Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information for:

Manipulation of a DNA Aptamer-Protein Binding Site through Arylation of Internal Guanine Residues.

Abigail J. Van Riesen, Kaila L. Fadock, Prashant S. Deore, Richard A. Manderville,* Shahin Sowlati-Hashjin, and Stacey D. Wetmore*

Table of Contents:

1. Figure S1. Circular Dichroism of position mTBAs-G-quadruplex	S2
2. Figure S2. Polarization of mTBAs upon binding thrombin	S 3
3. Figure S3. Fluorescence of mTBAs position 5 and 6	S4
4. Figures S4-S15. Computational figures	S 5
6. Tables S1-S9. Computational Tables	S16
7. Atom types and partial charges for ^{CN} dG	S20
8. Atom types and partial charges for Th dG	S20
9. Atom types and partial charges for ^{Sty} dG	S21
10. Synthesis of ^{Sty} dG–phosphoramidte	S23
11. Figures S16-S19. NMR spectra for ^{sty} dG-phosphoramidite	S25
12. Synthesis of ^{CN} dG–phosphoramidte	S29
13. Figures S20-S28. NMR spectra for ^{CN} dG–phosphoramidite	S31
14. Figure S29. HRMS of ^{CN} dG–phosphoramidite 7	S35
15. Table S10. Mass analysis of mTBA strands	S36
16. Figures S30-S33. ESI Mass spectra for mTBA oligonucleotides	S37

Figure S1. Circular Dichroism of mTBAs (3 μ M) recorded in 100 mM phosphate buffer, pH 7 with 100 mM KCl at 10 °C for: (a) position G8 modification containing dG (purple long dash trace), 5' FAM label (yellow long dash dot dot), ^{CN}dG (green square dot trace), ^{Sty}dG (blue long dash dot trace), ^{BTh}dG (black round dot trace) and ThdG (red solid trace), and (b) position G5 and G6 modification containing dG (purple long dash trace), 5' FAM label (yellow long dash dot dot), ^{CN}dG (red solid trace), and (b) position G5 and G6 modification containing dG (purple long dash trace), 5' FAM label (yellow long dash dot dot), ^{CN6}dG (green solid trace), ^{CN5}dG (red round dot trace), ^{Sty6}dG (blue square dot trace), ^{Sty5}dG (black long dash dot).

Figure S2. Polarization of mTBAs (3 μ M) upon binding thrombin at 25 °C in 100 mM phosphate buffer, pH 7 with 100 mM KCl for: (a) position G8 modification containing ^{CN}dG (green trace), ^{Sty}dG (blue trace), ^{BTh}dG (black trace) and ThdG (red trace), and (b) positions G5 and G6 modification containing ^{Sty5}dG (blue trace), ^{sty6}dG (orange trace), ^{CN5}dG (green trace), ^{CN6}dG (purple trace).

Figure S3. Fluorescence spectra of mTBAs (3 μ M) at 25 °C in 100 mM phosphate buffer, pH 7 with 100 mM KCl for (a) ^{Sty}dG position G5 (solid blue trace) and G6 (dashed orange trace), and (b) ^{CN}dG for G5 (solid green trace) and G6 (dashed purple trace).

Figure S4. Overlay of the representative MD structure (red) and X-ray crystal structure (PDB ID: 4DII; green) of the native TBA (RMSD = 1.249 Å).

Figure S5. Structure of the TBA highlighting the G-quadruplexes for (a) dG, (b) *anti* ThdG, (c) *syn* ThdG, (d) *anti* ^{CN}dG or (e) *syn* ^{CN}dG at G8. G1G6G10G15 are shown on top and G2G5G11G14 on bottom.

Figure S6. Overlay of representative MD structures of native (green) and modified TBA (red) containing (a) *anti* ^{Th}dG , (b) *syn* ^{Th}dG , (c) *anti* ^{CN}dG or (d) *syn* ^{CN}dG at G8. RMSD calculated according to the position of all heavy atoms for representative MD structures of modified with respect to native TBA.

Figure S7. Structure of TBA in the TBA-thrombin complex highlighting the G-quadruplexes for TBA containing (a) native TBA, (b) $syn^{Th}dG$ or (c) $syn^{CN}dG$ at G8. G1G6G10G15 are shown on top and G2G5G11G14 on bottom.

Figure S8. Overlay of representative MD structure of native (green) and modified (red) TBA bound to thrombin for TBA containing (a) *syn* ThdG or (b) *syn* ^{CN}dG at G8.

Figure S9. Overlay of TBA–protein interactions in the Arg73 region for representative MD structures of native (green) and modified (red) TBA with (a) *syn* ThdG or (b) *syn* ^{CN}dG at G8.

Figure S10. Structure of the TBA highlighting the G-quadruplexes for (a) ^{CN}dG and (b) ^{Sty}dG at G5. G1G6G10G15 are shown on top and G2G5G11G14 on bottom.

Figure S11. Structure of TBA in the TBA–thrombin complex highlighting the G-quadruplexes for TBA containing (a) ^{CN}dG and (b) ^{Sty}dG at G5. G1G6G10G15 are shown on top and G2G5G11G14 on bottom.

Figure S12. Overlay of representative MD structure of native (green) and modified (red) TBA bound to thrombin for TBA containing (a) ^{CN}dG and (b) ^{Sty}dG at G5.

Figure S13. Overlay of TBA–protein interactions in the Arg73 region for representative MD structures of native (green) and modified (red) TBA with (a) ^{CN}dG and (b) ^{Sty}dG at G5.

Figure S14. Root-mean-square-deviation (RMSD; Å) in the backbone of (a) unbound TBA, (b) TBA bound to thrombin, and (c) thrombin over the entire simulation trajectory (ns), with native TBA in blue and modified TBA containing *anti* ThdG at G8 in purple, *syn* ThdG in red, *anti* ^{CN}dG in orange, and *syn* ^{CN}dG in green.

