SUPPORTING INFORMATION

The reactive group effects on the photophysical and biological properties of the 2-phenyl-1*H*-phenanthro[9,10-*d*]imidazole derivatives as fluorescence markers

Przemysław Krawczyk*, Przemysław Czeleń, Piotr Cysewski

Nicolaus Copernicus University, Collegium Medicum, Faculty of Pharmacy, Department of Physical

Chemistry, Kurpińskiego 5, 85-950 Bydgoszcz, Poland

*Corresponding author: przemekk@cm.umk.pl; tel: +48 52 5853679

Figures:

Fig. SI1. Schematic representation of structures of studied PhI derivatives

Fig. SI2. A route for bioconjugation of functional groups with protein

Fig. SI3. Molecular orbitals of PhI derivatives

Fig. SI4. Molecular orbitals of biocomplexes

Fig. SI5. Graphic representations of concanavaline protein with probe molecules obtained during MD simulations. The PB1 molecule is bound with lysine LYS 116, the PB1-1-3 bound with lysine LYS 30 and PB1-4 with methionine 42

Tables:

Table SI1. The frontier orbital energies in selected solvents. All values are given in eV

Table SI2. The values of vertical and cLR corrected excitation and de-excitation energies (in nm) for conjugates

Table SI3. Calculated values of dipole moments (in D) for the ground and CT excited state

Table SI4. CT parameters for the bright low-lying excited state

Table SI5. Two-photon absorption cross section $\begin{pmatrix} \delta_{TSM}^{OF} \end{pmatrix}$ expressed in a.u.

Table SI6. The values of free energies (DGsolv) of solvation in kcal/mol obtained using SMD solvation model

Table SI7. Calculated probability of the biological activity for the PB3 dye

Table SI8. Binding free energies (ΔG_b , kcal/mol) and values of the inhibitor constants (K_i in mM) obtained during AutoDock simulations

Table SI9. Change of structural parameters after docking simulation

Figures:

Fig. SI1. Schematic representation of structures of studied PhI derivatives

Fig. SI2. A route for bioconjugation of functional groups with protein

Fig. SI3. Molecular orbitals of PhI derivatives

Fig. SI4. Molecular orbitals of biocomplexes

PB1-1

PB1-2

PB1-4 2

Fig. SI5. Graphic representations of concanavaline protein with probe molecules obtained during MD simulations. The PB1 molecule is bound with lysine LYS 116, the PB1-1-3 bound with lysine LYS 30 and PB1-4 with methionine 42

Tables:

