Electronic Supporting Information

Electronic Effect of Substituents on Anilines Favors 1,4-Addition to *trans-\beta*-nitrostyrenes: Access to N-Substituted 3-Arylindoles and 3-Arylindoles

Radhakrishna Gattu, Suchandra Bhattacharjee, Karuna Mahato and Abu T. Khan*

S1
S2
S3-S4
S5-S133

Entry	Identification code	Compound 3h
01	Empirical formula	C ₁₅ H ₁₂ ClN
02	Formula weight	241.71
03	Temperature	296(2) K
04	Wavelength	0.71073
05	Radiation type	MoK\a
06	Radiation source	'fine-focus sealed tube'
07	Crystal system	Triclinic
08	Space group	P-1
09	Cell length	a 9.4630(12) b 9.9221(11) c 13.5665(16)
10	Cell Angle	α 102.387(10) β 94.259(10) δ 98.976(10)
11	Cell Volume	1221.2(3)
12	Density	1.315
13	Completeness to theta	25.00° / 99.80%
14	Absorption correction	multi-scan
15	Refinement method	Full-matrix least-squares on F2
16	Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -14 \le l \le 16$
17	Reflection number	4285
18	Theta range	3.09-25.00
19	Cell formula units Z	4
20	CCDC no	1576147

 Table S1. Crystal data and structure refinement for compound 3h

I. General Procedure for Synthesis of N-methylanilines¹

To the freshly prepared solution of NaOMe (50 mmol) in MeOH (20 mL), anilines (10 mmol) and paraformaldehyde (50 mmol) were added. The mixture was allowed to reflux for 4 hours and NaBH₄ (15 mmol) was added portion wise at 0 °C and the mixture was refluxed for an additional 2 hours. The completion of the reaction analyzed by TLC, the mixture was cooled and solvent was evaporated on a vacuum pump to give a residue that was treated with aqueous layer (20 mL). The compound was extracted with CH_2Cl_2 (2 × 15 mL), the combined organic extracts was washed with brine solution (20 mL). The organic residue was dried over anhydrous Na₂SO₄ and solvent was removed using vacuum pump and residue that was purified through silica gel (60-120 mesh) column chromatography with petroleum ether/ethyl acetate (9.5 : 0.5 v/v) to obtain the pure product.

II. General Procedure for Synthesis of N-alkylanilines²

An oven-dried flask was charged with copper iodide (38 mg, 0.2 mmol) and L-proline (46 mg, 0.4 mmol); if solid, the aryl iodide (1.0 mmol) was also introduced at this stage. The flask was evacuated under high vacuum and backfilled with argon three times, then fitted with a rubber septum. The DMSO (1.0 mL) solvent was next added, as well as the aryl iodide, which was added at this stage if liquid. The resulting blue solution was stirred for 5 min before adding the amine (3.0 mmol). The resulting mixture was stirred under argon at room temperature until completion of the reaction indicated by TLC. After completion of the reaction analyzed by TLC, the mixture was cooled and solvent was evaporated on a vacuum pump to give a residue that was treated with aqueous layer (20 mL). The compound was extracted with CH_2Cl_2 (2 × 15 mL), the combined organic extracts was washed with brine solution (20 mL). The organic residue was dried over anhydrous Na₂SO₄ and solvent was removed by using vacuum pump and residue that was purified

through silica gel (60-120 mesh) column chromatography with petroleum ether/ethyl acetate (9.5 : 0.5 v/v) to obtain the pure product.

III. General Procedure for Synthesis of *trans-β*-nitrostyrene³

Benzaldehyde (1 mmol) reacted with nitromethane (1 mL) in the acetic acid solution (1 mL) with ammonium acetate (0.1 mmol) at 100°C for 3 hours. The completion of reaction monitored by TLC, cool down the reaction mixture to room temperature and add ice cold water to get solid product. Filter the product using Buchner funnel and dissolve in cold methanol and allow it to recrystallize. Similar procedure was followed for synthesis of other nitrostyrene derivatives.

Reference

- B. Chiranjeevi,; B. Vinayak,; T. Parsharamulu,; V. S. PhaniBabu,; B. Jagadeesh,; B. Sridhar, M. Chandrasekharam. Eur. J. Org. Chem., 2014, 7839.
- 2. C. Deldaele and G. Evano, ChemCatChem, 2016, 8, 1319.
- 3. J. -T. Liu and C. -F. Yao, Tetrahedron Lett., 2001, 42, 6147.

