Electronic Supplementary Information

Catalyst-free [3+2] Cyclization of Dihydroisoquinoline Imines and Isatinderived Morita-Baylis-Hillman Carbonates via 1,5-Electrocyclization: Synthesis of Tetrahydroisoquinoline-fused Spirooxindoles

Xue Tang ${ }^{\text {a,b }}$, Ying-Juan Gao ${ }^{\text {b }}$, Hui-Qing Deng ${ }^{\text {b }}$, Jin-Ju Lei ${ }^{\text {b }}$, Si-Wei Liu ${ }^{\text {b }}$, Lin Zhou ${ }^{\text {b }}$, Yin Shi ${ }^{\text {b }}$, Hao Liang ${ }^{\text {b }}$, JieQiao $^{\text {b }}$, Li Guo ${ }^{\text {b }}$, Bo Han ${ }^{\text {a, }}$, Hai-Lei Cuib,*
${ }^{\text {a }}$ State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine
Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China; E-mail: hanbo@cdutcm.edu.cn
${ }^{b}$ Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, P.R. China; E-mail: cuihailei616@163.com
Table of Contents

1. General methods S2
2. General procedure for the synthesis of compounds 2 S2
3. The synthesis of compounds $\mathbf{3}$ S5
4. The synthesis of compounds 5 S14
5. Gram-scale reaction S15
6. Crystal data of compound 3a S17

1. General methods:

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at Bruker Avance 400. Chemical shifts are reported in ppm downfield from $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR and relative to the central CDCl_{3} resonance ($\delta=77.0 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ NMR spectroscopy. Coupling constants are given in Hz. ESI-MS analysis was performed using a Finnigan LCQ ${ }^{\text {DECA }}$ ion trap mass spectrometer.

All reagents and solvents were obtained from commercial sources and used without further purification. 3,4-Dihydroisoquinoline imines $\mathbf{1}^{[1]}$, dihydro- β-carboline $4^{[2]}$ and isatin-derived Morita-Baylis-Hillman (MBH) carbonates $2^{[3-5]}$ were prepared according to reported procedure.

2. General procedure for the synthesis of compounds 2:

Isatin-derived MBH carbonates 2 were prepared according to reported literatures ${ }^{[3-5]}$. The yields of compound 2 shown as below are the overall yields for three steps.

Compound 2b: White solid, 18% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.50(\mathrm{~m}$, $4 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6,69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H})$, $6.60(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.9,164.1,150.0,143.8,136.8,134.9,132.3,130.7,129.5,128.5,127.9,126.6$, 126.2, 124.3, 109.1, 83.4, 79.9, 52.1, 27.7, 21.0; ESI-HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NNaO}_{6}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 446.1574$, found 446.1578 .

Compound 2c: White solid, 21\% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.50$ (m, $4 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.62$ (s, 1H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.6, 163.9, 150.0, 144.9, 136.2, 134.4, 130.3, 129.7, 129.1, 128.4, 127.9, 126.7, 123.9, 110.4, 83.8, 79.3, 52.2, 27.7; ESI-HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClNNaO}_{6}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+}$466.1033, found 466.1031.

Compound 2d: White solid, 25% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.50(\mathrm{~m}$, 4H), 7.44-7.40 (m, 1H), 7.37 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-$ $6.64(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.5,163.9,150.0,145.4,136.2,134.4,133.2,129.7,129.2,128.4,128.2,126.7$, 126.6, 115.1, 110.9, 83.8, 79.2, 52.2, 27.7; ESI-HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNNaO}_{6}{ }^{+}$ $(\mathrm{M}+\mathrm{Na})^{+} 510.0523$, found 510.0529 .

Compound 2e: White solid, 4% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.50(\mathrm{~m}$, 4H), 7.46-7.40 (m, 1H), $7.16(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s} 1 \mathrm{H}), 6.61(\mathrm{~s} 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,164.0,150.1,147.5,136.3,134.2,129.8,128.9,128.5$, 126.8, 125.6, 125.3, 124.7, 124.3, 112.9, 83.7, 79.2, 52.2, 27.7; ESI-HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNNaO}_{6}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 510.0523$, found 510.0529 .