Figure S15. Structures of *anti*-ThdG and *anti*-^{CN}dG nucleosides. The dihedral angle χ (\angle (O4'-C1'-N9-C4)) defines the glycosidic bond orientation to be *anti* (χ = 180 ± 90°) or *syn* (χ = 0 ± 90°), and θ (\angle (N9-C8-C10-X11)) defines the degree of twist between the nucleobase and the C⁸-substituent.

				G8				G5
Pair	Interaction	native	anti Th G	syn Th G	anti ^{cN} G	<i>syn</i> ^{cℕ} G	<i>syn</i> ^c NG	syn St G
G1-G6	N1–H…O6	100	99	99	99	99	99	100
	N2–H…N7	99	84	92	97	98	97	98
61 615	N7…H–N2	99	100	81	96	98	99	98
01-015	O6…H−N1	99	84	89	95	94	98	98
62.65	N7…H–N2	100	100	98	99	99	98	99
G2-G5	06…H–N1	98	49	89	99	99	98	99
62.614	N1–H…O6	99	98	97	96	96	98	98
62-614	N2–H…N7	97	47	89	90	96	96	97
CE C11	N7…H–N2	99	98	97	99	99	98	98
65-611	O6…H−N1	98	84	91	94	95	98	97
66 610	N1-H…O6	100	100	64	99	99	98	99
99-910	N2–H…N7	99	99	62	98	96	97	98
C10 C1F	N1–H…O6	100	94	100	94	100	97	99
010-015	N2–H…N7	100	61	95	95	100	98	99
C11 C14	N7…H–N2	100	100	99	99	100	99	99
011-014	06…H–N1	99	63	100	98	99	98	98

 Table S1. Hydrogen-bonding occupancies (%) of G-quadruplexes in unbound TBA.^a

^a Average values are calculated over the entire production MD simulation.

Table	S2 .	Average	distances	(Å;	standard	deviation	in	parentheses)	for	K^+	coordination	in	G-
quadr	uplex	es in unb	ound TBA. ^a										

			G5				
	native	anti Th G	syn [™] G	<i>anti</i> ^{cℕ} G	<i>syn</i> ^c ™G	<i>syn</i> ^c G	syn St G
K…G1(O6)	2.795 (0.180)	2.848 (0.215)	2.821 (0.205)	2.777 (0.169)	2.778 (0.175)	2.896 (0.244)	2.729 (0.184)
K…G2(O6)	2.721 (0.133)	2.761 (0.180)	2.745 (0.136)	2.749 (0.141)	2.787 (0.168)	2.743 (0.138)	2.788 (0.188)
K…G5(O6)	2.804 (0.174)	2.852 (0.222)	2.738 (0.147)	2.913 (0.362)	2.812 (0.234)	2.807 (0.184)	2.842 (0.179)
K…G6(O6)	2.747 (0.140)	2.733 (0.138)	2.802 (0.172)	2.791 (0.166)	2.838 (0.246)	2.780 (0.159)	2.821 (0.156)
K…G10(O6)	2.740 (0.142)	2.769 (0.157)	2.763 (0.151)	2.763 (0.170)	2.888 (0.290)	2.935 (0.272)	2.748 (0.178)
K…G11(O6)	2.776 (0.156)	2.766 (0.154)	2.758 (0.143)	2.858 (0.344)	2.730 (0.133)	2.731 (0.136)	2.839 (0.184)
K…G14(O6)	2.751 (0.141)	2.857 (0.277)	2.769 (0.175)	2.903 (0.342)	2.723 (0.167)	2.802 (0.177)	2.654 (0.168)
K…G15(O6)	2.824 (0.185)	2.685 (0.124)	2.773 (0.170)	2.834 (0.246)	2.837 (0.180)	2.859 (0.209)	2.809 (0.201)

^a Average values are calculated over the entire production MD simulation.

Table S3. Key dihedral angles (°) and relative energies (kJ/mol) for adducted nucleotides.^a

Adduct	χ ^b	$\boldsymbol{\theta}^{\mathbf{b}}$	ΔE ^c	ΔG ^d
anti Th G	-116.1	156.1	0.0	0.0
syn Th G	56.4	147.7	-5.0	3.0
anti ^c SG	-131.9	179.1	0.0	0.0
<i>syn</i> ^{cℕ} G	68.3	177.4	-11.3	-12.6

^a Na⁺ neutralized 5'-PO₄ methyl-capped nucleotide.

^b Obtained at IEF-PCM-B3LYP/6-31G(d) level of theory (solvent: water).

^c Relative energies calculated according to single-point energies obtained with IEF-PCM-B3LYP/6-311+G(2df,p), which include scaled (0.9806) zero-point vibrational energy corrections obtained from the optimization level of theory.

^d Gibbs energies obtained at IEF-PCM-B3LYP/6-311+G(2df,p) including unscaled zero-point corrections obtained at optimization level.

Table S4. Average dihedral angles (°) of native and adducted dG (standard deviation in parentheses) over the entire simulation for free and bound TBA.^a

		Free T	BA	Bou	ind TBA
site	nucleobase	Х	θ	Х	θ
G8	G	196.6 (15.0)	-	200.6 (14.6)	-
	anti Th G	190.3 (8.4)	304.8 (117.6)	180.5 (18.6)	249.1 (157.1)
	<i>syn</i> [™] G	33.6 (8.5)	298.7 (125.1)	31.6 (9.2)	304.8 (118.8)
	anti ^{cN} G	181.6 (13.7)	180.8 (6.6)	188.7 (9.5)	179.8 (6.5)
	<i>syn</i> ^{cℕ} G	52.7 (19.7)	182.1 (6.9)	51.7 (8.6)	183.0 (6.3)
G5	G	49.0 (8.9)	-	46.7 (7.1)	-
	<i>syn</i> ^c G	63.4 (18.5)	177.6 (3.5)	66.3 (7.7)	165.7 (6.2)
	syn st G	76.8 (12.6)	170.7 (6.9)	107.1 (9.9)	173.2 (4.5)

^a Average values are calculated over the entire production MD simulation.

