Electronic Supplementary Information

Ruthenium-Catalyzed C-H Allylation of Arenes with Allylic Amines

Rui Yan[†] and Zhong-Xia Wang^{*,†,‡} [†] CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China [‡] Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People's Republic of China *E-mail: zxwang@ustc.edu.cn; Tel: 86 551 63603043*

Content

1. Table S1. The Ru catalyst screening	3
2. Ru-catalyzed reaction of 2-phenylpyridine with N-allyl-N-meth	ylaniline on 3
a 4 mmol scale	
3. Mechanism study	3
3.1 Reaction of 2-phenylpyridine with [Ru(<i>p</i> -cymene)Cl ₂] ₂	3
3.2 Reaction of complex 6 with <i>N</i> -allyl- <i>N</i> -methylaniline	4
3.3 Complex 6-catalyzed allylation reactions	4
3.4 Determination of intermolecular kinetic isotope effect (KIE	5
References	6
4. Copies of NMR spectra of the allylation products	7
(1) 2-(2,6-diallylphenyl)pyridine (3aa)	7
(2) 2-(2-allyl-6-methylphenyl)pyridine (3ba)	8
(3) 2-(2-allyl-6-fluorophenyl)pyridine (3ca)	9
(4) 2-(2-allyl-4,6-difluorophenyl)pyridine (3da)	11
(5) 2-(2-allyl-6-chlorophenyl)pyridine (3ea)	13
(6) 2-(2-allyl-6-bromophenyl)pyridine (3fa)	14
(7) 2-(2-allyl-6-(trifluoromethyl)phenyl)pyridine (3ga)	15
(8) 2-(2-allyl-5-methylphenyl)pyridine (3ha)	17
(9) 2-(2-allyl-4,5-dimethylphenyl)pyridine (3ia)	18
(10) 2-(4-allyl-[1,1'-biphenyl]-3-yl)pyridine (3ja)	19
(11) 2-(3-allylnaphthalen-2-yl)pyridine (3ka)	20
(12) 2-(2-allylnaphthalen-1-yl)pyridine (3la)	21
(13) 2-(2,6-diallyl-4-methylphenyl)pyridine (3ma)	22
(14) 2-(3,5-diallyl-[1,1'-biphenyl]-4-yl)pyridine (3na)	23
(15) 2-(2,6-diallyl-4-methoxyphenyl)pyridine (3oa)	24
(16) 3,5-diallyl-4-(pyridin-2-yl)phenol (3pa)	25
(17) 2-(2,6-diallyl-4-fluorophenyl)pyridine (3qa)	26
(18) 2-(2,6-diallyl-4-chlorophenyl)pyridine (3ra)	28
(19) 2-(2,6-diallyl-4-bromophenyl)pyridine (3sa)	29
(20) ethyl 3,5-diallyl-4-(pyridin-2-yl)benzoate (3ta)	30
(21) 3,5-diallyl-4-(pyridin-2-yl)benzoic acid (3ua)	31
(22) 2-(2,6-diallyl-4-(trifluoromethyl)phenyl)pyridine (3va)	32
(23) 2-(2,6-diallyl-4-nitrophenyl)pyridine (3wa)	34
(24) 2-(2,6-diallyl-3-methoxyphenyl)pyridine (3xa)	35
(25) 2-(2,6-diallyl-3-fluorophenyl)pyridine (3ya)	36
(26) 2-(2,6-diallyl-3-chlorophenyl)pyridine (3za)	38
(27) 1-(2,6-diallylphenyl)-1 <i>H</i> -pyrazole (4)	39
(28) 2-(2,6-diallylphenyl)pyrimidine (5)	40
(29) ¹ H NMR spectrum of the products by reaction of 2-(o -toly	l)pyridine 41
with N-(but-3-en-2-yl)-N-methylaniline	
(30) ¹ H NMR spectrum of the products by reaction of 2-(o -toly	l)pyridine 42
with N-(but-2-en-1-yl)-N-methyl aniline	

1. Table S1. The Ru catalyst screening^a

^{*a*} The reactions were carried out on a 0.2 mmol scale according to the conditions indicated by above equation.

2. Ru-catalyzed reaction of 2-phenylpyridine with *N*-allyl-*N*-methylaniline on a 4 mmol scale

2-Phenylpyridine (0.62 g, 4 mmol), *N*-allyl-*N*-methylaniline (2.36 g, 16 mmol), AgOAc (0.334 g, 2 mmol), [Ru(*p*-cymene)Cl₂]₂ (0.124 g, 0.2 mol), and CF₃CH₂OH (20 cm³) were successively added into a Schlenk tube. The mixture was stirred at 75°C for 12 hours. Upon cooling to room temperature, the reaction mixture was diluted with EtOAc and filtered through a short pad of silica gel. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using EtOAc/petroleum ether 1/20 (v/v) as eluent to afford **3aa** as colorless oil (0.8273 g, 88%).