			PI	31		PB1Con						
	E _{HOMO}	E _{LUMO}	E _{GAP}	η^{a}	$\mu^{\rm b}$	χ°	E _{HOMO}	E _{LUMO}	E _{GAP}	η^{a}	$\mu^{\rm b}$	χ°
GP	-5.9016	-3.5133	2.3883	1.1942	-4.7074	4.7074	-5.6980	-1.3724	4.3256	2.1628	-3.5352	3.5352
Et_2O	-6.0377	-2.3881	3.6496	1.8256	-4.2129	4.2129	-5.8235	-1.4598	4.3637	2.1819	-3.6416	3.6416
THF	-6.0494	-2.3981	3.6512	1.8256	-4.2238	4.2238	-5.8591	-1.4870	4.3722	2.1861	-3.6731	3.6731
MeCN	-6.0684	-2.4126	3.6558	1.8279	-4.2405	4.2405	-5.9098	-1.5289	4.3809	2.1904	-3.7193	3.7193
DMF	-6.0687	-2.4130	3.6554	1.8277	-4.2407	4.2407	-5.9103	-1.5294	4.3809	2.1904	-3.7199	3.7199
DMSO	-6.0698	-2.4134	3.6564	1.8282	-4.2416	4.2416	-5.9136	-1.5321	4.3814	2.1907	-3.7229	3.7229
Water	-6.0717	-2.4150	3.6567	1.8283	-4.2433	4.2433	-5.9098	-1.5234	4.3863	2.1932	-3.7166	3.7166
			PB	1-1					PB1-	-1Con		
	Еномо	E _{LUMO}	E _{GAP}	η^{a}	$\mu^{\rm b}$	χ°	E _{HOMO}	E _{LUMO}	E _{GAP}	η^{a}	$\mu^{\rm b}$	χ°
GP	-60.276	-2.3042	3.7234	1.8617	-4.1659	4.1659	-5.8869	-17858	4.1011	2.0506	-3.8363	3.8363
Et_2O	-6.0466	-2.3573	3.6894	1.8447	-4.2020	4.2020	-5.9462	-1.8037	4.1425	2.0712	-3.8750	3.8750
THF	-6.0651	-2.3812	3.6839	1.8420	-4.2232	4.2232	-5.9680	-1.8233	4.1447	2.0723	-3.8957	3.8957
MeCN	-6.0937	-2.4158	3.6780	1.8390	-4.2547	4.2547	-6.0009	-1.8426	4.1583	2.0791	-3.9218	3.9218
DMF	-6.0940	-2.4160	3.6780	1.8390	-4.2550	4.2550	-6.0015	-1.8429	4.1585	2.0793	-3.9222	3.9222
DMSO	-6.0959	-2.4182	3.6777	1.8388	-4.2571	4.2571	-6.0034	-1.8440	4.1594	2.0797	-3.9237	3.9237
Water	-6.0986	-2.4215	3.6771	1.8386	-4.2601	4.2601	-6.0066	-1.8462	4.1605	2.0802	-3.9264	3.9364
	PB1-2						PB1-2Con					
	E _{HOMO}	E _{LUMO}	E _{GAP}	η^{a}	$\mu^{\rm b}$	χ°	E _{HOMO}	E _{LUMO}	E _{GAP}	η^{a}	$\mu^{\rm b}$	χ°
GP	-5.8893	-1.9980	3.8913	1.9457	-3.9437	3.9437	-5.7897	-1.6943	4.0954	2.0477	-3.7420	3.7420
Et_2O	-5.9136	-2.0021	3.9114	1.9557	-3.9578	3.9578	-5.8346	-1.6739	4.1607	2.0804	-3.7543	3.7543
THF	-5.9318	-2.0187	3.9131	1.9565	-3.9753	3.9753	-5.8523	-1.6780	4.1743	2.0872	-3.7652	3.7652
MeCN	-5.9252	-2.0244	3.9280	1.9640	-3.9885	3.9885	-5.8771	-1.6859	4.1912	2.0956	-3.7815	3.7815
DMF	-5.9528	-2.0247	3.9280	1.9640	-3.9887	3.9887	-5.8774	-1.6859	4.1915	2.0957	-3.7816	3.7816
DMSO	-5.9538	-2.0250	3.9289	1.9644	-3.9894	3.9894	-5.8787	-1.6864	4.1923	2.0961	-3.7826	3.7826
Water	-5.9560	-2.0258	3.9302	1.9651	-3.9909	3.9909	-5.8523	-1.6780	4.1743	2.0872	-3.7652	3.7652
			PB	1-3					PB1-	-3Con		
	E _{HOMO}	E _{LUMO}	E _{GAP}	η^{a}	μ ^b	χ°	E _{HOMO}	E _{LUMO}	E _{GAP}	$\eta^{-\mathrm{a}}$	μ ^b	χ°
GP	-6.2420	-2.6365	3.6056	1.8028	-4.4393	4.4393	-6.0769	-2.0525	4.0244	2.0122	-4.0647	4.0647
Et ₂ O	-6.1590	-2.6746	3.4845	1.7422	-4.4168	4.4168	-6.0646	-2.0329	4.0317	2.0159	-4.0487	4.0487
THF	-6.1552	-2.6887	3.4665	1.7332	-4.4220	4.4220	-6.0717	-2.0351	4.0366	2.0183	-4.0534	4.0534
MeCN	-6.1558	-2.7056	3.4502	1.7251	-4.4307	4.4307	-6.0834	-2.0448	4.0385	2.0193	-4.0641	4.0641
DMF	-6.1558	-2.7056	3.4502	1.7251	-4.4307	4.4307	-6.0837	-2.0448	4.0388	2.0194	-4.0643	4.0643
DMSO	-6.1560	-2.7067	3.4494	1.7247	-4.4314	4.4314	-6.0845	-2.0454	4.0391	2.0195	-4.0649	4.0649
Water	-6.1563	-2.7075	3.4488	1.7244	-4.4319	4.4319	-6.0858	-2.0459	4.0399	2.0199	-4.0659	4.0659
			PB	1-4					PB1-	4Con		
	E _{HOMO}	ELUMO	EGAP	η^{a}	μ^{b}	χc	E _{HOMO}	ELUMO	Egap	η^{a}	μ^{b}	χc
GP	-5.6210	-1.5071	4.1139	2.0570	-3.5641	3.5641	-5.7214	-1.5166	4.2048	2.1024	-3.6190	3.6190
Et ₂ O	5.6240	-1.5251	-4.1491	-3.5745	-2.0495	2.0495	-5.7957	-1.5525	4.2432	2.1216	-3.6741	3.6741
THF	-5.6292	-1.5403	4.0889	2.0444	-3.5847	3.5847	-5.8216	-1.5686	4.2530	2.1265	-3.6951	3.6951
MeCN	-5.6327	-1.5713	4.0614	2.0307	-3.6020	3.6020	-5.8583	-1.5817	4.2767	2.1383	-3.7200	3.7200
DMF	-5.6327	-1.5719	4.0608	2.0304	-3.6023	3.6023	-5.8589	-1.5819	4.2769	2.1385	-3.7204	3.7204
DMSO	-5.6346	-1.5762	4.0584	2.0292	-3.6054	3.6054	-5.8610	-1.5836	4.2775	2.1387	-3.7223	3.7223
Water	-5.6349	-1.5776	4.0573	2.0287	-3.6062	3.6062	-5.8616	-1.5877	4.2739	2.1370	-3.7246	3.7246