Compound 2f: White solid, 17% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.47-7.45 (m, $2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.2, 164.1, 159.3, 150.1, 146.7, 136.7, 130.4, 128.5, 128.2, 127.4, 126.2, 123.4, 122.6, 114.9, 109.3, 83.4, 79.8, 55.5, 52.1, 27.7; ESI-HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NNaO}_{7}^{+}(\mathrm{M}+\mathrm{Na})^{+} 462.1523$, found 462.1526 .

Compound 2g: White solid, 26% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ (d, $J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.75 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,164.1,150.0,146.4,138.0,136.7,132.1$, $130.3,130.2,128.5,126.6,126.3,123.5,122.6,109.4,83.4,79.8,52.0,27.6,21.3 ;$ ESI-HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NNaO}_{6}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 446.1574$, found 446.1579 .

Compound 2h: White solid, 14\% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.48(\mathrm{~m}$, $4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,164.0,150.1,145.8,136.6,133.8,133.3,130.4,129.8,128.7$, $128.2,126.2,123.6,123.0,109.2,83.6,79.6,52.1,27.6 ;$ ESI-HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClNNaO}_{6}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 466.1028$, found 466.1030 .

Compound 21: Pale orange solid, 49% yield; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{td}$, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.74-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=17.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 171.6,164.1,149.9,144.4,136.5,130.4,128.7,126.5,123.5,122.7,109.3,83.4$, 80.0, 79.9, 72.2, 51.9, 30.3, 27.6, 3.6; ESI-HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{6}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+}$ 408.1418 , found 408.1421 .

Compound 2n: Yellow solid, 14% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.50(\mathrm{~m}$, $4 \mathrm{H}), 7.39(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.0,163.3,150.2,146.2,138.3,134.9,130.1,129.4,127.9,127.2,126.8$, 126.6, 123.7, 122.7, 109.5, 83.2, 81.9, 79.9, 27.9, 27.7; ESI-HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{6}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 452.2068$, found 452.2073.

Compound 20: White solid, 18% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.50(\mathrm{~m}$, $4 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.15-3.96(\mathrm{~m}, 2 \mathrm{H}), 1.39$ $(\mathrm{s}, 9 \mathrm{H}), 1.11(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,163.7,150.1$,
146.2, 136.9, 134.8, 130.3, 129.6, 128.4, 128.1, 126.7, 126.4, 123.6, 122.8, 109.4, 83.4, 79.8, 61.0, 27.7, 13.9; ESI-HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NNaO}_{6}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 446.1580$, found 446.1578.

Compound 2p: Brown solid, 26% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.2,150.2,144.6,133.9,133.3,131.2,129.8,128.7,126.8,124.4,124.0,123.9$, 120.2, 115.0, 110.3, 84.5, 79.3, 27.6; ESI-HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+}$ 399.1315, found 399.1319.

3. The synthesis of compounds 3:

3a
Compound 3a: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate 2a ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL}$) was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product 3a as a white solid ($69.0 \mathrm{mg}, 72 \%$ yield). Then the dr was determined by dissolving the solid in CDCl_{3} (9:1 dr); Single crystal was obtained from $\mathrm{MeOH} / \mathrm{DCM} / \mathrm{PE}$ for X-ray analysis and ${ }^{1} \mathrm{H}$ NMR; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.58-7.56 (m, 1H), 7.54-7.53 (m, 2H), 7.52 (s, 1H), 7.45-7.41 (m, 1H), 7.01 (td, $J=$ $7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H})$, $5.62(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 4 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.10-$ $3.01(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.1$, $164.5,149.8,147.7,147.5,142.8,135.1,129.7,129.5,128.1,128.0,126.4,126.2$, 124.6, 124.1, 122.9, 111.2, 108.6, 108.3, 104.0, 69.5, 61.6, 55.7, 55.5, 50.5, 44.6, 29.7; (Minor diastereomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.35$ (m, 2H), 7.31-7.27 (m, 1H), 7.23 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (td, $J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.45(\mathrm{~m}, 4 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H})$, 2.64-2.60 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,164.8,152.5,148.0,147.5$, 144.6, 134.5, 133.2, 129.6, 128.3, 127.8, 127.7, 126.6, 123.6, 123.4, 111.8, 108.8, 106.9, 102.6, 70.7, 62.9, 55.7, 55.4, 50.5, 44.9, 29.6; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 505.1734$, found 505.1740.