				G8				G5
Pair	Interaction	native	anti Th G	syn Th G	anti ^{cN} G	<i>syn</i> ^c ∎G	syn ^c NG	syn St G
G1-G6	N1–H…O6	99	99	98	100	99	98	99
	N2–H…N7	99	96	95	95	93	95	99
61 615	N7…H–N2	100	100	96	99	98	99	100
01-015	06…H–N1	98	99	96	97	97	92	98
62.65	N7…H–N2	100	100	99	100	99	99	99
62-65	O6…H−N1	100	98	96	99	88	97	98
C2 C14	N1–H…O6	100	98	98	100	99	98	100
62-614	N2–H…N7	98	98	96	97	97	99	98
GE G11	N7…H–N2	100	100	98	100	100	99	99
63-611	06…H–N1	99	99	97	99	99	98	99
66 610	N1–H…O6	100	100	97	100	100	100	100
00-010	N2–H…N7	100	71	92	77	99	92	97
C10 C1F	N1-H…O6	100	100	100	100	99	100	100
G10-G15	N2–H…N7	100	77	97	98	99	95	98
611 614	N7…H–N2	100	99	95	99	99	100	98
011-014	06…H–N1	99	92	75	92	94	99	99

Table S5. Hydrogen-bonding occupancies (%) of G-quadruplexes in TBA-protein complexes.^a

^a Average values are calculated over the entire production MD simulation.

Table S6. Average distances for K^{+} (Å; standard deviation in parentheses) coordination in Gquadruplexes in TBA-protein complexes.^a

			G8				G5
	native	anti Th G	syn [™] G	<i>anti</i> ^{cℕ} G	<i>syn</i> ^{cℕ} G	<i>syn</i> ^c ™G	syn St G
K…G1(O6)	2.689 (0.113)	2.785 (0.163)	2.838 (0.228)	2.762 (0.142)	2.687 (0.112)	2.716 (0.128)	2.766 (0.147)
K…G2(O6)	2.874 (0.199)	2.749 (0.137)	2.713 (0.140)	2.743 (0.134)	2.864 (0.187)	2.833 (0.175)	2.838 (0.210)
K…G5(O6)	2.803 (0.160)	2.882 (0.204)	2.857 (0.206)	2.995 (0.254)	2.797 (0.156)	2.824 (0.159)	2.792 (0.167)
K…G6(O6)	2.747 (0.138)	2.729 (0.130)	2.748 (0.141)	2.737 (0.130)	2.819 (0.170)	2.764 (0.149)	2.747 (0.184)
K…G10(O6)	2.732 (0.133)	2.745 (0.137)	2.768 (0.164)	2.765 (0.144)	2.746 (0.137)	2.766 (0.148)	2.728 (0.164)
K…G11(O6)	2.768 (0.144)	2.798 (0.156)	2.721 (0.131)	2.721 (0.121)	2.756 (0.140)	2.748 (0.136)	2.659 (0.226)
K…G14(O6)	2.771 (0.146)	2.900 (0.217)	2.835 (0.192)	2.794 (0.165)	2.767 (0.149)	2.858 (0.205)	2.769 (0.218)
K…G15(O6)	2.754 (0.143)	2.742 (0.140)	2.772 (0.200)	2.803 (0.171)	2.752 (0.143)	2.768 (0.149)	2.750 (0.225)

^a Average values are calculated over the entire production MD simulation.

		G8		G	5
Interaction ^b	native	syn Th G	<i>syn</i> ^{cℕ} G	syn ^c NG	syn St G
T3…lle9	-12.1 (2.4)	-1.4 (2.0)	-5.8 (2.6)	-3.6 (3.4)	-2.5 (3.7)
T3···His66	-8.2 (6.6)	-2.2 (1.1)	-16.2 (8.3)	-16.3 (8.0)	-4.6 (2.4)
T3…lle75	-5.8 (2.5)	-8.4 (2.7)	-7.4 (2.3)	-5.9 (2.4)	-3.9 (1.4)
T3…Tyr114	-5.6 (1.5)	-7.4 (2.7)	-11.3 (2.1)	-8.8 (4.7)	-13.0 (6.7)
T4…Arg70	-101.0 (9.8)	-31.5 (18.5)	-95.4 (10.3)	-92.7 (9.9)	-88.7 (8.5)
T4…Arg73	-115.2 (26.8)	-102.1 (12.8)	-129.2 (29.5)	-101.9 (10.6)	-108.4 (24.6)
G5····Asn74	-13.2 (11.4)	-0.6 (7.3)	–15.3 (23.9)	-1.1 (4.2)	-36.8 (18.2)
G5···Arg73	-240.8 (95.7)	–155.2 (33.9)	-271.3 (59.9)	-141.4 (20.9)	-276.0 (36.5)
T12…Tyr71	-13.7 (6.5)	-27.6 (4.3)	-25.7 (4.6)	-20.8 (8.1)	-45.8 (8.7)
T13…Tyr71	-10.3 (2.4)	-23.3 (2.1)	-24.7 (2.2)	-31.4 (5.2)	-32.1 (4.2)
T13…Arg62	-23.5 (22.6)	-7.6 (17.2)	-36.7 (16.0)	-15.9 (10.4)	-22.9 (5.4)
T13…Arg70	-94.4 (12.3)	-72.4 (15.8)	-88.3 (13.9)	-83.3 (12.9)	-92.0 (14.5)
T13…Arg73	-37.7 (4.9)	-36.2 (5.1)	-34.8 (4.9)	-33.9 (3.7)	-34.3 (5.1)
G14…Arg70	-109.2 (12.4)	-59.5 (18.7)	-102.7 (17.6)	-100.3 (15.0)	-100.4 (16.8)

Table S7. Linear interaction energies (LIE) between TBA and protein (kJ/mol; standard deviation in parentheses).^a

^a Average values are calculated over the entire production MD simulation.