Table SI1. The frontier orbital energies in selected solvents. All values are given in eV

^a Chemical hardness; ^b Chemical potential; ^c The Mulliken electronegativity

				TDDFT			cLR-T	DDFT		
			$\lambda_{ m ABS}$	\mathbf{f}_{OS}	λ_{Em}		$\lambda_{ m ABS}$	$\lambda_{\rm Em}$		
GP			335.53	0.44	432.07					
Et ₂ O			338.68	0.66	444.61		335.46	467.59		
THF			338.88	0.67	466.14		335.37	488.75		
MeCN			338.02	0.62	495.1		335.1	500.46		
DMF			338.76	0.67	497.05		335.16	500.49		
DMSO			338.62	0.66	496.77		335.13	500.59		
Water			337.87	0.59	494.87		335.29	500.77		
			PB1-1Con	1				PB1-2Con		
	TDDFT			cLR-T	DDFT		TDDFT		cLR-TDDFT	
	$\lambda_{ m ABS}$	\mathbf{f}_{OS}	λ_{Em}	$\lambda_{ m ABS}$	λ_{Em}	$\lambda_{ m ABS}$	\mathbf{f}_{OS}	λ_{Em}	$\lambda_{ m ABS}$	λ_{Em}
GP	349.82	0.76	441.07			357.84	0.73	414.99		
Et ₂ O	353.41	0.92	457.98	353.38	484.67	356.07	1.16	466.16	351.67	470.78
THF	354.01	0.94	460.45	354.17	489.18	355.52	1.19	467.6	367.33	472.08
MeCN	352.07	0.93	460.05	352.51	495.1	353.28	1.17	465.84	349.14	473.34
DMF	353.23	0.95	462.4	353.71	495.17	354.38	1.21	468.1	349.55	473.32
DMSO	352.99	0.95	462.12	353.49	494.52	354.14	1.2	467.76	349.41	473.04
Water	351.74	0.92	459.92	352.22	494.08	352.88	1.17	465.48	348.89	476.89
		-	PB1-3Con	1				PB1-4Con		
		TDDFT		cLR-T	DDFT		TDDFT		cLR-T	DDFT
	$\lambda_{ m ABS}$	\mathbf{f}_{OS}	$\lambda_{\rm Em}$	$\lambda_{ m ABS}$	$\lambda_{\rm Em}$	$\lambda_{ m ABS}$	\mathbf{f}_{OS}	$\lambda_{\rm Em}$	$\lambda_{ m ABS}$	$\lambda_{\rm Em}$
GP	356.87	0.76	487.32			343.47	0.85	537.81		
Et ₂ O	363.47	0.92	504.38	365.37	508.43	347.62	1.03	582.71	342.55	592.08
THF	363.82	0.94	506.89	366.48	510.12	347.71	1.05	591.38	342.13	592.99
MeCN	362.7	0.94	506.58	365.63	511.28	345.43	0.99	596.47	340.6	600.99
DMF	363.98	0.96	508.93	367.33	511.36	346.46	1.03	600.23	340.8	614
DMSO	363.75	0.96	508.66	367.09	510.74	346.27	1.02	600.12	340.73	613.1
Water	362.42	0.93	506.47	365.38	508.33	345.54	0.98	597.16	340.78	612.18