3. Mechanism study

3.1 Reaction of 2-phenylpyridine with [Ru(p-cymene)Cl2]2

2-Phenylpyridine (155.0 mg, 1.0 mmol), $[RuCl_2(p-cymene)]_2$ (61.2 mg, 0.1 mmol), AgOAc (16.7 mg, 0.1 mmol) and CF₃CH₂OH (5 cm³) were added to a Schlenk tube. The mixture was stirred at 60 °C for 6 hours and then cooled to room temperature. The resulting solution was concentrated under vacuum to remove solvent. The residue was purified by column

chromatography to give **6** as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.23 (d, J = 5.6 Hz, 1H), 8.16 (d, J = 7.4 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.68–7.58 (m, 2H), 7.21-7.14 (m, 1H), 7.08–6.99 (m, 2H), 5.62–5.52 (m, 2H), 5.17 (d, J = 5.9 Hz, 1H), 4.98 (d, J = 5.8 Hz, 1H), 2.50–2.38 (m, 1H), 2.04 (s, 3H), 0.97 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 181.47, 165.41, 154.70, 143.43, 139.67, 136.73, 129.56, 123.97, 122.59, 121.51, 118.88, 100.72, 100.55, 90.84, 89.72, 84.23, 82.30, 30.88, 22.63, 21.81 18.86. The spectral data matched the values reported in literature.¹

3.2 Reaction of complex 6 with N-allyl-N-methylaniline

Complex **6** (85 mg, 0.2 mmol), *N*-allyl-*N*-methylaniline (118 mg, 0.8 mmol), AgOAc (16.7 mg, 0.1 mmol), and CF₃CH₂OH (1.5 cm³) were successively added into a Schlenk tube. The mixture was stirred at 75 °C for 12 hours and then cooled to room temperature. The mixture was diluted with EtOAc and filtered through a short pad of silica gel. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (eluent: EtOAc/petroleum ether 1/20) to afford the desired product **3aa** (13.7 mg, 29%).

3.3 Complex 6-catalyzed allylation reactions

(1) Complex 6-catalyzed reaction of 2-phenylpyridine with N-allyl-N-methylaniline

2-Phenylpyridine (31 mg, 0.2 mmol), *N*-allyl-*N*-methylaniline (118 mg, 0.8 mmol), AgOAc (16.7 mg, 0.1 mmol), complex **6** (8.5 mg, 0.02 mol), and CF₃CH₂OH (1.5 cm³) were successively added into a Schlenk tube. The mixture was stirred at 75 °C for 12 hours and then cooled to room temperature. The resulting mixture was diluted with EtOAc and filtered through a short pad of silica gel. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using EtOAc/petroleum ether 1/20 (v/v) as eluent to afford pure product **3aa** (41.9 mg, 89%).

(2) Complex 6-catalyzed reaction of 2-(o-tolyl)pyridine with N-allyl-N-methylaniline

2-(*o*-Tolyl)pyridine (33.8 mg, 0.2 mmol), *N*-allyl-*N*-methylaniline **2a** (59 mg, 0.4 mmol), AgOAc (16.7 mg, 0.1 mmol), complex **6** (8.5 mg, 0.02 mol), and CF₃CH₂OH (1.5 cm³) were successively added into a Schlenk tube. The mixture was stirred at 75 °C for 12 hours and then cooled to room temperature. The resulting mixture was diluted with EtOAc and filtered through a short pad of silica gel. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using EtOAc/petroleum ether 1/20 (v/v) as eluent to afford pure product **3ba** (35.2 mg, 84%).

3.4 Determination of intermolecular kinetic isotope effect (KIE)

(1) Synthesis of 2-(pentadeuteriophenyl)pyridine (1a-d₅)

Bromobenzene-d₅ (0.972 g, 6 mmol) was added slowly to a mixture of Mg turnings (0.144 g, 6 mmol), THF (20 cm³) and a grain of iodine. The resulting mixture was stirred at room temperature for 3 hours. The resulting solution was slowly added to a solution of 2-bromopyridine (0.632 g, 4 mmol) and Pd(dppf)Cl₂ (146.4 mg, 0.2 mol, 5 mol%) in THF (20 cm³) at -42 °C over a period of 60 minutes. After stirring for additional 2 hours at room temperature the reaction was stopped by adding a saturate NH₄Cl solution (10 cm³). The aqueous layer was extracted with ethyl acetate (3 × 40 cm³). The combined organic phases was dried over Na₂SO₄, concentrated by rotary evaporation and purified by column chromatography on silica gel using EtOAc/petroleum ether 1/20 (v/v) as eluent to afford 2-(pentadeuteriophenyl)pyridine (**1a**-d₅) (0.544 g, 85%) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, *J* = 4.8 Hz, 1H), 7.72–7.66 (m, 2H), 7.23–7.14 (m, 1H). The spectral data were consistent with those reported in literature.²