^b For hydrogen-bonding interactions the electrostatic component and for stacking interactions van der Waals component of LIE is reported.

Table S8. Linear interaction energies (LIE) between T residues.

Interaction	Native	syn ^c G	syn st G
Т3…Т4	-2.3 (2.0)	-3.9 (2.9)	-4.8 (1.0)
T3…T12	-1.1 (0.8)	-5.7 (0.9)	-0.9 (1.2)
T4…T12	-0.8 (1.2)	-2.8 (1.3)	-2.5 (1.1)
T4…T13	-0.3 (3.7)	-5.9 (1.9)	-3.0 (0.6)
T12…T13	-1.3 (1.3)	-2.5 (1.7)	-3.6 (1.2)
T7…G8	-1.0 (0.4)	-6.2 (1.8)	-10.5 (0.9)

Table S9. The average root-mean-square deviation (rmsd, Å; standard deviations in parentheses) for considered systems over the entire MD simulation with respect to the first frame of production phase.^a

		TBA–Thrombin Complex					
System	Free TBA	Bound TBA	Enzyme	Overall			
native	1.598 (0.210)	1.254 (0.147)	1.507 (0.134)	1.849 (0.163)			
anti Th G	2.826 (0.494)	-	-	-			
<i>syn</i> [™] G	2.479 (0.467)	2.202 (0.410)	1.534 (0.145)	2.005 (0.263)			
anti ^c G	2.451 (0.645)	-	-	-			
syn ^{CN} G	2.101 (0.384)	1.634 (0.222)	1.684 (0.235)	1.918 (0.225)			
5 ^{CN} G	2.919 (0.618)	1.697 (0.315)	1.806 (0.254)	1.784 (0.334)			
5 St G	2.516 (0.809)	1.332 (0.178)	1.709 (0.202)	1.656 (0.295)			

^a RMSD calculated according to the position of the heavy atoms in the backbone of TBA (P, O, C) and protein (O, N, C).

Atom	types and	partial	charges fo	or the ^{cℕ} d	G residue
1 P	4.7160	4.0030	0.3930 P	1 CNA	1.209100
2 05'	3.2940	3.2820	0.0000 OS	1 CNA	-0.486800
3 O1P	5.8000	3.0220	0.2340 02	1 CNA	-0.786000
4 O2P	4.6890	5.3340	-0.2320 O2	1 CNA	-0.795800
5 03'	0.0000	0.0000	0.0000 OS	1 CNA	-0.549300
6 C5'	3.1140	1.9140	0.3320 CT	1 CNA	0.055100
7 H5'	2.9640	1.7850	1.4190 H1	1 CNA	0.057500
8 H5"	3.9720	1.3010	0.0210 H1	1 CNA	0.057500
9 C4'	1.8680	1.4240	-0.3950 CT	1 CNA	0.101600
10 H4'	1.0470	2.1210	-0.1950 H1	1 CNA	0.123700
11 04'	2.1150	1.3970	-1.8120 OS	1 CNA	-0.383900
12 C1'	1.8740	0.0950	-2.3250 CT	1 CNA	0.129300
13 H1'	0.8570	0.0370	-2.7250 H2	1 CNA	0.115600
14 C2'	2.0040	-0.8580	-1.1300 CT	1 CNA	-0.071000
15 H2'	3.0550	-1.0880	-0.9450 HC	1 CNA	0.045600
16 H2"	1.4550	-1.7930	-1.2790 HC	1 CNA	0.045600
17 C3'	1.4270	0.0000	0.0000 CT	1 CNA	0.188800
18 H3'	1.8140	-0.2910	0.9870 H1	1 CNA	0.049600
19 N	6.6890	-0.7800	-3.7460 NA	1 CNA	-0.461200
20 H	7.6680	-1.0140	-3.8660 H	1 CNA	0.348200
21 N1	7.0530	-0.7280	-1.4340 N2	1 CNA	-0.872600
22 H6	6.6590	-0.4160	-0.5560 H	1 CNA	0.394300
23 H7	8.0020	-0.4100	-1.5850 H	1 CNA	0.394300
24 N2	4.9030	-0.3790	-2.2490 NC	1 CNA	-0.519000
25 N3	3.5040	-0.4080	-5.5640 NB	1 CNA	-0.488500
26 N4	2.7740	-0.1640	-3.4370 N*	1 CNA	-0.051500
27 C	6.1730	-0.6040	-2.4890 CA	1 CNA	0.617300
28 C6	4.1380	-0.3540	-3.3730 CB	1 CNA	0.193500
29 C7	4.5550	-0.5110	-4.6970 CB	1 CNA	0.093300
30 C8	5.9490	-0.7560	-4.9770 C	1 CNA	0.504000
31 C9	2.4450	-0.1860	-4.8070 CK	1 CNA	0.306700
32 05	6.5330	-0.9400	-6.0300 O	1 CNA	-0.539100
33 C10	1.1040	0.0070	-5.3190 CD	1 CNA	-0.268500
34 H8	0.3280	0.2800	-4.6110 HA	1 CNA	0.185600
35 C11	0.8110	-0.1240	-6.6330 CD	1 CNA	-0.063500
36 H9	1.6290	-0.4010	-7.2950 HA	1 CNA	0.131800
37 C12	-0.4910	0.0620	-7.2630 CA	1 CNA	0.066600
38 C13	-0.6130	-0.1940	-8.6440 CA	1 CNA	-0.138800
39 H10	0.2650	-0.5150	-9.1990 HA	1 CNA	0.147200
40 C14	-1.8230	-0.0470	-9.3070 CA	1 CNA	-0.165300
41 H11	-1.8970	-0.2510	-10.3710 H	4 1 CN/	A 0.170800
42 C15	-1.6460	0.4840	-6.5690 CA	1 CNA	-0.131200
43 H12	-1.5920	0.7040	-5.5070 HA	1 CNA	0.132300
44 C16	-2.8600	0.6340	-7.2190 CA	1 CNA	-0.168200
45 H13	-3.7380	0.9590	-6.6710 HA	1 CNA	0.176000
46 C17	-2.9630	0.3680	-8.5980 CA	1 CNA	0.028300
47 C18	-4.2180	0.5220	-9.2690 C1	1 CNA	0.332200
48 N5	-5.2400	0.6450	-9.8130 N1	1 CNA	-0.461000