Table SI2. The values of vertical and cLR corrected excitation and de-excitation energies (in nm) for conjugates

$\frac{PB1-2}{\mu_{CT}} \qquad \frac{PB1-3}{\mu_{CT}} \qquad \frac{PB1-4}{\mu_{a}}$	1-2	DE	01 1	л	D 1	Б	
μ_{a} μ_{CT} μ_{a} μ_{CT} μ_{a} μ_{cT}	PB1-2		PB1-1		PB1		
<i>y y y</i>	μ_{CT}	μ_g	μ_{CT}	μ_g	μ_{CT}	μ_g	
62 13.19 7.08 22.38 3.15 9.	13.19	3.62	13.92	3.47	16.86	5.62	GP
57 16.39 8.47 28.57 4.22 13	16.39	5.57	17.01	4.92	21.09	7.23	Et ₂ O
89 17.14 8.76 29.77 4.55 14	17.14	5.89	17.65	5.32	21.92	7.61	THF
29 17.69 9.12 31.22 5.60 16	17.69	6.29	18.45	5.87	22.86	8.11	MeCN
29 17.65 9.12 31.18 5.61 16	17.65	6.29	18.46	5.88	22.90	8.13	DMF
31 17.68 9.14 31.27 5.85 16	17.68	6.31	18.51	5.91	22.96	8.16	DMSO
34 17.77 9.17 31.44 5.91 16	17.77	6.34	18.57	5.96	23.04	8.21	Water
PB1-2Con PB1-3Con PB1-4Con	PB1-2Con		PB1-1Con		1Con	PB	
μ_g μ_{CT} μ_g μ_{CT} μ_g μ_d	μ_{CT}	μ_g	μ_{CT}	μ_g	μ_{CT}	μ_g	
77 4.83 6.33 15.04 3.44 5.	4.83	4.77	11.17	5.65	4.47	2.89	GP
35 9.76 7.85 18.39 4.92 7.	9.76	6.35	13.41	7.60	6.97	3.71	Et_2O
75 10.55 8.22 19.01 5.29 7.	10.55	6.75	13.99	8.31	7.50	3.89	THF
27 11.11 8.98 19.81 5.69 7.	11.11	7.27	14.50	9.01	7.95	4.02	MeCN
28 11.21 8.99 19.83 5.70 7.	11.21	7.28	14.55	9.02	8.01	4.03	DMF
31 11.22 9.02 19.87 5.73 7.	11.22	7.31	14.58	9.06	8.03	4.03	DMSO
24 11.15 9.07 19.92 6.14 7.	11.15	7.24	14.58	9.13	8.40	4.27	Water
10.37 <	$\begin{array}{r} 17.14\\ 17.69\\ 17.65\\ 17.68\\ 17.77\\ \hline \hline \\ 2Con\\ \hline \\ \mu_{CT}\\ \hline \\ 4.83\\ 9.76\\ 10.55\\ 11.11\\ 11.21\\ 11.22\\ 11.15\\ \hline \end{array}$	5.37 5.89 6.29 6.29 6.31 6.34 $PB1$ μ_g 4.77 6.35 6.75 7.27 7.28 7.31 7.24	$\begin{array}{r} 17.65\\ 17.65\\ 18.45\\ 18.45\\ 18.51\\ 18.57\\ \hline \\ \hline \\ 18.57\\ \hline \\ 18.57\\ \hline \\ 18.57\\ \hline \\ 18.57\\ \hline \\ 11.17\\ 13.41\\ 13.99\\ 14.50\\ 14.55\\ 14.58\\ 14.58\\ \hline \\ 14.58\\ \hline \\ 14.58\\ \hline \end{array}$	$5.32 \\ 5.32 \\ 5.87 \\ 5.88 \\ 5.91 \\ 5.96 \\ PB1 \\ \mu_g \\ 5.65 \\ 7.60 \\ 8.31 \\ 9.01 \\ 9.02 \\ 9.06 \\ 9.13 \\ $	$\begin{array}{r} 21.03\\ 21.92\\ 22.86\\ 22.90\\ 22.96\\ 23.04\\ \hline 1 \text{Con}\\ \hline \mu_{CT}\\ \hline 4.47\\ 6.97\\ 7.50\\ 7.95\\ 8.01\\ 8.03\\ 8.40\\ \hline \end{array}$	$\begin{array}{r} 7.23 \\ 7.61 \\ 8.11 \\ 8.13 \\ 8.16 \\ 8.21 \\ \hline PB \\ \mu_g \\ 2.89 \\ 3.71 \\ 3.89 \\ 4.02 \\ 4.03 \\ 4.03 \\ 4.03 \\ 4.27 \\ \end{array}$	THF MeCN DMF DMSO Water GP Et ₂ O THF MeCN DMF DMSO Water

