmol) in H₂O (1.0 mL) was added to a solution aldehyde **43a** (35 mg, 0.25 mmol) in EtOH (1.0 mL) at rt. After stirring for 1 h, the mixture was concentrated, diluted with H₂O and extracted with EtOAc. The organic extract was dried over Na₂SO₄ and concentrated to give oxime **44a** (39 mg, 0.25 mmol) and pyridine (0.10 mL) in DCM (1.0 mL) at 0 °C. After stirring at rt for 30 min, a solution of 1- β -D-thioglucose tetraacetate (82 mg, 0.22 mmol) and Et₃N (105 μ L, 0.75 mmol) in DCM (1.0 mL) was added and stirring was continued for 4 h. The mixture was diluted with 1 M H₂SO₄ and extracted with DCM. The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (EtOAc-hexane, 1:1) to give thiohydroximate **45a** (101 mg, 0.20 mmol, 91%) as a yellowish solid.

Compound **45a**: ¹H NMR (500 MHz, CDCl₃): δ 8.06 (1H, s), 5.22 (1H, t, *J* = 9.0 Hz), 5.15-5.08 (2H, m), 5.05 (1H, d, *J* = 10.0 Hz), 4.25 (1H, dd, *J* = 12.0, 5.5 Hz), 4.12 (1H, dd, *J* = 12.0, 2.0 Hz), 3.74-3.72 (1H, m), 2.06 (3H, s), 2.02 (3H, s), 2.02 (3H, s), 2.00 (3H, s). HR-ESI-MS *m*/*z* [M + H]⁺: calc. for C₂₃H₂₁²H₇NO₁₀S: 517.1868, found 517.1880 (28%), 331.10 (100%).

 $PySO_3$ (80 mg, 0.60 mmol) was added to a solution of thiohydroximate **45a** (64 mg, 0.12 mmol) in dry DCM (3.0 mL) and the mixture was stirred at 40 °C for 18 h. Solvent was concentrated, H₂O was added, and the mixture was extracted with MeOH-CHCl₃ (1:4). The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (MeOH-DCM, 1:9) to give compound **46a** (64 mg, 0.11 mmol, 89%) as a solid.

Compound **46a**: ¹H NMR (500 MHz, CD₃OD): δ 5.40-5.34 (2H, m), 5.09-5.04 (2H, m), 4.25 (1H, dd, *J* = 12.5, 6.0 Hz), 4.12 (1H, dd, *J* = 12.5, 2.0 Hz), 4.02-3.98 (1H, m), 2.04 (3H, s), 2.01 (3H, s), 1.97 (3H, s), 1.92 (3H, s). HR-ESI-MS *m*/*z* [M-H]⁻: calc. for C₂₃H₁₉²H₇NO₁₃S₂: 595.1279, found 595.1301 (100%). K₂CO₃ (28 mg, 0.20 mmol) was added to a solution of **46a** (40 mg, 0.067 mmol) in MeOH (2.0 mL) at rt. After stirring for 1 h, the mixture was neutralized with acetic acid (ca. 1 drop) and filtered. The filtrate was concentrated to give [2,3,4,5,6,7,8-D₇]-(*E*)-styryl glucosinolate (**18a**) in a quantitative yield. The spectroscopic data of the non-labelled compound **18** was in agreement with reported literature.²

Compound **18a**: HPLC $t_{\rm R} = 12.1$ min (method B). ¹H NMR (500 MHz, D₂O): δ 5.04 (1H, d, J = 9.5 Hz), 3.88 (1H, dd, J = 12.5, 2.0 Hz), 3.70 (1H, dd, J = 12.5, 5.0 Hz), 3.56-3.44 (4H, m). ¹³C NMR (125 MHz, D₂O): δ 161.1, 134.6, 82.7, 80.5, 77.1, 72.0, 69.2, 60.6. HR-ESI-MS m/z [M-K]⁻: calc. for C₁₅H₁₁²H₇NO₉S₂: 427.0857, found 427.0868 (100%). UV (HPLC, CH₃CN–H₂O) λ_{max} (nm): 220, 280.

