Supporting Information

TsOH·H₂O-Mediated *N*-amidation of Quinoline *N*-oxides: Facile and Regioselective Synthesis of *N*-(quinolin-2yl)amides

Xinghua Chen^a, Mei Peng^a, HaoHuang^b, YangfanZheng^a, XiaojunTao^a, ChunlianHe^{a*} and Yi Xiao^{a*}

 ^aKey Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China
^bSchool of Chemistry and Bioengineering, Yichun University, Yichun, 336000, China

E-mail: chunlianhe6688@163.com

Table of Content

1. General information	S2
2. Experimental Section	S2
3. Characterization of products (¹ H, ¹³ C data)	S 5
4. References	S11
5. Copies of ¹ H NMR and ¹³ C NMR spectra	S12

1. General information

Commercially available reagents were used as received without further purificationUnless otherwise specified. All reagents were carried out in air at room temperature. All unknown products were characterized by ¹H NMR, ¹³C NMR spectroscopy, and high-resolution mass spectrometry (HRMS). ¹H and ¹³C NMR spectra were recorded on a Bruker NMR spectrometer (400 MHz and 100 MHz, respectively) and Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (¹H NMR: DMSO 2.50 ppm, ¹³C NMR: DMSO 40.0 ppm). Column chromatography was performed on silica gel (200-300 mesh) using ethyl acetate (EA)/petroleum ether (PE) as eluents.

2. Experimental Section

General procedure for the synthesis of N-(quinolin-2-yl)amides

In a pressure tube was placed quinoline*N*-oxide (0.3 mmol), nitriles (2.1mmol) and TsOH-H₂O (0.36mmol), and then the resulting solution was stirred at 150°C for about 12h (monitored by TLC). After completion of the reaction, the reaction was cooled to room temperature, then water (10mL) was added to the reaction mixtue, it was extracted with CH_2Cl_2 (10 mL x 2) and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. After removal of the solvent in vacuo, the crude product was subjected to silica gel column chromatography to afford the product **3**.

Large - scale synthesis of 3a

In a pressure tube was placed quinoline*N*-oxide(8 mmol, 1.16g), benzonitrile (56 mmol, 5.77g) and TsOH·H₂O (9.6mmol, 1.82g), and then the resulting solution was stirred at 150°C for about 12h (monitored by TLC). After completion of the reaction, the reaction was cooled to room temperature, then water (20mL) was added to the reaction mixtue, it was extracted with CH_2Cl_2 (20 mL x 3) and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. After removal of the solvent in vacuo, the crude product was subjected to silica gel column chromatography to afford 1.62g of **3a**, yield 82%.

Preparation of 2-d1-Quinoline-N-Oxide

D₂O (1.5 mL), NaOH (200 mg, 5 mmol), quinoline-*N*-oxide (258 mg, 2.0 mmol)were weighed into 30-mL pressure tube sealed with rubber plugs. The reaction mixture was stirred at 100 $^{\circ}$ C for overnight. After cooling to room temperature, the mixture was then extracted with EtOAc (3 x 10 mL). The combined organicphase was washed with saturated NaCl solution (3 x 5 mL), dried over MgSO₄, and filtered. EtOAc was removed under reduced pressure to obtain the crude product 2-*d*₁-quinoline *N*-Oxide. It was further purified by flash column chromatography and percentage of *d*-incorporation was determined by ¹H NMR. Peak areas at 8.73 ppm and 8.56 ppm were compared to obtain the deuterium incorporation. Deuterium incorporation was detected to be 91% by ¹H NMR (see ¹H spectrum).

Quinoline *N*-oxide **1a** and 2- d_1 -quinoline *N*-oxide **1a**-**d**₁ (1:1) (totally 0.2 mmol, deuteration ratio has been calculated), PhCN (1.4 mmol, 7 equiv), TsOH·H₂O (0.24 mmol, 1.2 equiv) were added into a pressure tube, The reaction mixture was stirred at 150 °C for 3 h, After cooling to room temperature, residual starting material (mixture of 2- d_1 -quinoline-*N*-oxide and quinolone -*N*-oxide) was recovered by column chromatography on silica gel (200-300 mesh), which was characterized by ¹H NMR spectroscopy. The experiments were repeated three times, and calculated KIE values are 2.24, 2.15 and 2.21. The average $k_{\rm H}/k_{\rm D}$ = 2.20 was calculated based on the isolated yields. Representative ¹H NMR spectra copy was shown below:

3. Characterization of products

N-(quinolin-2-yl)benzamide (3a)¹

¹H NMR (400MHz, d⁶– DMSO) δ: 11.18 (s, 1 H), 8.42 – 8.35 (m, 2 H), 8.14 – 8.12 (m, 2 H), 7.92 – 7.89 (m, 2 H), 7.73 – 7.69 (m, 1 H), 7.61 – 7.57 (m, 1 H), 7.53 – 7.47 (m, 3 H);¹³C NMR (100 MHz, d⁶– DMSO) δ: 167.0, 152.5, 147.0, 138.5, 134.5, 132.7, 132.6, 130.5, 128.9, 128.8, 128.3, 127.6, 126.4, 125.7, 116.1.