Compound 3b: A mixture of 3,4-dihydroisoquinoline imine 1b ($0.3 \mathrm{mmol}, 3$ equiv), MBH carbonate 2a ($0.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(2 \mathrm{~mL}$) was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3: 1$ to $\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=$ 6:3:1) giving the product 3b as a white solid ($31.8 \mathrm{mg}, 70 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(10: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.59-7.56 (m, 4H), $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.70$ (m, 2H), $6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.49-6.43(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 3.82$ (dd, $J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dd}, J=12.8,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.13-3.05 (m, 1H), 2.79 (dd, $J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.0, 164.6, 158.1, 149.8, 142.9, 135.4, 135.2, 129.6, 129.4, 128.0, 128.0, 126.8, 126.7, 124.4, 124.4, 122.8, 113.6, 112.8, 108.9, 104.4, 69.7, 61.8, 55.1, 50.6, 44.5, 30.7; ESI-HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 475.1628$, found 475.1630 .

3c
Compound 3c: A mixture of 3,4-dihydroisoquinoline imine 1c ($0.3 \mathrm{mmol}, 3$ equiv), MBH carbonate 2a ($0.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3: 1$ to $\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=$ 6:3:1) giving the product $\mathbf{3 c}$ as a white solid ($31.8 \mathrm{mg}, 60 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(6.6: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.60-7.53 (m, 5H), 7.46-7.43 (m, 1H), 7.07 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$, 3.16-3.07 (m, 1H), 2.84 (dd, $J=15.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $178.9,164.6,149.9,142.9,135.1,134.1,132.2,129.7,129.3,129.0,128.1,128.1$, $126.9,126.7,126.5,125.7,124.2,122.7,108.9,104.3,69.9,61.7,50.6,44.6,30.4$; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 445.1523$, found 445.1529.

3d

Compound 3d: A mixture of 3,4-dihydroisoquinoline imine $1 d$ ($0.3 \mathrm{mmol}, 3$ equiv), MBH carbonate 2a ($0.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(2 \mathrm{~mL}$) was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=5: 1$ to $\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=$ 6:2:1) giving the product 3d as a white solid ($33.0 \mathrm{mg}, 66 \%$ yield). Then the dr was determined by dissolving the solid in CDCl_{3}. (6.3:1 dr); (Major diastereomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.74-$ $6.71(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3,53(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{td}, J=12.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,164.4,149.6,142.9,135.0,134.2,132.9,130.5$, $130.0,129.8,128.7,128.6,128.6,128.2,126.8,123.8,122.9,120.0,109.1,104.6$, 69.6, 61.7, 50.7, 44.2, 29.8; (Minor diastereomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.46(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.66(\mathrm{~m}, 1 \mathrm{H})$; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{NaO}_{3}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 523.0628$, found 523.0630.

Compound 3f: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate 2b ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL}$) was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product 3f as a white solid ($63.5 \mathrm{mg}, 64 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(10: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.51(\mathrm{~m}$, $5 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (s, $1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}$, $3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.1,164.6,149.8,147.7,147.6$, $140.5,135.3,132.3,129.7,129.5,128.6,127.9,126.4,126.3,125.4,124.2,111.2$, 108.4, 108.3, 104.2, 69.6, 61.6, 55.8, 55.6, 50.6, 44.7, 29.8, 20.9; ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 519.1896$, found 519.1898.

Compound 3g: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate 2c ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room
temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product $\mathbf{3 g}$ as a white solid ($69.0 \mathrm{mg}, 67 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(8.4: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 3.85-$ $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 6 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.76$ (dd, $J=15.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,164.4,149.9,148.1$, $147.8,141.5,134.8,131.2,129.9,128.3,128.2,126.5,126.4,124.9,123.6,111.5$, 109.6, 108.0, 103.8, 69.6, 61.8, 55.8, 55.7, 50.7, 44.6, 29.8; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 539.1344$, found 539.1353.