[D₃CS]Methyl [2,3,4,5,6-D₅]-(2-hydroxy-2-phenylethyl)dithiocarbamate (21a)

Scheme S2. Synthesis of [D₃CS]Methyl [2,3,4,5,6-D₅]-(2-hydroxy-2-phenylethyl) dithiocarbamate (21a)

Compound **47a** was synthesized as previously reported.³ CS₂ (9 μ L, 0.15 mmol) was added to a solution of **47a** (20 mg, 0.14 mmol) in pyridine (0.50 mL) at 0 °C, followed by Et₃N (60 μ L, 0.42 mmol). After stirring for 15 min, CD₃I (9 μ L, 0.15 mmol) was added and stirring was continued for 30 min. The mixture was diluted with EtOAc and washed with 1 M H₂SO₄. The organic extract was dried over Na₂SO₄ and concentrated to give compound **21a** (30 mg, 0.13 mmol, 93%, D ≥ 99%, determined by HR-FD-MS).

Compound **21a**: HPLC $t_{\rm R} = 12.4$ min (method A). ¹H NMR (600 MHz, CDCl₃): δ 7.48 (1H, br), 5.05 (1H, dd, J = 8.5, 3.5 Hz), 4.36-4.32 (1H, m), 3.68-3.63 (1H, m), 2.52 (1H, br), and a rotamer at 8.15 (br), 4.98 (br), 3.78 (br), 3.54 (br). HR-FD-MS *m*/*z*: calc. for C₁₀H₅²H₈NOS₂: 235.0941, found 235.0934. UV (HPLC, CH₃CN – H₂O) $\lambda_{\rm max}$ (nm): 250, 270.

Compound **21**: HPLC $t_R = 12.4 \text{ min}$ (method A). ¹H NMR (600 MHz, CDCl₃): δ 7.56 (1H, br), 7.40-7.31 (5H, m), 5.04 (1H, dd, J = 9.0, 3.5 Hz), 4.34-4.30 (1H, m), 3.67-3.63 (1H, m), 2.67 (1H, s), 2.63 (3H, s), and a rotamer at 8.23 (br), 4.96 (br), 3.77 (br), 3.53 (br). ¹³C NMR (150 MHz, CDCl₃): δ 200.4, 141.2, 128.9, 128.5, 126.0, 72.5, 53.9, 18.5. HR-FD-MS *m*/*z*: calc. for C₁₀H₁₃NOS₂: 227.0439, found 227.0441. UV (HPLC, CH₃CN – H₂O) λ_{max} (nm): 250, 270.

[D₃CS]Dihydronasturlexin D (26c)

Scheme S3. Synthesis of [D₃CS]dihydronasturlexin D (26c)

A solution of SOCl₂ (362 μ L, 5.0 mmol) and DMF (10 μ L) in CHCl₃ (1.0 mL) was added dropwise to a suspension of norphenylephrine hydrochloride (**48**) (95 mg, 0.50 mmol) in CHCl₃ (2.0 mL) at rt.³ After stirring for 24 h, solvent was removed and the mixture was washed with Et₂O and concentrated to give compound **49**. CS₂ (60 μ L, 1.0 mmol) was added to a suspension of **49** in CHCl₃ (3.0 mL) at rt, followed by Et₃N (210 μ L, 1.5 mmol). After stirring for 15 min, CD₃I (60 μ L, 1.0 mmol) was added and stirring was continued for 1 h. H₂O was added and the mixture was extracted with CHCl₃. The organic extract was dried over Na₂SO₄, concentrated and separated by FCC (EtOAc-hexane, 1:3) to give compound [D₃CS]Dihydronasturlexin D (**26c**) (52 mg, 0.23 mmol, 46%; D ≥ 99%, determined by HR-FD-MS) as a solid.