N-(4-methylquinolin-2-yl)benzamide(3b)²

¹H NMR (400MHz, d⁶ – DMSO) δ : 11.05 (s, 1 H), 8.24 (s, 1 H), 8.12 – 8.10 (m, 2 H), 8.02 (d, *J*= 8.0 Hz, 1 H), 7.88 (d, *J*= 8.4 Hz, 1 H), 7.71 (t, *J*= 8.0 Hz, 1 H), 7.62 – 7.58 (m, 1 H), 7.54 – 7.50 (m, 3 H), 2,69 (s, 3 H); ¹³C NMR (100 MHz, d⁶ – DMSO) δ : 166.9, 152.2, 146.8, 146.6, 134.5, 132.6, 130.2, 128.9, 128.7, 128.1, 126.3, 125.5, 124.7, 116.9, 19.3.

N-(5-methylquinolin-2-yl)benzamide(3c)

¹H NMR (400MHz, d⁶ – DMSO) δ : 11.13 (s, 1 H), 8.47 (d, *J*= 9.2 Hz, 1 H), 8.39 (d, *J*= 9.2 Hz, 1 H), 8.12 – 8.10 (m, 2 H), 7.73 (d, *J*= 8.4 Hz, 1 H), 7.60 – 7.57 (m, 2 H), 7.54 – 7.50 (m, 2 H), 7.32 (d, *J*= 7.2 Hz, 1 H), 2.63 (s, 3 H);¹³C NMR (100 MHz, d⁶– DMSO) δ : 167.0, 152.1, 147.3, 135.3, 135.3, 134.5, 132.6, 130.2, 128.9, 128.7, 126.1, 125.9, 125.5, 115.5, 18.8; HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O [M+H]⁺: 263.1179, found 263.1175.

N-(6-methylquinolin-2-yl)benzamide (3d)

¹H NMR (400MHz, d⁶ – DMSO) δ : 11.10 (s, 1 H), 8.32 (d, *J*= 8.8 Hz, 1 H), 8.28 (d, *J*= 8.8 Hz, 1 H), 8.11 – 8.09 (m, 2 H), 7.78 (d, *J*= 8.4 Hz, 1 H), 7.68 (s, 1 H), 7.60 – 7.59 (m, 1 H), 7.57 – 7.50 (m, 3 H), 2.46 (s, 3 H);¹³C NMR (100 MHz, d⁶ – DMSO) δ : 166.9, 151.7, 145.3, 137.8, 135.1, 134.5, 132.6, 132.6, 128.9, 128.7, 127.4, 127.1, 126.3, 116.0, 21.5; HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O [M+H]⁺: 263.1179, found 263.1177.

N-(7-methylquinolin-2-yl)benzamide (3e)

¹H NMR (400MHz, d⁶ – DMSO) δ : 11.13 (s, 1 H), 8.35 (d, *J*= 8.8 Hz, 1 H), 8.31 (d, *J*= 8.8 Hz, 1 H), 8.13 – 8.11 (m, 2 H), 7.85 (d, *J*= 8.4 Hz, 1 H), 7.68 (s, 1 H), 7.63 – 7.61 (m, 1 H), 7.55 (t, *J*= 8.0 Hz, 2 H), 7.37 (dd, *J*_{*I*}= 1.6 Hz, *J*_{*Z*}= 8.4 Hz, 1 H), 2.53 (s, 3 H);¹³C NMR (100 MHz, d⁶– DMSO) δ : 167.0, 152.4, 147.2, 140.4, 138.2, 134.5, 132.6,

128.9, 128.7, 128.0, 127.8, 126.6, 124.4, 115.1, 22.0, HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O [M+H]⁺: 263.1179, found 263.1176.

N-(8-methylquinolin-2-yl)benzamide (3f)

¹H NMR (400 MHz, d⁶ - DMSO) δ : 10.86 (s, 1 H), 8.34 (d, *J*= 9.2 Hz, 1 H), 8.26 (d, *J*= 9.2 Hz, 1 H), 8.07 - 8.05 (m,2 H), 7.74 (d, *J*= 7.6 Hz, 1 H), 7.61 - 7.51 (m, 4 H), 7.38 (t, *J*= 8.0 Hz, 1 H), 2.68 (s, 3 H); ¹³C NMR (100 MHz, d⁶ - DMSO): δ = 167.0, 151.2, 145.7, 138.7, 135.5, 134.6, 132.5, 130.4, 128.8, 128.7, 126.2, 126.1, 125.4, 115.9, 18.0; HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O [M+H]⁺: 263.1179, found 263.1174.