Table SI3. Calculated values of dipole moments (in D) for the ground and CT excited state

Table SI4. CT parameters for the bright low-lying excited state

	$D_{\rm CT}$	$q_{ m CT}$								
	Pl	B1	PB1-1		PB	PB1-2		1-3	PB	1-4
GP	3.997	0.680	3.960	0.702	3.762	0.585	4.4250	0.744	1.393	0.532
Et_2O	4.739	0.721	4.585	0.738	4.258	0.604	5.340	0.816	1.553	0.574
THF	4.870	0.729	4.702	0.745	4.369	0.607	5.506	0.831	1.824	0.585
MeCN	5.032	0.736	4.865	0.750	4.484	0.608	5.706	0.848	2.431	0.608
DMF	5.024	0.738	4.889	0.752	4.469	0.608	5.736	0.848	2.474	0.611
DMSO	5.022	0.738	4.868	0.752	4.460	0.608	5.705	0.849	2.468	0.613
Water	5.015	0.737	4.864	0.751	4.460	0.607	5.692	0.848	2.465	0.613
	PB1	Con	PB1-1 Con		PB1-2 Con		PB1-3 Con		PB1-4 Con	
GP	0.293	0.427	3.311	0.593	0.482	0.594	3.361	0.623	1.829	0.473
Et ₂ O	1.172	0.441	3.699	0.604	2.186	0.538	3.878	0.657	1.504	0.471
THF	1.089	0.443	3.760	0.604	2.338	0.533	3.971	0.661	1.361	0.469
MeCN	1.202	0.444	3.825	0.601	2.409	0.524	4.078	0.661	1.828	0.459
DMF	1.060	0.446	3.824	0.604	2.409	0.527	4.071	0.663	1.904	0.463
DMSO	1.044	0.446	3.836	0.604	2.455	0.526	4.077	0.663	1.902	0.463
Water	1.089	0.446	3.829	0.600	2.466	0.523	4.094	0.661	1.852	0.459

Table SI5. Two-photon absorption cross section (δ_{TSM}^{OF}) expressed in a.u.

			δ_{TSM}^{OF}	_	
	PB1	PB1-1	PB1-2	PB1-3	PB1-4
GP	150608	30432	25529	41591	1819
Et ₂ O	178243	43689	35362	96255	4883
THF	98437	44596	38807	102506	5997
MeCN	48218	44395	37735	74098	7412
DMF	49930	45131	38428	80139	7797
DMSO	49449	45197	38163	89393	7387
Water	48387	44357	37722	96392	7271

	DD 1	DD1 1	DD1 2	DD12	DD1 /	DD1Con	PB1-1	PB1-2	PB1-3	PB1-4
	PDI	PDI PDI-I PDI-2 PDI-3 PDI-		PD1-4	PBICOI	Con	Con	Con	Con	
Et ₂ O		-28.81	-22.01	-24.34	-26.10	-21.19	-25.48	-29.63	-27.02	-21.30
THF		-30.36	-21.74	-25.34	-27.27	-22.02	-25.76	-31.00	-28.81	-21.82
MeCN	-22.70	-33.66	-24.46	-27.73	-30.20	-25.59	-30.64	-33.39	-31.72	-24.98
DMF	-21.30	-32.90	-22.28	-26.95	-27.73	-23.30	-28.67	-31.33	-31.27	-22.86
DMSO	-19.11	-30.30	-19.61	-24.65	-25.08	-20.66	-26.20	-28.64	-28.80	-22.36
Water	-13.48	-22.93	-11.24	-18.91	-17.86	-15.78	-21.48	-22.02	-24.31	-14.60

 Table SI6. The values of free energies (DGsolv) of solvation in kcal/mol obtained using SMD solvation model