Compound **26c**: HPLC $t_{\rm R} = 11.5$ min (method A). ¹H NMR (600 MHz, CD₃CN): δ 7.15 (1H, t, J = 8.0 Hz), 6.79 (1H, d, J = 8.0 Hz), 6.75 (1H, t, J = 2.0 Hz), 6.72-6.70 (1H, m), 5.08 (1H, dd, J = 8.5, 5.0 Hz), 4.44 (1H, dd, J = 15.0, 8.5 Hz), 4.29 (1H, dd, J = 15.0, 5.0 Hz). HR-FD-MS m/z [M]⁺ calc. for C₁₀H₈²H₃NOS₂: 228.0470, found 228.0461 (100%). UV (HPLC, CH₃CN-H₂O) λ_{max} (nm): 220, 280. Compound **26**: HPLC $t_{\rm R} = 11.5$ min (method A). ¹H NMR (600 MHz, CD₃CN): δ 7.16 (1H, t, J = 8.0 Hz), 6.79 (1H, d, J = 8.0 Hz), 6.75 (1H, s), 6.72-6.70 (1H, m), 5.09 (1H, dd, J = 8.5, 5.5 Hz), 4.45 (1H, dd, J = 15.0, 8.5 Hz), 4.30 (1H, dd, J = 15.0, 5.0 Hz), 2.55 (3H, s). ¹³C NMR (150 MHz, CD₃CN): δ 166.1, 158.6, 144.8, 131.4, 119.7, 116.1, 115.0, 73.0, 57.4, 16.0. HR-FD-MS m/z [M]⁺ calc. for C₁₀H₁₁NOS₂: 225.0282, found 225.0277 (100%). UV (HPLC, CH₃CN-H₂O) λ_{max} (nm): 220, 280.

ESI-MS spectra of incorporation experiments in upland cress (Barbarea verna)

Incorporation of [2,3,4,5,6-D₅]gluconasturtiin (8a)

 $[2,3,4,5,6-D_5]$ Nasturlexin C (**11a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₅²H₅NS₂, 213.0569, found 213.0578.

 $[2,3,5,6-D_4]$ Nasturlexin D (13b): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₆²H₄NOS₂, 228.0455, found 228.0459.

Figure S1 ESI-MS spectra (positive mode) of nasturlexins C (11/11a) and D (13/13b) in extracts of elicited leaves (A and B) fed with $[2,3,4,5,6-D_5]$ gluconasturtiin (8a) and control leaves.

Incorporation of [2,4,6-D₃,¹⁵N]-3-hydroxygluconasturtiin (9a)

[2,4,6-D₃,¹⁵N]Dihydronasturlexin D (**26a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₉²H₃¹⁵NS₂, 230.0519, found 230.0512. [2,4,6-D₃,¹⁵N]Nasturlexin D (**13a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₇²H₃¹⁵NS₂: 228.0362, found 228.0355.

Figure S2 ESI-MS spectra (positive mode) of 3-hydroxyphenylethyl isothiocyanate (24/24a), dihydronasturlexin D (26/26a), and nasturlexin D (13/13a) in extracts of elicited leaves (A, B and C) fed with $[2,4,6-D_3,^{15}N]$ -3-hydroxyphenylethyl glucosinolate (9a) and control leaves.

Incorporation of [2,3,4,5,6-D₅]phenylethyl isothiocyanate (19a)

 $[2,3,4,5,6-D_5]$ Nasturlexin C (**11a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₅²H₅NS₂, 213.0569, found 213.0557.

 $[2,3,5,6-D_4]$ Nasturlexin D (**13b**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₆²H₄NOS₂, 228.0455, found 228.0446.

Figure S3 ESI-MS spectra (positive mode) of dihydronasturlexin C (23/23a), nasturlexins C (11/11a) and D (13/13b) in extracts of elicited leaves (A, B and C) fed with $[2,3,4,5,6-D_5]$ phenylethyl isothiocyanate (19a) and control leaves.