Atom types and partial charges for the ThdG residue

1 P	4.1840	2.9240 -	1.6150 P	1 THA	1.209200
2 05'	3.8980	2.8480	-0.0000 OS	1 THA	-0.479400
3 O1P	3.0690	2.2770	-2.3210 02	1 THA	-0.784800
4 O2P	4.6710	4.2850	-1.8830 O2	1 THA	-0.797200

5 03'	0.0000	0.000	0 0.000	0 OS	1 THA	-0.55580	0
6 C5'	3.2610	1.697	0.519	0 CT 🛛	1 THA	0.046000)
7 H5"	3.115	0 1.853	0 1.594	10 H1	1 THA	0.05570	0
8 H5"	3.899	0.809	0 0.390	00 H1	1 THA	0.05570	0
9 C4'	1.8920	1.453	0 -0.146	0 CT	1 THA	0.12510	C
10 H4'	1.143	0 2.144	10 0.252	10 H1	1 THA	0.11930	00
11 04'	1.974	0 1.698	30 -1.56	80 OS	1 THA	-0.3972	00
12 C1'	1.831	0.491	.0 -2.299	90 CT	1 THA	0.12010	0
13 H1'	0.838	0 0.467	70 -2.75	70 H2	1 THA	0.10850	00
14 C2'	2.000	0 -0.641	-1.27	10 CT	1 THA	-0.07060	00
15 H2'	3.063	0 -0.872	20 -1.14	60 HC	1 THA	0.0404	00
16 H2"	1.482	0 -1.56	10 -1.55	80 HC	1 THA	0.0404	00
17 C3'	1.4240	0.000	0.000	00 CT	1 THA	0.19520	0
18 H3'	1.818	0 -0.462	20 0.91	70 H1	1 THA	0.04390	00
19 N	6.5550) 1.695	0 -3.768	0 NA	1 THA	-0.40650	00
20 H	7.5260) 1.953	0 -3.899	0 H 0	1 THA	0.344500)
21 C	5.9680	1.815	0 -2.539	0 CA	1 THA	0.50690	0
22 N1	6.711	0 2.320	00 -1.50	20 N2	1 THA	-0.7968	00
23 H6	6.142	0 2.566	50 -0.69	40 H	1 THA	0.37190	0
24 H7	7.432	0 2.994	40 -1.72	60 H	1 THA	0.37190	0
25 N2	4.732	0 1.432	20 -2.29	70 NC	1 THA	-0.4552	00
26 C6	4.088	0.922	0 -3.37	70 CB	1 THA	0.10980	00
27 C7	4.575	0.786	60 -4.674	40 CB	1 THA	0.16040	00
28 C8	5.931	0 1.183	-4.963	30 C	1 THA	0.46400	D
29 05	6.573	0 1.145	50 -5.99	70 O	1 THA	-0.53640	00
30 N3	3.619	0 0.253	30 -5.50	00 NB	1 THA	-0.4659	00
31 C9	2.560	0.065	0 -4.736	50 CK	1 THA	0.20070	0
32 N4	2.789	0 0.461	LO -3.40	60 N*	1 THA	0.05250	00
33 C10	1.315	0 -0.47	80 -5.25	520 C*	1 THA	-0.0497	00
34 C11	0.291	.0 -1.18	20 -4.65	520 C*	1 THA	0.0012	00
35 H8	0.284	0 -1.463	30 -3.60	60 HA	1 THA	0.1184	00
36 C12	-0.741	LO -1.56	00 -5.55	580 C*	1 THA	-0.3005	00
37 H9	-1.621	0 -2.12	20 -5.26	50 HA	1 THA	0.1845	00
38 S	1.0060	-0.292	0 -6.967	0S 1	THA	0.008800	
39 C13	-0.492	20 -1.14	70 -6.83	390 CA	1 THA	-0.1748	300
40 H10	-1.10	10 -1.30)50 -7.7	190 H4	1 THA	0.2158	300
Atom	types ar	nd parti	ial char	ges for	the ^{Sty} d	lG residu	ue
1	P	5.5960	1.6510	0.1630	P	STY	1.2095
2	0	4 0690	1 0700	0,0000	05	STY	-0 4968
3	01	5 5200	3 0560	0 5900	02	STY	-0 7864
4	02	6 3650	0 6040	0.8530	02	STY	-0 7947
5	03	0.0000	0.000	0.0000	05	STY	-0 551
6	C5*	3 0580	1 9430	-0.4880	СТ	STV	-0.0098
7	сэ H5*1	3 4180	2 5450	-1 3350	н1	STV	0.0000
, 8	H5*2	2 7160	2.5450	0 3000	H1	STV	0.0741
۵ ۵	C/*	1 8680	1 12/0	-0.9650	СТ	STV	0.0741
10	С- Н <i>1</i> *	1 0170	1 8000	-1 1190	С1 H1	STV	0.1929
11	∩4*	2 1980	0.4860	-2 2110	05	STV	-0 4113
12	C1*	1 8610		-7 13/0	СТ	STY	0.4113
13	ст H1*	0.8120	-1 0220	-7 1700	н2	STV	0.068
14	C3*	1 4200	0 0000	0 0000	CT	STV	0.000
15	с <u>э</u> нз*	1 8210	0.1570	1 0120	H1	STY	0.1433
16	C2*	2 0200	-1 2520	-0 6550	СТ	STV	-0 0300
17	€ <u>∠</u> H2*1	3.0750	-1.3510	-0.4030	HC	STY	0.0392
÷,		5.5750	1.0010	5.7050		U	3.0352