Compound 3h: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate 2d ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product 3 h as a white solid ($55.5 \mathrm{mg}, 49 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(>20: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H})$, $5.61(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{td}, J=12.4,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=15.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.5,164.4,148.1,147.8,142.0,134.8,131.6,131.1,129.9,128.3,127.7,126.5$, 126.4, 123.6, 115.5, 111.6, 110.1, 108.1, 103.8, 69.6, 61.8, 55.8, 55.7, 50.6, 44.6, 29.8; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 583.0839$, found 583.0844.

3i
Compound 3i: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.3 \mathrm{mmol}, 3$ equiv), MBH carbonate 2 e ($0.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product $3 \mathbf{i}$ as a white solid ($51.6 \mathrm{mg}, 92 \%$ yield). Then the dr was determined by dissolving the solid in CDCl_{3} (4.6:1 dr); (Major diastereomer) ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.6-7.54 (m, 2H), 7.50-7.44 (m, 4H), 6.87-6.84 (m, 2H), $6.54(\mathrm{~s}, 1 \mathrm{H}), 6.49$
(d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}$, $3 \mathrm{H}), 3.46-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 178.9,164.5,149.8,148.0,147.8,144.2,134.6,130.0,128.5$, $128.5,126.5,126.4,125.9,125.8,123.7,121.9,112.0,111.4,108.3,103.7,69.5,61.4$, 55.8, 55.7, 50.7, 44.6, 29.8; (Minor diastereomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.92(\mathrm{~s}, ~ 1 \mathrm{H}), \quad 5.43(\mathrm{~s}, 1 \mathrm{H}), \quad 2.65-2.61(\mathrm{~m}, 1 \mathrm{H}) ;$ ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 583.0839$, found 583.0839.

Compound 3j: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate 2 f ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 24 h . The white precipitate was collected by filtration to give pure major diastereomer $\mathbf{3 j}(42.0 \mathrm{mg})$. The filtrate was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product 3j (mixture of major diastereomer and minor diastereomer) as a white solid $(24.5 \mathrm{mg})$. The yield was caculated by combination of both ($66.5 \mathrm{mg}, 65 \%$). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(10: 1, \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{t}, J=7.4$, $\mathrm{Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.78(\mathrm{~m}$, $4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.07-3.02(\mathrm{~m}, 1 \mathrm{H})$, 2.75-2.72 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,164.6,159.2,149.8,147.7$, 147.6, 143.4, 129.5, 128.2, 127.9, 127.8, 126.3, 124.6, 124.2, 122.9, 115.1, 111.3, 108.6, 108.4, 104.0, 69.5, 61.5, 55.7, 55.6, 55.6, 50.6, 44.7, 29.8; ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{6}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 535.1840$, found 535.1846.

Compound 3k: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate $2 \mathrm{~g}(0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 24 h . The white precipitate was collected by filtration to give pure major diastereomer $\mathbf{3 k}(50.0 \mathrm{mg})$. The filtrate was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product 3h (mixture of major diastereomer and minor diastereomer) as a white solid
$(30.0 \mathrm{mg})$. The yield was caculated by combination of both ($80.0 \mathrm{mg}, 81 \%$). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(10: 1, \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$, $5.61(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 179.2, 164.6, 149.9, 147.7, 147.6, 143.1, 138.0, 132.4, $130.4,129.6,128.2,126.3,126.3,124.6,124.2,122.9,111.2,108.6,108.4,104.0$, $69.6,61.6,55.7,55.6,50.6,44.6,29.8,21.3$; ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 519.1890$, found 519.1896.

31
Compound 31: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.3 \mathrm{mmol}, 3$ equiv), MBH carbonate $2 \mathrm{~h}(0.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature for 24 h . The white precipitate was collected by filtration to give pure major diastereomer $\mathbf{3 1}(11.0 \mathrm{mg})$. The filtrate was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product 31 (mixture of major diastereomer and minor diastereomer) as a white solid $(18.0 \mathrm{mg})$. The yield was caculated by combination of both $(29.0 \mathrm{mg}, 56 \%)$. Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(10: 1, \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.1,164.5,149.7,147.9,147.6,142.4$, 133.7, 133.7, 130.0, 129.5, 128.3, 127.8, 126.4, 124.8, 124.0, 123.2, 111.4, 108.5, 104.1, 69.5, 61.7, 55.8, 55.6, 50.6, 44.7, 29.8; ESI-HRMS: calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{NaO}_{5}^{+}(\mathrm{M}+\mathrm{Na})^{+}$539.1344, found 539.1351.

