Rhodamine-based turn-on nitric oxide sensor in aqueous medium with endogenous cell imaging: an unusual formation of nitrosohydroxylamine.

Rabiul Alam^a, Abu Saleh Musha Islam^a, Mihir Sasmal^a, Atul Katarkar^b and Mahammad Ali^{a,*}

^aDepartment of Chemistry Jadavpur University, Kolkata 700 032, India; Fax: 91-33-2414-6223, E-mail: <u>mali@chemistry.jdvu.ac.in</u>

^bMolecular& Human Genetics Division , CSIR-Indian Institute of Chemical Biology , 4 Raja S.C. Mullick Road, Kolkata-700032, India

Supporting Information for Publication

No.	Content.	Figure.No.
1.	¹ H NMR spectrum of spectrum of (1) [aldehyde product(1)] in CDCl _{3.}	Fig. S1a.
2.	¹ H-NMR spectrum of L ³ in CDCl _{3.}	Fig. S1b.
3.	¹ H NMR spectrum of the amine product (3) in CD ₃ CN solvent after	Fig. S1c.
	addition of NO solution.	
4.	¹³ CNMR spectrum of (1) [aldehyde product(1)] in $CDCl_3$.	Fig.S2a.
5.	¹³ C NMR spectrum of L^3 in CD ₃ CN.	Fig. S2b.
6.	^{13}C NMR spectrum of \textbf{L}^3 after addition of NO solution in CD_3CN.	Fig. S2c.
7.	Mass spectrum of (1) [aldehyde product(1)].	Fig. S3a.
8.	Mass spectrum of L ³ .	Fig. S3b.
9.	Mass spectrum of amine product (3) after purging NO in L ³ .	Fig. S3c.
10.	HRMS (ESI-MS ⁺ , m/z) spectra, both simulated and experimental, for	Fig. S3d.
	aldehyde product(1).	
11.	HRMS (ESI-MS+, m/z) spectra, both simulated and experimental, for	Fig. S3e.
	amine product (3).	
12.	IR spectrum of for (1) [aldehyde product(1)].	Fig. S4a.
13.	IR spectrum of L ³	Fig. S4b.
14.	IR spectrum for amine product (3) in solid state(1000-3700cm ⁻¹).	Fig. S4c.
15.	Fluorescence response of the ligand L ³ in presence of different cations.	Fig. S5a.
16.	Florescence response of the ligand L ³ in presence of different anions.	Fig. S5b.

17.	Fluorescence response of the ligand L ³ in presence of various type of amino-acids.	Fig. S6.
18.	LOD of L ³ + NO.	Fig.S7.
19.	Frequency study of L ³ and RH-en-ONO(3) by DFT method.	Fig. S8
20.	Mass spectrum of Rhodamine B-en and salisaldehyde based ligand.	Fig. S9
21.	Fluorescence intensity of analogous Schiff base probe in comparison with probe L^3	Fig. S10
22.	The comparable calculated IR transition with Experimental IR values for the ligand (L ³), RH-en-ONO(3) compound.	Table S1
23.	Selective bond distance and bond angles of L ³ and RH-en-ONO(3).	Table S2
24.	Selected parameters for the vertical excitation (UV-VIS absorptions) of L ³	Table S3
25.	Selected parameters for the vertical excitation (UV-VIS absorptions) of RH-en-ONO(3) .	Table S4

Fig. S1a.¹H NMR spectrum of spectrum of (**1**) [aldehyde product(1)] in CDCl₃, in Bruker 300 MHz instrument.

Fig.S1b.¹H NMR spectrum of L³ in CDCl₃, in Bruker 300 MHz instrument.

Fig.S1c. ¹H NMR spectrum of the amine product **(3)** in CD₃CN solvent after addition of NO solution, in Bruker 300 MHz instrument.

Fig.S2a.¹³CNMR spectrum of (1) [aldehyde product(1)]in CDCl₃, in Bruker 300 MHz instrument.

Fig. S2b.¹³CNMR spectrum of L³ in CD₃CN, in Bruker 300 MHz instrument.

MA(I)-RAN02-13C

Fig.S2c. ¹³C NMR spectra of the amine product(**3**) in CD_3CN solvent after addition of NO solution, in Bruker 300 MHz instrument.

Fig. S3a. Mass spectrum of (1) [aldehyde product(1)].

Fig. S3b. Mass spectrum of L³

Fig. S3c. Mass spectrum of amine product(3) after purging NO in L³.

Fig. S3d. HRMS (ESI-MS+, m/z) spectra, both simulated and experimental, for aldehyde product(1).

Fig. S3e. HRMS (ESI-MS+, m/z) spectra, both simulated and experimental, for amine product(3).

Fig. S4a. IR spectrum of for (1) [aldehyde product(1)].

Fig. S4b. IR spectrum of L³ in solid state.

Fig. S4c. IR spectrum for amine product (3) in solid state(1000-3700cm⁻¹).