18	H2*2	1.4950	-2.1730	-0.3770	HC	STY	0.0392
19	Ν	5.7990	-4.0730	-3.1170	NA	STY	-0.4271
20	Н	6.5420	-4.7620	-3.1590	Н	STY	0.3381
21	N1	6.0920	-3.9910	-0.7940	N2	STY	-0.9012
22	H6	5.8670	-3.4450	0.0290	Н	STY	0.4017
23	H7	7.0860	-4.1480	-0.9060	Н	STY	0.4017
24	N2	4.3950	-2.7350	-1.7680	NC	STY	-0.441
25	N3	3.2280	-2.3900	-5.1570	NB	STY	-0.4846
26	N4	2.6550	-1.6330	-3.1030	N*	STY	0.0239
27	С	5.4030	-3.5590	-1.9110	CA	STY	0.5751
28	C6	3.7600	-2.4440	-2.9350	CB	STY	0.1236
29	C7	4.0790	-2.9030	-4.2160	CB	STY	0.0964
30	C8	5.1880	-3.8080	-4.3890	С	STY	0.4908
31	C9	2.3860	-1.6290	-4.4850	СК	STY	0.2815
32	05	5.6340	-4.3440	-5.3900	0	STY	-0.548
33	C10	1.3090	-0.8500	-5.0660	CD	STY	-0.2831
34	H8	0.8360	-0.1140	-4.4250	HA	STY	0.1843
35	C11	0.9350	-0.9910	-6.3560	CD	STY	-0.0507
36	H9	1.4660	-1.7360	-6.9450	HA	STY	0.1226
37	C12	-0.1100	-0.2480	-7.0590	CA	STY	0.0335
38	C13	-0.3670	-0.5600	-8.4080	CA	STY	-0.097
39	H10	0.2210	-1.3390	-8.8880	HA	STY	0.1329
40	C14	-1.3530	0.1080	-9.1300	CA	STY	-0.1971
41	H11	-1.5300	-0.1530	-10.1700	OHA	STY	0.1483
42	C15	-0.8830	0.7670	-6.4600	CA	STY	-0.1291
43	H12	-0.7110	1.0370	-5.4220	HA	STY	0.133
44	C16	-1.8690	1.4330	-7.1800	CA	STY	-0.1657
45	H13	-2.4530	2.2130	-6.6970	HA	STY	0.1392
46	C17	-2.1100	1.1090	-8.5190	CA	STY	-0.0988
47	H14	-2.8800	1.6330	-9.0790	HA	STY	0.132

Scheme S1. Synthesis of ^{Sty}dG-phosphoramidite (4).

1) ^{Sty}dG

A mixture of 8-Br-dG (1 g, 2.88 mmol), (*E*)-2-phenylvinylboronic acid (0.55 g, 3.75 mmol), Na₂CO₃ (0.61 g, 5.75 mmol), and Pd(OAc)₂ (19 mg, 0.084 mmol) were added into a dry 50- ML RBF along with a Teflon-coated stir bar. The reaction flask was evacuated for 5 minutes then refilled with dry nitrogen gas. A degassed mixture (30 mL) of H₂O/acetonitrile (2/1) was added to the flask via a syringe. The mixture was heated overnight at 80°C under nitrogen atmosphere, then cooled to room temperature, poured in to 100 mL of H₂O and neutralized with 10% HCl. The precipitate formed was filtrated and dried *in vacuo* to yield ^{Sty}dG as a yellow powder (0.9 g, 85% yield). ¹H NMR (300 MHz, DMSO-d₆) δ : 10.65 (s, 1H), 7.69 (d, J = 7.3, 2H) 7.56- 7..23 (m, 5H) 6.47 (bs, 2H), 6.37 (dd, J = 8.6, 6.4, 1H), 5.27 (d, J = 4.2, 1H), 5.17 (t, J = 5.1, 100 mL of Jack and Jack an

1H), 4.45 (m, 1H), 3.82 (m, 1H), 3.74- 3.6 (m, 2H), 2.60 (m, 1H), 2.09 (m, 1H). HRMS calculated for $C_{18}H_{20}N_5O_4^+$ [M+H⁺] 370.1515; found 370.1500.

2) N²-(dimethylformamidyl)-(E)-8-styryl-2'-deoxyguanosine (2)

^{sty}dG (0.85 g, 2.3 mmol) was placed in a 50-mL RBF and reverse filled with argon. Dry DMF (15 mL) was added, followed by dimethylformamide diethyl acetal (1.3 mL, 9.2 mmol). The mixture was stirred overnight at room temperature. The solvent was then evaporated under reduced pressure. The residue was triturated with a mixture of hexane/methanol; 1:1. The isolated solid was filtered, washed with ethyl acetate to remove the residual DMF. The solid product was dried under vacuum to yield compound **2** (0.75 g, 82.4 %) which was pure enough to be used for the next step. ¹HNMR (300 MHz, DMSO-*d6*) δ = 11.36 (bs, 1H), 8.55 (s, 1H), 7.7 (d, *J* = 7.3, 2H), 7.58 (d, *J*= 15.8 Hz, 1H), 7.48 (d, *J*= 15.8 Hz, 1H), 7.4- 7.28 (m, 3H), 6.49 (t, *J* = 7.4 Hz, 1H), 5.33 (d, *J* = 4.3 Hz, 1H), 5.11 (t, *J* = 5.4 Hz, 1H), 4.50 (m, 1H), 3.81 (q, *J* = 4.4 Hz, 1H), 3.75- 3.61 (m, 2H), 3.15 (s, 3H), 3.03 (s, 3H), 2.76- 2.66 (m, 1H), 2.18-2.12 (m, 1H). HRMS calculated for C₂₁H₂₅N₆O₄⁺ [M+H⁺] 425.1937; found 425.1926

3) 5'-O-(4,4'-dimethoxytrityl)-N²-(dimethylformamidyl)-(E)-8-styryl-2'-deoxyguanosine (3)