(2) Determination of intermolecular kinetic isotope effect

Following our general procedure: 2-(pentadeuteriophenyl)pyridine (16.2 mg, 0.1 mmol), 2-phenylpyridine (15.5 mg, 0.1 mmol), *N*-allyl-*N*-methylaniline (118 mg, 0.8 mmol), AgOAc (16.7 mg, 0.1 mmol), [Ru(*p*-cymene)Cl₂]₂ (6.2 mg, 0.01 mol), and CF₃CH₂OH (1.5 cm³) were successively added into a Schlenk tube. The mixture was stirred at 75°C for 12 hours and then cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered through a short pad of silica gel. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography to afford a mixture of **3aa** and **3aa**-d₅. The ratio of **3aa** to **3aa**-d₅ was obtained via the integral of their ¹H NMR spectra. The intermolecular KIE was 1.1.

References

- 1 L. L. Zhang, L. H. Li, Wang, Y. Q. Y. F. Yang, X. Y. Liu, and Y. M. Liang, Organometallics, 2014, 33, 1905.
- 2 J. Wippich, N. Truchan, and T. Bach, Adv. Synth. Catal., 2016, 358, 2083.

4. Copies of NMR spectra of the allylation products

(1) 2-(2,6-diallylphenyl)pyridine (**3aa**)

(2) 2-(2-allyl-6-methylphenyl)pyridine (**3ba**)

90 80 f1 (ppm)

(3) 2-(2-allyl-6-fluorophenyl)pyridine (3ca)

(4) 2-(2-allyl-4,6-difluorophenyl)pyridine (3da)

-109.0 -109.2 -109.4 -109.6 -109.8 -110.0 -110.2 -110.4 -110.6 -110.8 -111.0 -111.2 -111.4 -111.6 -111.8 -112.0 -112.2 -112.4 -112.6 -112.8 -113.0 -113.2 -113.4 -113.6 ft (ppm)

(5) 2-(2-allyl-6-chlorophenyl)pyridine (**3ea**)

(6) 2-(2-allyl-6-bromophenyl)pyridine (**3fa**)

																				1 1	
-52.0	-52.5	-53.0	-53.5	-54.0	-54.5	-55.0	-55.5	-56.0	-56.5	-57.0 f1 (-57.5 (ppm)	-58.0	-58.5	-59.0	-59.5	-60.0	-60.5	-61.0	-61.5	-62.0	-62.5

f1 (ppm) -10

(10) 2-(4-allyl-[1,1'-biphenyl]-3-yl)pyridine (**3ja**)

(11) 2-(3-allylnaphthalen-2-yl)pyridine (**3ka**)

(12) 2-(2-allylnaphthalen-1-yl)pyridine (**3la**)

(14) 2-(3,5-diallyl-[1,1'-biphenyl]-4-yl)pyridine (**3na**)

3.20 3.19 3.16 3.16

(16) 3,5-diallyl-4-(pyridin-2-yl)phenol (3pa)

			· · ·					· · ·			· · ·		· · ·	
-111.0	-111.5	-112.0	-112.5	-113.0	-113.5	-114.0	-114.5 f1 (ppm)	-115.0	-115.5	-116.0	-116.5	-117.0	-117.5	-118.

(18) 2-(2,6-diallyl-4-chlorophenyl)pyridine (3ra)

(19) 2-(2,6-diallyl-4-bromophenyl)pyridine (3sa)

(21) 3,5-diallyl-4-(pyridin-2-yl)benzoic acid (3ua)

(22) 2-(2,6-diallyl-4-(trifluoromethyl)phenyl)pyridine (**3va**)

(23) 2-(2,6-diallyl-4-nitrophenyl)pyridine (3wa)

(24) 2-(2,6-diallyl-3-methoxyphenyl)pyridine (3xa)

(25) 2-(2,6-diallyl-3-fluorophenyl)pyridine (**3ya**)

-115.5 -116.0 -116.5 -117.5 -118.0 -119.5 -119.0 -119.5 -120.0 -120.5 -121.0 -121.5 -122.0 -122.5 -123.0 -123.5 -124.0 -124.5 -125.0 fl (perm)

(26) 2-(2,6-diallyl-3-chlorophenyl)pyridine (3za)

(27) 1-(2,6-diallylphenyl)-1H-pyrazole (4)

(28) 2-(2,6-diallylphenyl)pyrimidine (5)

(29) ¹H NMR spectrum of the products by reaction of 2-(o-tolyl)pyridine with N-(but-3-en-2-yl)-N-methylaniline

(30) ¹H NMR spectrum of the products by reaction of 2-(o-tolyl)pyridine with N-(but-2-en-1-yl)-N-methyl aniline

