Electronic Supplementary Information for:

Synthesis of *N*-[(dialkylamino)methyl)]acrylamides and *N*-[(dialkylamino)methyl]methacrylamides from Schiff base salts: Useful building blocks for smart polymers

Abdullah Alzahrani,^a Styliana I. Mirallai,*^a Benjamin A. Chalmers,^a Patrick McArdle^a and Fawaz Aldabbagh*^{a,b}

^a School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland

E-mail: <u>Styliana.Mirallai@nuigalway.ie</u> ^b Present address: Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, United Kingdom E-mail: <u>F.Aldabbagh@kingston.ac.uk</u>

Table of Contents

¹ H and ¹³ C NMR of <i>N</i> -[(cycloalkylamino)methyl)]methacrylamides	S3 – S10
¹ H and ¹³ C NMR of aminal: 1,1'-methylenebis(azocane)	S11 – S12
¹ H and ¹³ C NMR of aminal: N, N, N', N' -tetrabutylmethanediamine	S13 – S14
¹ H and ¹³ C NMR of <i>N</i> -(hydroxymethyl) hydrochlorides of Schiff base salts	S15 – S26
¹ H and ¹³ C NMR of seven and eight-membered <i>N</i> -[(cycloalkylami- no)methyl)]acrylamides and <i>N</i> -[(cycloalkylamino)methyl)]methacrylamides	S27 – S42
¹ H and ¹³ C NMR of <i>N</i> -[(dialkylamino)methyl)]acrylamides and <i>N</i> -[(dialkyl- amino)methyl)]methacrylamides	S43 – S58
X-ray crystallography	S59 – S60

¹H NMR (400 MHz) of 2-methyl-*N*-[(pyrrolidin-1-yl)methyl]prop-2-enamide hydrochloride (2b.HCl) in $(CD_3)_2SO$.

¹³C NMR (101 MHz) of 2-methyl-*N*-[(pyrrolidin-1-yl)methyl]prop-2-enamide hydrochloride (2b.HCl) in (CD₃)₂SO.

¹H NMR (400 MHz) of 2-methyl-*N*-[(pyrrolidin-1-yl)methyl]prop-2-enamide (2b) in CDCl₃.

¹³C NMR (101 MHz) of 2-methyl-*N*-[(pyrrolidin-1-yl)methyl]prop-2-enamide (2b) in CDCl₃.

¹H NMR (400 MHz) of 2-methyl-*N*-[(piperidin-1-yl)methyl]prop-2-enamide hydrochloride (3b.HCl) in $(CD_3)_2SO$.

 13 C NMR (101 MHz) of 2-methyl-*N*-[(piperidin-1-yl)methyl]prop-2-enamide hydrochloride (3b.HCl) in (CD₃)₂SO.

¹H NMR (400 MHz) of 2-methyl-*N*-[(piperidin-1-yl)methyl]prop-2-enamide (3b) in CDCl₃.

¹³C NMR (101 MHz) of 2-methyl-*N*-[(piperidin-1-yl)methyl]prop-2-enamide (3b) in CDCl₃.

¹H NMR (400 MHz) of 1,1'-methylenebis(azocane) in CDCl₃.

¹³C NMR (101 MHz) of 1,1'-methylenebis(azocane) in CDCl₃.

¹H NMR (400 MHz) of *N*,*N*,*N'*,*N'*-tetrabutylmethanediamine in CDCl₃.

Contains the proposed hemiaminal {(dibutylamino)methanol} at about 10% estimated by comparing the integrations of the methylene peaks at 4.16 and 2.98 ppm.

 ^{13}C NMR (101 MHz) of N,N,N',N'-tetrabutylmethanediamine in CDCl₃.

¹H NMR (400 MHz) of *N*-(hydroxymethyl)azepan-1-ium chloride (5a) in D₂O.