Compound 3m: A mixture of 3,4-dihydroisoquinoline imine $\mathbf{1 a}$ ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate $2 \mathbf{i}$ ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL}$) was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3: 1$ to $\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=$ 4:2:1) giving the product $\mathbf{3 m}$ as a white solid ($60.0 \mathrm{mg}, 60 \%$ yield). Then the dr was
determined by dissolving the solid in CDCl_{3} (3.3:1 dr); (Major diastereomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.00-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.46(\mathrm{~m}$, $2 \mathrm{H}), 5.56(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{dd}, J=13.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.03-$ $2.97(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.9$, 164.6, 150.4, 147.7, 147.5, 142.2, 136.5, 128.8, 128.6, 128.1, 128.1, 127.7, 126.2, 124.7, 124.2, 122.6, 111.2, 108.7, 108.2, 103.4, 69.7, 61.6, 55.7, 55.2, 50.4, 44.8, 44.6, 29.7; (Minor diastereomer) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \quad J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$; ESI-HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+}$519.1890, found 519.1896.

Compound 3n: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate $\mathbf{2 j}$ ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3: 1$ to $\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=$ $4: 2: 1$) giving the product 3 n as a white solid ($46.0 \mathrm{mg}, 55 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(8: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.67(\mathrm{~m}$, $1 \mathrm{H}), 6.55-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.65-2.96(\mathrm{~m}$, $1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.7,164.5$, 149.9, 147.7, 147.4, 142.9, 129.7, 128.4, 126.2, 124.4, 124.1, 122.6, 111.2, 108.3, 107.4, 103.4, 69.4, 61.6, 55.7, 55.3, 50.5, 44.6, 29.7, 26.9; ESI-HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 443.1577$, found 443.1582 .

Compound 3o: mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate $2 \mathbf{k}$ ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 3: 1$) giving the product 3 o as a white solid ($85.7 \mathrm{mg}, 85 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(7.3: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.54(\mathrm{~m}$,
$1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.48-$ $3.44(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.6,2.4 \mathrm{~Hz}$, 1 H), 1.66 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,164.4,149.8,149.3,147.8$, $147.5,138.7,128.5,126.3,124.3,124.3,123.5,114.3,111.2,108.3,104.4,84.3,70.7$, 62.2, 55.7, 55.3, 50.6, 44.7, 29.7, 28.1; ESI-HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{7}^{+}(\mathrm{M}+\mathrm{Na})^{+}$529.1945, found 529.1950.

Compound 3p: mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate 21 ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 3: 1$) giving the product 3p as a white solid ($75.5 \mathrm{mg}, 85 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(5: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~s}, 1 \mathrm{H})$, $7.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{dd}, J=17.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.42(\mathrm{~m}, 1 \mathrm{H})$, $3.44(\mathrm{~s}, 6 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.6,164.5,149.9,147.7,147.6,141.5,129.8$, 128.2, 126.1, 124.4, 124.1, 122.7, 111.2, 108.8, 108.6, 103.4, 79.6, 72.9, 69.3, 61.5, 55.7, 55.5, 50.4, 44.7, 30.3, 29.7, 3.4; ESI-HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+}$ 481.1734, found 481.1738 .

Compound 3q: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate $\mathbf{2 m}$ ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 3: 1$) giving the product $\mathbf{3 q}$ as a white solid ($52.6 \mathrm{mg}, 59 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(10: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~s}, 1 \mathrm{H})$, $7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.99-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.49-5.45(\mathrm{~m}, 1 \mathrm{H})$, $5.29-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$,
3.81-3.76 (m, 1H), 3.76 (s, 3H), 3.48-3.41 (m, 1H), $3.45(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.04-$ $2.96(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4$, $164.5,150.2,147.7,147.4,142.1,131.7,129.9,128.2,126.2,124.5,124.2,122.5$, $118.3,111.2,108.5,108.3,103.4,69.5,61.5,55.7,55.6,50.4,44.7,43.1,29.7$; ESIHRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 469.1734$, found 469.1736.