Compound **2** (0.41 g, 0.96 mmol) was coevaporated from dry pyridine (3×5 mL) in a 25-mL RBF. DMAP (0.023 g, 0.188 mmol) was added to the reaction flask. The RBF was then fitted with a dropping funnel and reverse filled with nitrogen gas. Dry pyridine (10 mL) was added to the RBF. DMT-Cl (0.4 g, 1.18 mmol) was placed in the dropping funnel and dissolved in 10 mL of dry pyridine. The DMT-Cl/pyridine solution was then allowed to add dropwise over 30 min. The reaction mixture was allowed to stir at room temperature under nitrogen atmosphere overnight. Upon completion, the mixture was diluted with DCM (25 mL) and washed with water (2×10 mL). The organic layer was dried over anhydrous sodium sulfate. The crude product was then triturated with a mixture of ethyl acetate/hexanes (1/2) to remove the DMAP and the unreacted DMT-Cl. The residue was dried under vacuum and was used for the next step without further purification. HRMS calculated for $C_{42}H_{43}N_6O_6^+$ [M + H⁺] 727.3244, found 727.3226.

4) 5'-O-(4,4'-dimethoxytrityl)-3'-O-[2-cyanoethoxy-(N,N-diisopropylamino)phosphino]-N²-(dimethylformamidyl)-8-styryl-2'-deoxyguanosine (4).

Compound **3** (0.29 g, 0.399 mmol) was introduced into a 25-mL RBF connected to a nitrogen line to remove any air from the flask. A dry 4 $^{\circ}$ A molecular sieves (around 2 g) was added under nitrogen

atmosphere followed by dry methylene chloride (10 mL) using a syringe. The reaction mixture was stirred at room temperature for 20 minutes. Diisopropyl ethyl amine (DIPEA), (0.2 mL, 1.19 mmol) and dimethylaminopyridine (0.2 equiv.) were added to the reaction mixture via a syringe then the reaction mixture was stirred for 5 minutes at room temperature. Using a 1-mL syringe, 2-cyanoethyl-*N*,*N*-diisopropylchlorophosphoramidite (0.14 mL, 0.6 mmol) was added to the reaction mixture. The reaction mixture was stirred at room temperature for 1.5 h, where TLC (EtOAc: MeOH: TEA; 95: 3: 2) indicated the disappearance of the starting materials and the formation of less-polar product (two spots near to each other). The reaction mixture was filtered to remove the molecular sieves. The solvent was removed under vacuum. The residue was purified by flash column chromatography using (EtOAc: MeOH: TEA; 95: 3: 2) as eluent. The product **4** was obtained as pale yellow oil (0.19 g, 52.3%). ¹H NMR (300 MHz, CDCl₃) δ : 8.47 (s, 1H), 7.88 (d, J = 15.6 Hz, 1H), 7.42-7.30 (m, 4H), 7.30-7.10 (m, 10H), 6.70 (d, J = 8.7 Hz, 4H), 6.48-6.41 (m, 1H), 6.41 (t, J = 6.6 Hz), 4.91-4.78 (m, 1H), 4.21-4.12 (m, 1H), 3.68 (s, 6H), 3.61-3.43 (m, 5H), 3.41-3.29 (m, 2H), 3.05 (s, 6H), 2.42-2.28 (m, 3H), 1.22-1.01 (m, 12H).³¹PNMR (162 MHz, CDCl₃, referenced to H₃PO₄): δ 149.97. HRMS calculated for C₅₁H₆₁N₈O₇P⁺ [M+H⁺]: 927.4323; found 927.4251.

Figure S16. ¹HNMR (DMSO-*d6*) of ^{Sty}dG.

Figure S17. ¹HNMR (DMSO-*d6*) of **2**.

Figure S19. 31 P-NMR (CDCl₃) of compound (4)

149.975

1) ^{CN}dG)

Synthesis was performed as described for ^{Sty}dG. (Yield 56%)¹H NMR (300 MHz, DMSO-d₆) δ : 10.74 (bs, 1H), 7.89 (d, J = 8.4, 2H), 7.8 -7.6 (m, 4H), 6.54 (bs, 2H), 6.45 (m, 1H), 5.31 (d, J = 4.1, 1H), 5.26 (t, J = 10.4, 1H), 4.60 (m, 1H), 3.83 (m, 1H), 3.73 - 3.63 (m, 2H), 2.57 (m, 1H), 2.08 (m, 1H).; ¹³C NMR (400 MHz, DMSO-d₆) δ = 156.9, 154.0, 152.3, 144.1, 141.5, 133.2, 133.1, 128.3, 119.9, 119.5, 117.4, 110.5, 87.8, 83.0, 71.0, 61.6. HRMS calculated for C₁₉H₁₉N₆O₄⁺ [M+H⁺] 395.1468; found 395.1438.

2) N²-(dimethylformamidyl)-8-(4"-cyanostyrene)-2'-deoxyguanosine (5)

Synthesis was performed as described for **2**. (Yield 75%) ¹HNMR (300 MHz, DMSO-d₆) δ = 11.37 (bs, 1H), 8.55 (s, 1H), 7.7 (d, J = 7.3, 2H), 7.58 (d, J= 7.8 Hz, 1H), 7.60 - 7.28 (m, 2H), 6.47 (t, J = 8.5 Hz, 1H), 5.33 (d, J = 3.3 Hz, 1H), 5.14 (m, 1H), 4.50 (m, 1H), 3.79 (m, 1H), 3.82 - 3.61 (m, 2H), 3.15 (s, 3H), 3.03 (s, 3H), 2.73 - 2.61 (m, 1H), 2.19 - 2.11 (m, 1H).; ¹³C NMR 158.60, 157.78, 157.6, 145.12, 141.6, 133.07, 132.06, 128.40, 120.49, 119.65, 119.47, 110.62, 87.72, 82.94, 70.48, 61.47, 41.24, 35.17. HRMS calculated for $C_{22}H_{24}N_7O_4^+$ [M+H⁺] 450.1890; found 450.1852.