 ^{13}C NMR (101 MHz) of $\textit{N}\xspace$ -(hydroxymethyl)azepan-1-ium chloride (5a) in D_2O with 1,4-dioxane added as reference.

¹H NMR (500 MHz) of *N*-(hydroxymethyl)azocan-1-ium chloride (5b) in D₂O.

 13 C NMR (125 MHz) of *N*-(hydroxymethyl)azocan-1-ium chloride (5b) in D_2O with 1,4-dioxane added as reference.

¹H NMR (400 MHz) of hydroxy-*N*,*N*-dimethylmethanaminium chloride (5c) in D₂O.

 13 C NMR (400 MHz) of hydroxy-*N*,*N*-dimethylmethanaminium chloride (5c) in D₂O with 1,4-dioxane added as reference.

¹H NMR (400 MHz) of *N*-ethyl-*N*-(hydroxymethyl)ethanaminium chloride (5d) in D₂O.

¹³C NMR (101 MHz) of *N*-ethyl-*N*-(hydroxymethyl)ethanaminium chloride (5d) in D₂O with 1,4-dioxane added as reference.

¹H NMR (400 MHz) of *N*-(hydroxymethyl)-*N*-propylpropanaminium chloride (5e) in D₂O.

¹³C NMR (101 MHz) of *N*-(hydroxymethyl)-*N*-propylpropanaminium chloride (5e) in D_2O with 1,4-dioxane added as reference.

¹H NMR (400 MHz) of *N*-butyl-*N*-(hydroxymethyl)butanaminium chloride (5f) in D₂O.

¹³C NMR (101 MHz) of *N*-butyl-*N*-(hydroxymethyl)butanaminium chloride (5f) in D₂O with 1,4-dioxane added as reference.

¹H NMR (400 MHz) of *N*-[(azepan-1-yl)methyl]prop-2-enamide hydrochloride (6a.HCl) in $(CD_3)_2SO$.

 ^{13}C NMR (101 MHz) of *N*-[(azepan-1-yl)methyl]prop-2-enamide hydrochloride (6a.HCl) in (CD₃)₂SO.

¹H NMR (400 MHz) of *N*-[(azepan-1-yl)methyl]prop-2-enamide (6a) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(azepan-1-yl)methyl]prop-2-enamide (6a) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(azepan-1-yl)methyl]-2-methylprop-2-enamide hydrochloride (6b.HCl) in $(CD_3)_2SO$.

¹³C NMR (101 MHz) of *N*-[(azepan-1-yl)methyl]-2-methylprop-2-enamide hydrochloride (6b.HCl) in $(CD_3)_2SO$.

¹H NMR (400 MHz) of *N*-[(azepan-1-yl)methyl]-2-methylprop-2-enamide (6b) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(azepan-1-yl)methyl]-2-methylprop-2-enamide (6b) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(azocan-1-yl)methyl]prop-2-enamide hydrochloride (7a.HCl) in $(CD_3)_2SO$.

¹³C NMR (101 MHz) of *N*-[(azocan-1-yl)methyl]-2-methylprop-2-enamide hydrochloride (7a.HCl) in $(CD_3)_2SO$.

¹H NMR (400 MHz) of *N*-[(azocan-1-yl)methyl]prop-2-enamide (7a) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(azocan-1-yl)methyl]prop-2-enamide (7a) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(azocan-1-yl)methyl]-2-methylprop-2-enamide hydrochloride (7b.HCl) in $(CD_3)_2SO$.

¹³C NMR (101 MHz) of *N*-[(azocan-1-yl)methyl]-2-methylprop-2-enamide hydrochloride (7b.HCl) in $(CD_3)_2SO$.