Incorporation of [2,4,6-D₃,¹⁵N]-3-hydroxyphenylethyl isothiocyanate (24a)

 $[2,4,6-D_3,^{15}N]$ Dihydronasturlexin D (**26a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₉²H₃¹⁵NS₂, 230.0519, found 230.0536.

 $[2,4,6-D_3,^{15}N]$ Nasturlexin D (**13a**): HR-ESI-MS *m*/*z* [M + H]⁺, calculated for C₁₀H₇²H₃¹⁵NS₂, 228.0362, found 228.0399.

Figure S4 ESI-MS spectra (positive mode) of dihydronasturlexin D (26/26a) and nasturlexin D (13/13a) in extracts of elicited leaves (A and B) fed with [2,4,6-D₃,¹⁵N]-3-hydroxyphenylethyl isothiocyanate (24a) and control leaves.

Incorporation of [2,3,4,5,6-D₅]nasturlexin A (1a)

 $[2,3,4,5,6-D_5]$ Dihydronasturlexin C (**23a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₇²H₅NS₂, 215.0725, found 215.0737.

 $[2,3,4,5,6-D_5]$ Nasturlexin C (**11a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₅²H₅NS₂, 213.0569, found 213.0557.

 $[2,3,5,6-D_4]$ Nasturlexin D (**13b**): HR-ESI-MS *m*/*z* [M + H]⁺, calculated for C₁₀H₆²H₄NOS₂, 228.0455, found 228.0446.

Figure S5 ESI-MS spectra (positive mode) of dihydronasturlexin C (23/23a), nasturlexins C (11/11a) and D (13/13b) in extracts of elicited leaves (A, B and C) fed with $[2,3,4,5,6-D_5]$ nasturlexin A (1a) and control leaves.

Incorporation of [D₃CS, 2,4,6-D₃,¹⁵N]-3-hydroxynasturlexin A (25b)

 $[D_3CS, 2,4,6-D_3,^{15}N]$ Dihydronasturlexin D (**26b**): HR-ESI-MS m/z [M + H]⁺, calculated for $C_{10}H_6^2H_6^{15}NS_2$, 233.0707, found 233.0698.

 $[D_3CS, 2,4,6-D_3,^{15}N]$ Nasturlexin D (**13c**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₄²H₆¹⁵NS₂, 231.0551, found 231.0538.

Figure S6 ESI-MS spectra (positive mode) of dihydronasturlexin D (**26/26b**) and nasturlexin D (**13/13c**) in extracts of elicited leaves (A and B) fed with $[D_3CS, 2,4,6-D_3,^{15}N]$ -3-hydroxynasturlexin A (**25b**) and control leaves.

Incorporation of methyl [2,3,4,5,6-D₅]-(*E*)-styryl dithiocarbamate (22a)

 $[2,3,4,5,6-D_5]$ Nasturlexin C (**11a**): GC-FI-MS *m*/*z* [M]⁺, calculated for C₁₀H₄²H₅NS₂, 212.0490, found 212.0487.

Figure S7 ESI-MS spectra (positive mode) of nasturlexin C (11/11a) in extracts of elicited leaves (A) fed with methyl $[2,3,4,5,6-D_5]$ -(*E*)-styryl dithiocarbamate (22a) and control leaves.

Incorporation of [2,3,4,5,6-D₅]dihydronasturlexin C (23a)

 $[2,3,4,5,6-D_5]$ Nasturlexin C (**11a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₅²H₅NS₂, 213.0569, found 213.0567.

 $[2,3,4,5,6-D_5]$ Nasturlexin C sulfoxide (**12a**): HR-ESI-MS *m*/*z* [M + H]⁺, calculated for C₁₀H₇²H₅NOS₂, 229.0533, found 229.0546.

 $[2,3,5,6-D_4]$ Nasturlexin D (**13b**): HR-ESI-MS *m*/*z* [M + H]⁺, calculated for C₁₀H₆²H₄NOS₂, 228.0455, found 228.0443.