Fig. S5a. Fluorescence response of the ligand L^3 in presence of different cations (Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Cr³⁺ and Zn²⁺, Pb²⁺, Cd²⁺, Al³⁺, Hg²⁺, Na⁺, K⁺ and Mg²⁺(100µM)into the solution of L^3 (20 mM) which were added 5 equivalents into the solution of L^3 (20 µM).(λ_{ex} = 510 nm)

Fig. S5b.Competitive study by fluorescence response of the ligand L^3 towards NO in presence of different anions (SCN⁻, NO₃⁻, N₃⁻ Cl⁻, Br⁻ F⁻, HCO₃⁻, ClO₄⁻, H₂O₂, OAc⁻, S₂O₃²⁻, CN⁻ etc(100µM) which were added 5 equivalents into the solution of $L^3(20 \mu M).(\lambda_{ex} = 510 nm)$

Fig. S6. Fluorescence response of various type of amino-acids(100 μ M) towards L³ (20 μ M).(λ_{ex} = 510 nm)

Calculation of the detection limit(LOD):

The detection limit DL of L^3 for NO was determined from 3σ method by following equation: **DL** = **K*** **Sb**₁/**S**

Where K = 2 or 3 (we take 3 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of

The calibration curve obtained from Linear dynamic plot of FI vs. [NO]

Fig. S7. Determination of Sb_1 of the blank, ligand solution.

Fig.S7a. Linear dynamic plot of FI at 587 nm vs. [NO] for the determination of S (slope); $[L^3] = 20 \ \mu M$

LOD (NO) = $(3 \times 151.379)/5.44 \times 10^{-9} = 83.4 \text{ nM}$

Fig. S8a. Frequency study of L³ by DFT method.

Fig. S8b. Frequency study of RH-en-ONO(3) by DFT method.

Fig. S9. Mass spectrum of Rhodamine B-en and salisaldehyde based ligand(L⁴).

Fig. S10. Fluorescence intensity of analogous Schiff base probe (L⁴) in comparison with probe L³.

Table S1 :The comparable calculated IR transition with Experimental IR values for the ligand (L³),**RH-en-ONO(3)** compound.

Ligand and	Theoretical stretching	Experimental	
RH-en-ONO	frequency(cm ⁻¹)	stretching	
compound (3)		frequency (cm ⁻¹)	
Ligand (L ³)	1807.79 (amidic	1684	
	"C=O")		
Ligand (L ³)	1789.91 (C=N)	1634	
RH-en-ONO	1808.82 (amidic	1681	
compound(3)	"C=O")		
RH-en-ONO	1844.15 (N-O)	1560	
compound(3)			
RH-en-ONO	3474.34 (N-H)	2965	
compound (3)			

Table S2a: Selective bond distance and bond angles of $\rm L^3$

Bond distance(Å)		Bond-angles(°)	
O2-C14	1.214	O2 C14 N3	124.861
N3-C14	1.407	C51 N54 C55	121.99
C51-N54	1.470	C58 O65 C82	118.26
N94-C87	1.358		
O65-C82	1.456		
O65-C58	1.375		

Table S2b: Selective bond distance and bond angles of RH-en-ONO(3).

Bond distance(Å)		Bond-angles(°)	
N67-O68	1.174	N63 O65 N67	131.46
N67-O65	1.298	068 N67 O65	128.74
C70-N73	1.490	O62 C61 N63	121.53
C61-O62	1.213		
N63-O65	1.420		

Table S3: Selected parameters for the vertical excitation (UV-VIS absorptions) of L^3 ; electronic excitation energies (eV) and oscillator strength (f), configurations of the low-lying excited states of L^3 ; calculation of the $S_0 \rightarrow S_n$ energy gaps on optimized ground- state geometries (UV-vis absorption).

Electronic	Composition	Excitation	Oscillator	CI	Assignment	λ_{exp} (nm)
transition		energy	Strength(f)			
$S_0 \rightarrow S_{12}$	HOMO- 3→LUMO+4	3.7203 eV	0.7284	0.42875	ILCT	315
	HOMO- 3→LUMO+6			0.19363	ILCT	
$S_0 \rightarrow S_5$	HOMO→LUMO+5	3.0211 eV	0.1270	0.23945	ILCT	416
	HOMO→LUMO+8			0.42774	ILCT	

Table S4 : Selected parameters for the vertical excitation (UV-VIS absorptions) of **RH-en-ONO(3)**; electronic excitation energies (eV) and oscillator strength (f), configurations of the low-lying excited states of **RH-en-ONO(3)**; calculation of the $S_0 \rightarrow S_n$ energy gaps on optimized ground- state geometries (UV-vis absorption).

Electronic	Composition	Excitation	Oscillator	CI	Assignment	λ_{exp} (nm)
transition		energy	Strength(f)			
S₀→S₅	HOMO- 1→LUMO+3	2.1603 eV	0.196	0.48735	ILCT	561
$S_0 \rightarrow S_6$	HOMO- 1→LUMO+1	2.4790 eV	0.2947	0.58294	ILCT	518
$S_0 \rightarrow S_{10}$	HOMO- 6→LUMO+6	2.7030eV	0.1087	0.28476	ILCT	476