¹H NMR spectra of compound: 3a

¹³C NMR spectra of compound: 3a

HRMS spectra of compound: 3a

¹H NMR spectra of compound: 3b

¹³C NMR spectra of compound: 3b

HRMS spectra of compound: 3b

¹H NMR spectra of compound: 3c

¹³C NMR spectra of compound: 3c

HRMS spectra of compound: 3c

¹H NMR spectra of compound: 3d

¹³C NMR spectra of compound: 3d

HRMS spectra of compound: 3d

¹H NMR spectra of compound: 3e

¹³C NMR spectra of compound: 3e

Sample Name **RK-NME-3450ME** Position Vial 1 **Instrument Name** Instrument 1 User Name Inj Vol 0 InjPosition SampleType Sample **IRM Calibration Status** All Ions Missed ACQ Method **Data Filename** RK-NME-345OME.d Comment **Acquired Time** 8/8/2017 11:05:06 AM +ESI Scan (17.6 sec) Frag=135.0V RK-NME-345OME.d x10 5 7.75 7.5 7.25 7 OMe 6.75 268.1332 6.5 6.25 6 ÒMe 5.75 5.5 5.25 5 4.75 Me 4.5 3e 4.25 4 3.75 3.5 3.25 3 2.75 2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 240 260 265 270 275 Counts vs. Mass-to-Charge (m/z) 245 250 255 280 285 290 295

HRMS spectra of compound: 3e

¹H NMR spectra of compound: 3f

¹³C NMR spectra of compound: 3f

HRMS spectra of compound: 3f

¹H NMR spectra of compound: 3g

¹³C NMR spectra of compound: 3g

3g-13C-75MHz/1 RK-NMe-4F-NS	— 163.08 — 159.84	137.52 131.85 131.81 131.85 128.92 128.92 126.55 126.55 126.22 126.22 126.22 126.22 126.22 126.22 126.22 126.22 126.22 126.22 126.22 126.55 10	77.65 77.23 76.81
		1 1 1 1 1 1 1 1 1 1 1	11

— 33.03

HRMS spectra of compound: 3g

¹H NMR spectra of compound: 3h

¹H-¹HCOSY spectra (Aromatic region expansion) of compound: 3h

1																	1
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
	f1 (ppm)																

DEPT 90 spectra of compound: 3h

HMQC spectra (Aromatic region expansion) of compound: 3h

HMBC spectra of compound: 3h

HRMS spectra of compound: 3h

¹H NMR spectra of compound: 3i

HRMS spectra of compound: 3i

HRMS spectra of compound: 3j

¹H NMR spectra of compound: 4a

¹³C NMR spectra of compound: 4a

•		- I	I		
99	4 6 6 6 7 9 6 6 6 7 9 6 6 6 7 9 6 6 6 7 9 6 6 6 7 9 6 6 6 7 9 6 6 7 9 6 6 7 9 6 6 7 9 6 6 7 9 6 6 7 9 6 6 7 9 6 6 7 9 6 6 7 9 6 6 7 9 6 7 9 6 7 9 6 7 9 6 7 9 6 7 9 7 9	21	44 C C C	46	21
156	138 1127 1125 1120 1120 1116 1160	63	77.77	55.6	33.0
	11 Street	-			1

¹³C NMR spectra of compound: 4b

65 23 81	6 6	05
77.75	32.	22.

4C-1H-400mhz	138.05 136.02 132.00 128.91 127.35 126.15 124.15 124.15 124.15 124.15 119.80 1116.65	107.7U

HRMS spectra of compound: 4b

¹H NMR spectra of compound: 4c

¹³C NMR spectra of compound: 4c

4C-1H-400mhz 6.00 091 10 10 10 10 10 10 10 10 10 10 10 10 10	137.80 137.73 135.42 125.01 127.45 122.45	126.88 126.17 122.94 121.05 121.05 117.23 108.83 108.83 108.66	$\stackrel{96.16}{<}_{95.99}$	77.44 77.23 77.02	- 33.21
--	--	--	-------------------------------	-------------------------	---------

HRMS spectra of compound: 4c

¹H NMR spectra of compound: 4d

¹³C NMR spectra of compound: 4d

HRMS spectra of compound: 4d

S56

¹³C NMR spectra of compound: 4e

HRMS spectra of compound: 4e

¹H NMR spectra of compound: 4f

HRMS spectra of compound: 4f

¹³C NMR spectra of compound: 4g

HRMS spectra of compound: 4g

¹H NMR spectra of compound: 5a

4C-1H-400mhz	7.29 7.29 7.20 7.44 7.44 7.22 7.33 7.32 7.32 7.22 7.22 7.22 7.22	4.25 4.25 4.21	1.55 1.51