Ph
$3 r$
Compound 3r: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate 2 n ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=8: 2: 1$) giving the product 3 r as a yellow solid ($42.5 \mathrm{mg}, 41 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(>20: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.51$ (m, $5 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 3.82-$ $3.78(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.69$ (dd, $J=15.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.4,164.2$, 150.6, 147.7, 147.5, 142.4, 130.4, 129.5, 127.9, 127.6, 126.6, 125.8, 124.9, 124.4, 123.0, 111.3, 108.7, 108.6, 105.8, 78.9, 70.5, 62.3, 55.7, 55.7, 44.8, 29.8, 28.3; ESIHRMS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 547.2203$, found 547.2209.

Compound 3s: A mixture of 3,4-dihydroisoquinoline imine 1 a ($0.6 \mathrm{mmol}, 3$ equiv), MBH carbonate 2 o ($0.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(4 \mathrm{~mL}$) was stirred at room temperature for 24 h . Then the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=8: 2: 1$) giving the product 3 s as a yellow solid ($72.5 \mathrm{mg}, 73 \%$ yield). Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(10: 1 \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.52(\mathrm{~m}$, $5 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.13-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=15.6$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.01-0.96(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.2,164.3,150.0$, 147.7, 147.6, 142.8, 135.1, 129.8, 129.7, 128.1, 128.0, 126.4, 126.3, 124.8, 124.2, $123.0,111.3,108,6,108.4,104.3,69.8,61.8,58.9,55.7,55.6,44.7,29.8,14.4$, ESIHRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 519.1890$, found 519.1895.

Compound 3t: A mixture of 3,4-dihydroisoquinoline imine 1a ($0.3 \mathrm{mmol}, 3$ equiv), MBH carbonate $\mathbf{2 p}$ ($0.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature for 24 h . The white precipitate was collected by filtration to give pure major diastereomer $3 \mathrm{t}(8.0 \mathrm{mg})$. The filtrate was concentrated and the residue was purified by a silica gel flash chromatography ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{DCM}=6: 2: 1$) giving the product 3t (mixture of major diastereomer and minor diastereomer) as a white solid $(20.0 \mathrm{mg})$. The yield was caculated by combination of both $(28.0 \mathrm{mg}, 62 \%)$. Then the dr was determined by dissolving the solid in $\mathrm{CDCl}_{3}(7: 1, \mathrm{dr}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80(\mathrm{dd}, J=12.4,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}$, $1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H})$, 3.09-3.01 (m, 1H), 2.73 (dd, $J=14.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 177.3, 151.6, 148.1, 147.7, 142.4, 134.3, 129.9, 129.2, 128.5, 127.7, 126.5, 126.5, 125.7, 123.7, 123.2, 117.0, 111.4, 109.3, 108.8, 81.2, 68.9, 62.8, 55.8, 55.6, 44.9, 29.5; ESI-HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{3}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+} 472.1632$, found 472.1637.

4. The synthesis of compounds 5 :

5a
Compound 5a: A mixture of dihydro- β-carboline 4 a ($0.2 \mathrm{mmol}, 2$ equiv), MBH carbonates 2a ($0.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeCN}(2 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=5: 1)$ giving the product 5a as a yellow solid (54.0 $\mathrm{mg}, 98 \%$ yield). Then the dr was determined by dissolving the solid in CDCl_{3} (3.3:1 dr); (Major diastereomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-5.53(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.54(\mathrm{~m}, 2 \mathrm{H}), 6,23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{td}, J=$ $12,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,164.3,152.8,144.6,138.0,137.0,134.7,132.8,129.6,129.5,128.7,128.5$, 127.7, 127.2, 126.5, 126.3, 125.7, 123.8, 123.4, 122.4, 119.7, 118.9, 113.5, 109.7, 109.1, 104.3, 68.2, 61.6, 50.5, 47.0, 46.3, 22.8; (Minor diastereomer) ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.79(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.91(\mathrm{~m}$, $1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 1 \mathrm{H})$, ESIHRMS: calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 552.2282$, found 552.2288 .