Figure S8 ESI-MS spectra (positive mode) of nasturlexins C (11/11a), C sulfoxide (12/12a), and D (13/13b) in extracts of elicited leaves (A, B, and C) fed with $[2,3,4,5,6-D_5]$ dihydronasturlexin C (23a) and control leaves.

Incorporation of [D₃CS]dihydronasturlexin D (26c)

 $[D_3CS]$ Nasturlexin D (13d): HR-ESI-MS m/z $[M + H]^+$, calculated for C₁₀H₇²H₃NOS₂, 227.0392, found 227.0389.

Figure S9 ESI-MS spectra (positive mode) of nasturlexin D (13/13d) in extracts of elicited leaves (A) fed with [D₃CS]dihydronasturlexin D (26c) and control leaves.

Incorporation of [2,3,4,5,6-D₅]nasturlexin C (11a)

 $[2,3,4,5,6-D_5]$ Nasturlexin C sulfoxide (**12a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₇²H₅NOS₂, 229.0533, found 229.0540.

 $[2,3,5,6-D_4]$ Nasturlexin D (13b): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₆²H₄NOS₂, 228.0455, found 228.0460.

Figure S10 ESI-MS spectra (positive mode) of nasturlexin C sulfoxide (12/12a) and nasturlexin D (13/13b) in extracts of elicited leaves (A and B) fed with [2,3,4,5,6-D₅]nasturlexin C (11a) and control leaves.

ESI-MS spectra of incorporation experiments in watercress (*Nasturtium officinale*)

Incorporation of [D₃CS 4,5,6,7-D₄]brassinin (5a)

 $[D_3CS 4,5,6,7-D_4]$ cyclonasturlexin (**4a**): HR-ESI-MS m/z $[M + H]^+$, calculated for $C_{11}H_5^2H_6N_2S_2$, 241.0735, found 241.0739.

Figure S11 ESI-MS spectra (positive mode) of cyclonasturlexin (4/4a) in extracts of elicited leaves (A) fed with [D₃CS 4,5,6,7-D₄]brassinin (5a) and control leaves.

Incorporation of [2,3,4,5,6-D₅]gluconasturtiin (8a)

 $[2,3,5,6-D_4]$ Nasturlexin B (2a): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₈²H₄NOS₂, 230.0606, found 230.0635.

 $[2,3,5,6-D_4]$ Tridentatol C (**3a**): HR-ESI-MS m/z [M + H]⁺, calculated for C₁₀H₆²H₄NOS₂, 228.0449, found 228.0459.

Figure S12 ESI-MS spectra (positive mode) of nasturlexin B (2/2a) and tridentatol C (3/3a) in extracts of elicited leaves (A and B) fed with $[2,3,4,5,6-D_5]$ gluconasturtiin (8a) and control leaves.

References

- 1 J. S. Cha, J. H. Chun, J. M. Kim, O. O. Kwon, S. Y. Kwon and J. C. Lee, *Bull. Korean Chem. Soc.*, 1999, **20**, 400–402.
- 2 Q. V Vo, C. Trenerry, S. Rochfort, J. Wadeson, C. Leyton and A. B. Hughes, *Bioorg. Med. Chem.*, 2013, **21**, 5945–5954.
- 3 M. S. C. Pedras and Q. H. To, J. Label. Compd. Radiopharm., 2018, 61, 94–106.

NMR spectra of new compounds 18a, 21, 21a, 26 and 26a

Compound 21 - ¹³ C NMR Spectrum CDCl ₃												26
		128.92)		₹77.44	72.53						
OH H N SCH ₃					ľ							
	1											
210 200 190 180 170 160 150		130	120 1	 			••••••••••••••••••••••••••••••••••••••	50	40	30	20	maa

Compound 26 - ${}^{13}C$ NM	R Spectrum	1						29
SCH3 SCH3 CH OH				119.70 118.68 114.95	73.01	57.44	16.03 2.19 2.12	1.88
		50 140	130	120 110 1	00 90 80 7	70 60 {		10 ppm