¹H NMR (400 MHz) of *N*-[(azocan-1-yl)methyl]-2-methylprop-2-enamide (7b) in CDCl₃

¹³C NMR (101 MHz) of *N*-[(azocan-1-yl)methyl]-2-methylprop-2-enamide (7b) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(dimethylamino)methyl]prop-2-enamide (8a) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(dimethylamino)methyl]prop-2-enamide (8a) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(dimethylamino)methyl]-2-methylprop-2-enamide (8b) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(diethylamino)methyl]prop-2-enamide (9a) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(diethylamino)methyl]prop-2-enamide (9a) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(diethylamino)methyl]-2-methylprop-2-enamide (9b) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(diethylamino)methyl]-2-methylprop-2-enamide (9b) in CDCl₃.

¹H NMR (500 MHz) of *N*-[(dipropylamino)methyl]prop-2-enamide (10a) in CDCl₃.

¹³C NMR (125 MHz) of *N*-[(dipropylamino)methyl]prop-2-enamide (10a) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(dipropylamino)methyl]2-methylprop-2-enamide (10b) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(dipropylamino)methyl]-2-methylprop-2-enamide (10b) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(dibutylamino)methyl]prop-2-enamide (11a) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(dibutylamino)methyl]prop-2-enamide (11a) in CDCl₃.

¹H NMR (400 MHz) of *N*-[(dibutylamino)methyl]-2-methylprop-2-enamide (11b) in CDCl₃.

¹³C NMR (101 MHz) of *N*-[(dibutylamino)methyl]-2-methylprop-2-enamide (11b) in CDCl₃.

X-ray crystallography:

Table S1:

Hydrogen bonds for 1-(hydroxymethyl)azocan-1-ium chloride (5b) [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1O1)Cl(1)	0.82	2.17	2.984(4)	174.2
N(1)-H(1)Cl(1)#1	0.98	2.21	3.150(4)	160.3
C(7)-H(7A^a)O(1)#2	0.97	2.35	3.247(7)	152.9
C(8)-H(8A)O(1)#2	0.97	2.38	3.229(6)	146.3
C(8)-H(8B)Cl(1)#3	0.97	2.78	3.667(5)	151.6

Table S2:

Hydrogen bonds for *N*-[(azocan-1-yl)methyl]prop-2-enamide hydrochloride (**7a.HCl**) [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(4)-H(4)Cl(2)	0.86	2.34	3.188(3)	170.7
N(1)-H(1)Cl(1)	0.98	2.18	3.103(3)	156.9
N(3)-H(3)Cl(1)	0.98	2.16	3.097(3)	159.1
N(2)-H(2)Cl(2)#1	0.86	2.35	3.199(3)	168.6
C(1)-H(1A)O(3)	0.97	2.45	3.309(4)	147.6
C(1)-H(1B)Cl(2)#2	0.97	2.93	3.783(4)	147.5
C(2)-H(2B)O(3)#2	0.97	2.57	3.368(5)	139.7
C(8)-H(8A)O(3)#2	0.97	2.45	3.311(4)	147.7
C(8)-H(8B)O(4)#3	0.97	2.31	3.276(5)	171.9
C(10)-H(10)Cl(2)#1	0.93	2.96	3.714(4)	138.7
C(17)-H(17A)O(4)#3	0.97	2.63	3.385(5)	134.8
C(18)-H(18A)Cl(2)#4	0.97	2.89	3.773(4)	151.4
C(18)-H(18B)O(4)	0.97	2.51	3.348(5)	145.2
C(19)-H(19A)O(4)#3	0.97	2.38	3.251(4)	148.8
C(19)-H(19B)O(3)#2	0.97	2.34	3.307(5)	172.8

Symmetry transformations used to generate equivalent atoms:

#1 x,y-1,z #2 -x,-y+1,-z+1 #3 -x+1,-y+1,-z+1 #4 -x+1,-y+2,-z+1

Figure S1. Crystal structure of *N*-[(azocan-1-yl)methyl]prop-2-enamide hydrochloride (**7a.HCl**) viewed down the *c*-axis.

Figure S2. Crystal structure of *N*-[(azocan-1-yl)methyl]prop-2-enamide hydrochloride (**7a.HCl**) viewed down the *b*-axis.