Table SI7. Calculated probability of the biological activity

	DD1	DD1 1	DD1 2	DD1 2		PB1	PB1-1	PB1-2	PB1-3	PB1-4
	FDI	rdi-i	FD1-2	FD1-3	FDI-4	Con	Con	Con	Con	Con
Alpha-Radioprotector activity	0.95	0.96	0.93	0.98	0.74	0.85	0.87	0.93	0.97	0.93
Gamma-radioprotector activity mechanism I	0.63	0.77	0.72	0.76	0.78	0.26	0.28	0.88	0.91	0.54
Analgetic activity	0.69	0.36	0.00	0.00	0.00	0.95	0.93	0.00	0.10	0.98
Anti-infectious_laryngotracheitis_activity	0.85	0.77	0.76	0.85	0.00	0.99	1.00	0.57	0.96	0.65
Anti-Adenovirus activity	0.00	0.00	0.00	0.00	0.00	0.92	0.11	0.00	0.00	0.00
Anti-Arrhytmic activity	0.00	0.09	0.00	0.00	0.84	0.62	0.12	0.06	0.00	0.80
Anti-Bacterial activity	0.00	0.00	0.00	0.00	0.00	0.61	0.98	0.00	0.06	0.00
Anti-Oxidant activity	0.00	0.00	0.00	0.00	0.00	0.02	0.14	0.00	0.00	0.01
Anti-Psychotic activity diazepine site	0.47	0.80	0.50	0.90	0.98	0.00	0.16	0.59	0.88	0.39
Anti-Tumor Alkylic activity	0.40	0.76	0.24	0.17	0.53	0.90	0.51	0.05	0.22	0.61
Anti-Tumor Antimitotic activity	0.44	0.05	0.10	0.14	0.39	0.24	0.01	0.15	0.00	0.25
Anti-Tumor Cycline-dependent kinase 4 inhibitory activity	0.99	0.91	1.00	0.99	0.98	0.53	0.61	1.00	0.98	0.99
Anti-Tumor Dihydrofolate reductase inhibitory activity	0.01	0.02	0.00	0.01	0.00	0.40	0.22	0.01	0.06	0.00
Anti-Tumor DNA anti-metabolitic activity	0.99	0.00	0.98	1.00	0.69	0.89	0.16	0.99	1.00	0.96
Anti-Tumor Topoisomerase I inhibitory activity	0.63	0.06	0.06	0.01	0.03	1.00	0.98	0.97	0.21	0.98
Anti-Tumor Topoisomerase II inhibitory activity	0.72	0.14	0.89	0.36	0.26	0.93	0.00	0.00	0.00	0.00
HIV1-proteaze inhibitory activity	0.60	0.59	0.60	0.66	0.06	0.13	0.02	0.36	0.62	0.46
HT51 A inhibitory activity	0.89	0.95	0.95	0.98	0.61	0.03	0.00	0.95	0.99	0.85
Tuberculostatic Dihydrofolate reductase inhibitory activity	0.98	0.98	0.91	0.87	0.96	0.98	0.81	0.93	0.89	0.97
Human factor XA Inhibitory activity	0.99	0.00	0.65	0.00	0.00	1.00	0.82	0.93	0.00	0.65
Metabolism at CYP450 2D6	0.77	0.96	0.92	0.90	0.43	0.87	0.71	0.87	0.92	0.66
Metabolism at CYP450 3A4	0.99	0.99	0.99	0.96	0.24	0.82	0.73	0.96	0.95	0.99
Progestagenic activity	0.99	1.00	1.00	1.00	1.00	0.00	0.00	0.91	0.95	1.00
Vasorelaxant_activity	0.12	0.64	0.39	0.35	0.00	0.28	0.00	0.00	0.18	0.00
COX1 inhibitory activity	0.75	0.59	0.92	0.75	0.93	0.05	1.00	0.64	0.86	0.00
COX2 inhibitory activity	0.98	0.95	0.99	0.98	0.00	0.96	0.00	1.00	1.00	0.97