5b
Compound 5b: A mixture of dihydro- β-carboline 4b ($0.2 \mathrm{mmol}, 2$ equiv), MBH carbonates 2a ($0.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeCN}(2 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 40 h . the reaction mixture was concentrated and the residue was purified by a silica gel flash chromatography $(\mathrm{PE} / \mathrm{EtOAc}=5: 1)$ giving the product $\mathbf{5 b}$ as a yellow solid (56.8 $\mathrm{mg}, 98 \%$ yield). Then the dr was determined by dissolving the solid in CDCl_{3} (2.5:1 dr); (Major diastereomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.41$ (m, $1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.01(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H})$, 6.90 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.58$ (m, 1H), 6.23 (d, J $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-$ $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{td}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}$, $1 \mathrm{H}), 2.89-2.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,154.2,152.8,144.7$, 137.1, 134.7, 133.2, 132.8, 130.3, 129.5, 128.7, 128.5, 127.7, 127.1, 127.1, 126.5, $126.4,126.2,125.6,123.8,123.4,113.1,112.5,110.5,109.1,100.9,68.2,61.8,55.9$, 50.5, 47.2, 46.3, 22.9; (Minor diastereomer) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.01$ (s, $1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.02(\mathrm{~m}$, 2 H); ESI-HRMS: calcd. for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$582.2387, found 582.2395.

5. Gram-scale reaction:

A mixture of 3,4-dihydroisoquinoline imine $\mathbf{1 a}(1.35 \mathrm{~g}, 7.1 \mathrm{mmol}, 3$ equiv), MBH carbonate $2 \mathrm{~g}(1.00 \mathrm{~g}, 2.4 \mathrm{mmol}, 1$ equiv) and $\mathrm{MeOH}(47 \mathrm{~mL})$ was stirred at room temperature for 24 h . Then the mixture was concentrated and the residue was recrystallized from 40 mL of ethanol to afford compound $\mathbf{3 k}$ as white solid $(715 \mathrm{mg}$, $61 \%,>20: 1 \mathrm{dr}$).

Reference:

(1) T. O. Ronson, C. Kitsiou, W. P. Unsworth and R. J. K. Taylor, Tetrahedron., 2016, 72, 6099.
(2) M. Bertrand, G. Poissonnet, M.e-H. Théret-Bettiol, C. Gaspard, G. H. Werner, B. Pfeiffer, P. Renard, S. Léonce and R. H. Dodd, Bioorg. Med. Chem., 2001, 9, 2155.
(3) S. J. Gardena, J. M. S. Skakleb, Tetrahedron Lett., 2002, 43, 1969.
(4) D. Rambabu, S. K. Kumar, B. Y. Sreenivas, S. Sandra, A. Kandale, P. Misra,M. V. B. Rao, M. Pal, Tetrahedron Lett., 2013, 54, 495.
(5) X. Fan, H. Yang, M. Shi, Adv. Synth. Catal., 2017, 359, 49.

Bond precision: $\quad C-C=0.0092 \mathrm{~A} \quad$ Wavelength $=0.71073$

Cell:	$a=9.050(4)$	$b=10.200(4)$	$c=27.541(11)$
Temperature:	$a l p h a=89.877(6)$	$b e t a=93.866(6)$	gamma=111.112(5)
	296 K		

Temperature: 296 K

	Calculated	Reported
Volume	2365.6(17)	2365.6(17)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C29 H26 N2 O5	C29 H26 N2 O5
Sum formula	C29 H26 N2 O5	C29 H26 N2 05
Mr	482.52	482.52
Dx,g cm-3	1.355	1.355
Z	4	4
Mu (mm-1)	0.093	0.093
F000	1016.0	1016.0
F000'	1016.49	
h, k, 1max	11,12,33	11,12,33
Nref	8974	8865
Tmin, Tmax		$0.563,0.746$
Tmin'		

Correction method= \# Reported T Limits: Tmin=0.563 Tmax=0.746
AbsCorr $=$ MULTI-SCAN
Data completeness $=0.988 \quad$ Theta $(\max)=25.682$
$R($ reflections $)=0.1072(5811) \quad$ wR2 (reflections) $=0.2967(8865)$
$S=1.060 \quad$ Npar $=657$