3) 5'-O-(4,4'-dimethoxytrityl)-N²-(dimethylformamidyl)-8-(4"-cyanostyrene)-2'-dG (6)

Synthesis performed as outlined for ³. (66% yield). ¹H NMR (300 MHz, DMSO-d₆) δ = 8.46 (s, 1H), 7.82 (d, J=8.5 Hz, 1H), 7.38 (d, J= 8.5 Hz, 6H), 7.39 (m, 4H), 7.28 (m, 4H), 7.18 (m, 4H), 6.63 (m, 4H), 6.43 (m, 1H), 4.65 (bs, 1H), 4.06 (m, 1H), 3.69 (s, 3H), 3.46 (s, 3H), 3.38 (m, 1H), 3.41 (m, 1H), 3.08 (m, 1H), 3.01 (s, 3H), 3.04 (s, 3H), 2.40 (m, 1H). ¹³C NMR (400) MHz, CDCl₃) δ = 158.3, 158.2, 157.9, 157.1, 150.6, 145.4, 141.2, 136.0, 133.1, 131.9, 130.0, 128.2, 127.0, 121.0, 119.4, 119.0, 113.4, 110.6, 85.7, 83.2, 70.7, 63.0, 55.3, 52.4, 45.9, 41.3, 35.2. HRMS calculated for C₄₃H₄₂N₇O₆⁺ [M + H⁺] 752.3197, found 752.3132.

4) 5'-O-(4,4'-dimethoxytrityl)-3'-O-[(2-cyanoethoxy)(diisopropylamino)phosphino]-N²-

(dimethylformamidyl)-8-(4"-cyanostrene)-2'-dG (7)

Synthesis was performed as outlined for **4**. (68% yield based on 31P NMR, 32% P^V). ¹H NMR (300 MHz, CDCl₃) δ = δ: 8.73 (br s, 1H), 8.45 (s, 1H), 7.82 (d, J = 16 Hz, 1H), 7.49-7.30 (m, 4H), 7.24-7.09 (m, 9H), 6.69-6.63 (m, 5H), 6.46-6.41 (m, 1H), 5.59 (s, 1H), 4.82-4.63 (m, 1H), 4.17-4.09 (m, 1H), 3.66 (s, 6H), 3.60-3.42 (m, 4H), 3.40-3.26 (m, 2H), 3.05 (s, 6H), 2.43-2.27 (m, 3H), 1.31-1.01 (m, 12H). ¹³C NMR (75

MHz, CDCl₃) δ = 158.4, 157.3, 156.1, 154.9, 150.7, 150.4, 145.5, 140.5, 144.5, 140.5, 138.3, 135.6, 132.3, 129.9, 128.2, 128.1, 128.0, 127.7, 127.4, 113.0, 86.2, 82.9, 78.5, 77.2, 63.4, 55.1, 53.0, 46.9, 45.2, 43.3, 41.3, 35.2, 8.9. ³¹P NMR (162 MHz, CDCl₃) δ = 149.1, 14.3 (P^V). HRMS calculated for C₅₂H₅₉N₉O₇P⁺ [M+H⁺]: 952.4275; found 952.4186.

Figure S20. ¹HNMR (DMSO-*d6*) of ^{CN}dG.

Figure S21. ¹³CNMR (DMSO-*d6*) of ^{CN}dG.

Figure S22. ¹HNMR (DMSO-*d6*) of **5**.

Figure S23. ¹³CNMR (DMSO-*d6*) of **5**.

Figure S24. ¹HNMR (DMSO-*d6*) of 6.

Figure S25. 13 CNMR (CDCl₃) of 6.

Figure S26. ¹HNMR (CDCl₃) of 7.

Figure S27. 13 CNMR (CDCl₃) of 7.

Figure S28. ³¹PNMR (CDCl₃) of 7.

Figure S29. HRMS of 7.

Oligo.	Product Formula	Calculated	Experimental m/z	Experimental
		mass	(ESI ⁻)	mass
Th dG-mTBA	$C_{154}H_{189}N_{57}O_{94}P_{14}S$	4808.2	[M-6H] ⁶⁻ = 800.30	4807.80
			[M-7H] ⁷⁻ = 685.80	4807.60
			[M-8H] ⁸⁻ = 600.00	4808.00
			[M-9H] ⁹⁻ = 533.20	4807.80
^{BTh} dG-mTBA	$C_{158}H_{191}N_{57}O_{94}P_{14}S$	4855.8	[M-6H] ⁶⁻ = 809.0	4860.0
			[M-7H] ⁷⁻ = 693.0	4858.0
			[M-8H] ⁸⁻ = 606.1	4856.8
			[M-9H] ⁹⁻ = 538.7	4857.3
^{Sty} dG-mTBA	C ₁₅₈ H ₁₉₃ N ₅₇ O ₉₄ P ₁₄	4828.2	[M-5H] ⁵⁻ = 964.5	4827.4
			[M-6H] ⁶⁻ = 803.6	4827.5
			[M-7H] ⁷⁻ = 688.7	4827.8
			[M-8H] ⁸⁻ = 602.5	4828.2
^{cℕ} dG-mTBA	$C_{159}H_{192}N_{58}O_{94}P_{14}$	4853.1	[M-5H] ⁵⁻ = 970.0	4855.0
			[M-6H] ⁶⁻ = 808.1	4854.6
			[M-7H] ⁷⁻ = 692.2	4852.4
			[M-8H] ⁸⁻ = 605.5	4852.0

Table S10. Mass analysis of mTBA strands.

Figure S30. ESI-MS of ThdG-mTBA.

Figure S31. ESI-MS of ^{BTh}dG-mTBA.

Figure S32. ESI-MS of ^{Sty}dG-mTBA.

Figure S33. ESI-MS of ^{CN}dG-mTBA.