¹³C NMR spectra of compound: 5a

4C-1H-400mhz	136.65 135.93 127.50 125.85 125.85 125.02 120.21 116.93 116.93 109.79	77.66 77.23 76.80	41.22	15.68
				1

HRMS spectra of compound: 5a

¹H NMR spectra of compound: 5b

¹³C NMR spectra of compound: 5b

HRMS spectra of compound: 5b

¹H NMR spectra of compound: 5c

¹³C NMR spectra of compound: 5c

5c-13c-75MHz	136.96 135.51 127.39 127.39 126.41 122.22 120.26 117.018 117.018 109.85	77.65 77.23 76.80	61.83	48.76
				Ì

HRMS spectra of compound: 5c

¹H NMR spectra of compound: 5d

HRMS spectra of compound: 5d

S77

¹³C NMR spectra of compound: 5e

4C-1H-400mhz	71 73 73 73 73 73 73 73 73 73 74 75 77 77 77 77 77 77 77 77 77 77 77 77	υ ci ti
	11.1.2.2.2.5.5.2.2.2.2.3.3.3. 11.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	7.6 5.8
		ファア

HRMS spectra of compound: 5e

¹H NMR spectra of compound: 5f

f1 (ppm)

¹³C NMR spectra of compound: 5f

5f-13C	77.66 77.23 76.81	50.32
		<u>رم</u>

- - - - - -

HRMS spectra of compound: 5f

¹H NMR spectra of compound: 5g

¹³C NMR spectra of compound: 5g

HRMS spectra of compound: 5g

¹H NMR spectra of compound: 5h

S87

HRMS spectra of compound: 5h

¹H NMR spectra of compound: 6a

¹³C NMR spectra of compound: 6a

— 55.89

4C-1H-400mhz	56.85	37.68 35.81 28.95 27.52 20.71 20.71 20.71 20.71 18.51 10.46	4.95	7.23 7.02	
	귀		ð		
				\sim	

HRMS spectra of compound: 6a

¹³C NMR spectra of compound: 6b

Pep-13C 136.05 134.67 127.660 127.690 121.890 121.892 117.22 117.22	- 100.12	∑ 77.66	— 21.78 — 16.75
--	----------	---------	--------------------

HRMS spectra of compound: 6b

¹H NMR spectra of compound: 6c

¹³C NMR spectra of compound: 6c

<u> </u>			··· I· · · · · · · ·	- I	
5.14	8.54 5.22 9.70 5.88 5.88 9.20	0.54	44 99	44 23 02	83 32
151	1120	11(92.	22.	55.
1 1	11 12 12			\searrow	\mathbf{V}

HRMS spectra of compound: 6c

¹H NMR spectra of compound: 6d

¹³C NMR spectra of compound: 6d

∞ ~	0001410	7	
N N	70041087	6 N M	- ω Ω
<u>ю</u> .	8.0.0.0.8	. <u>.</u>	0 N 0
44	- $ -$	7 8 0	N N 0
-		100	
57		225	\leq

HRMS spectra of compound: 6d

¹H NMR spectra of compound: 6e

¹³C NMR spectra of compound: 6e

161.06 159.47	136.84 136.75 135.32 127.66 127.66 122.62 122.05 122.05 122.03 123.03 10	97.92 97.75	77.44 77.23 77.02
57		\checkmark	\searrow

HRMS spectra of compound: 6e

¹H NMR spectra of compound: 6f

S105

HRMS spectra of compound: 6f

¹H NMR spectra of compound: 6g

¹³C NMR spectra of compound: 6g

HRMS spectra of compound: 6g

¹H NMR spectra of compound: 7a

¹³C NMR spectra of compound: 7a

156.8]	137.64 120.24 120.24 110.34 110.34	94.93	77.44 77.23 77.02	55.90	21.38
ï			\checkmark		

_

HRMS spectra of compound: 7a

¹H NMR spectra of compound: 7b

HRMS spectra of compound: 7b

S117

HRMS spectra of compound: 7c

¹H NMR spectra of compound: 7d

HRMS spectra of compound: 7d

¹H NMR spectra of compound: 7e

¹³C NMR spectra of compound: 7e

155.78	137.88 134.96 129.55 128.75 127.84 119.73 119.13 114.46 111.00 111.00	94.98	55.26 40.33 39.77 38.94 38.66
		1	

HRMS spectra of compound: 7e

— 12.74

HRMS spectra of compound: 7f

¹H NMR spectra of compound: 5i

HRMS spectra of compound: 5i

¹H NMR spectra of intermediate compound: F

S132

HRMS spectra of intermediate compound: F