	PB1		PB	1-1	PB	1-2	PB	1-3		PB	1-4
LYS	ΔG_b	K _i	MET	ΔG_b	K _i						
30	-5.33	0.35	-5.44	0.77	-5.25	0.39	-5.63	0.20	42	-5.22	0.15
35	-4.31	1.21	-4.97	1.71	-4.24	2.12	-4.89	0.71	129	-4.67	0.38
36	-4.27	2.68	-4.89	1.95	-3.85	4.12	-4.49	1.41			
39	-3.70	9.99	-3.69	14.68	-3.02	16.79	-3.29	10.65			
46	-4.62	0.98	-5.19	1.17	-4.42	1.57	-4.52	1.33			
59	-4.14	5.67	-3.59	17.45	-3.04	16.29	-3.64	5.93			
101	-5.63	0.49	-4.64	3.00	-4.38	1.70	-5.23	0.54			
114	-4.80	1.35	-5.10	1.37	-4.43	1.54	-4.55	1.27			
116	-5.84	0.79	-5.03	1.54	-4.70	0.99	-5.17	0.44			
135	-3.79	10.70	-3.29	28.82	-3.27	10.99	-3.27	10.89			
138	-3.97	3.41	-3.47	21.27	-3.86	4.07	-3.74	4.99			
200	-3.24	16.58	-3.17	35.27	-3.08	15.18	-3.21	12.18			
TER	-4.51	1.02	-4.34	4.95	-3.88	3.92	-3.99	3.25			

Table SI8. Binding free energies (ΔG_b , kcal/mol) and values of the inhibitor constants (K_i in mM) obtained during AutoDock simulations

	PB1			PB1-1	
H					<u> </u>
			н		
N ₁	$C_5 = C_6$	н /	Ï		
		/ 210	N1C5	C ₆ O ₁₂ -	-N ₁₃
	` \\				
\sim_{N_2}	$C_7 - C_8$	0 ₁₁	$ \int_{C_3 - C_4}^{C_3 - C_4} $	$C_9 - C_{10}$	17
			N_2 C_7	$-C_8$	ő
	output	AutoDock		output	AutoDock
N1-C3-C4-C7	-179.99953	-173.84678	N1-C3-C4-C7	-176.42603	80.24600
N2-C3-C4-C5	-179.99926	-173.74735	N2-C3-C4-C5	-176.66506	79.93283
C6-C9-C10-O11	179.99050	-62.26327	C6-C9-C10-O12	0.93464	53.97451
N1-011	7.51221	7.23555	C6-C9-C10-O11	-179.00352	-125.99654
			C8-C9-C10-O12	-179.27950	-125.81530
			C8-C9-C10-O11	0.78234	54.21365
			C9-C10-O12-N13	-179.30279	118.56210
			O11-C10-O12-N13	0.63942	-61.46497
			N1-N13	8.42422	7.75775
			C9-N13	3.58451	3.32495
			C10-N13	2.29407	2.29419
	PB1-2			PB1-3	
H			H		
				0	
N ₁ , C ₅	, <u></u>		N ₁	$C_5 = C_6 \qquad \parallel$	I
	$C_0 - N_{10} =$	=C11=S12	C_3 —(C_4 C_9 C_9 C_{10}	
		- 11 - 12			
⁻ N ₂ C ₇	C ₈		N ₂	$C_7 - C_8 = \ddot{O}_{12}$	2
N1-C3-C4-C7	-179.93550	-160.91580	N1-C3-C4-C7	-179.16998	-110.93957
N2-C3-C4-C5	-179.93329	-160.83276	N2-C3-C4-C5	-179.64054	-110.74302
C9-N10-C11-S12	179.89729	177.12026	C6-C9-S10-Cl13	-90.46260	38.34579
N1-S12	9.26157	9.25485	C8-C9-S10-Cl13	90.04492	-142.22705
N1-N10	5.16158	6.50367	C6-C9-S10-O12	157.83271	149.98615
			C8-C9-S10-O11	-158.22939	106.07361
			N1-Cl13	7.58784	7.62153
		PB	1-4		
	H		H		
		0 0			
	N ₁	$C_5 \equiv C_6$	N ₁₃ —	1	
	, C ₃ -	$-c_4$	$-S_{10}-S_{11}-C_{12}$	\	
	N ₂	C7-C8		~	
	NI-C3-C4-0	U/ 17	6.86030 171.986	89	
	N2-C3-C4-0	U_{2} Γ_{1}	1.25520	20	
	C9-S10-S1	I-CI2 9	1.25539 81.8170		
	C6-C9-S10-	-511 l	4.20259 -166.470		
	08-09-810	-511 -1(b8.1396/ 15.903		
	S10-S11-C	12-N13 -5	4.85169 -134.939	24 5	
	C9-N13	3	0.59341 4.5275 0.5677 2.9154	J 1	
	C9-C12	3	0.930// 3.8154		
	NI-NI3		1.8635 8.5549	0	

Table SI9. Change of structural parameters after docking simulation