N-(6-methoxyquinolin-2-yl)benzamide (3g)³

¹H NMR (400MHz, d⁶– DMSO) δ: 11.04 (s, 1 H), 8.32 (d, J= 9.2 Hz, 1 H), 8.27 (d, J= 8.8 Hz, 1 H), 8.11 – 8.09 (m, 2 H), 7.80 (d, J= 8.8 Hz, 1 H), 7.60 – 7.57 (m, 1 H), 7,51 (t, J= 7.6 Hz, 2 H), 7.38 – 7.34 (m, 2 H), 3.87 (s, 3 H);¹³C NMR (100 MHz, d⁶– DMSO) δ: 166.8, 157.0, 150.5, 142.6, 137.3, 134.6, 132.5, 129.1, 128.9, 128.7, 127.3, 122.7, 116.4, 106.5, 56.0.

N-(6-phenylquinolin-2-yl)benzamide (3h)

H NMR (400MHz, d⁶– DMSO) δ: 11.19 (s, 1 H), 8.45 (d, J= 9.2 Hz, 1 H), 8.39 (d, J= 9.2 Hz, 1 H), 8.24 (d, J= 2.0 Hz, 1 H), 8.12 – 8.12 (m, 2 H), 8.06 (dd, J_I = 2.4 Hz, J_2 = 8.8 Hz, 1 H), 7.95 (d, J= 8.8 Hz, 1 H), 7.81 (d, J= 7.2 Hz, 2 H), 7.63 – 7.60 (m, 1 H), 7.55 – 7.49 (m, 4 H), 7.42 – 7.40 (m, 1 H); ¹³C NMR (100 MHz, d⁶– DMSO) δ: 167.0, 152.5, 146.4, 140.0, 138.9, 137.3, 134.5, 132.7, 129.6, 129.6, 128.9, 128.8, 128.2, 127.5, 126.6, 125.8, 116.4; HRMS (ESI) *m/z* calcd. for C₂₂H₁₇N₂O [M+H]⁺: 325.1335, found 325.1337.

N-(6-fluoroquinolin-2-yl)benzamide (3i)

¹H NMR (400MHz, d⁶– DMSO) δ : 11.16 (s,1 H), 8.38 (s, 2 H), 8.10 – 8.08 (m, 2 H), 7.91 (dd, J_I = 5.6 Hz, J_2 = 9.6 Hz, 1 H), 7.75 (dd, J_I = 3.2 Hz, J_2 = 9.2 Hz, 1 H), 7.65 – 7.62 (m, 1 H), 7.60 – 7.59 (m, 1 H), 7.54 – 7.50 (m, 2 H);¹³C NMR (100 MHz, d⁶– DMSO) δ : 167.0, 160.7, 158.3, 152.0, 144.0, 138.1, 139.1, 134.4, 132.7, 130.3, 130.2, 128.9, 128.7, 126.8, 126.7, 120.4, 120.2, 117.0, 111.7, 111.5;¹⁹F NMR (376 MHz, d⁶– DMSO) δ : -115.6; HRMS (ESI) m/z calcd. for C₁₆H₁₂FN₂O [M+H]⁺: 267.0928, found 267.0923.

N-(6-chloroquinolin-2-yl)benzamide (3j)

¹H NMR (400MHz, d⁶– DMSO) δ : 11.21 (s, 1 H), 8.39 (d, *J*= 9.2 Hz, 1 H), 8.35 (d, *J*= 8.8 Hz, 1 H), 8.09 (d, *J*= 9.2 Hz, 2 H), 8.04 (d, *J*= 2.4 Hz, 1 H), 7.86 (d, *J*= 8.8 Hz, 1 H), 7.70 (dd, *J*₁= 2.4 Hz, *J*₂= 8.8 Hz, 1 H), 7.62 – 7.59 (m, 1 H), 7.52 (t, *J*= 7.6 Hz, 2 H);¹³C NMR (100 MHz, d⁶– DMSO) δ : 167.1, 152.9, 145.4, 137.9, 134.3, 132.7, 130.9, 129.9, 129.6, 128.9, 128.8, 127.0. 127.0, 117.0; HRMS (ESI) *m/z* calcd.for C₁₆H₁₂ClN₂O [M+H]⁺: 283.0633, found 283.0630.

N-(6-bromoquinolin-2-yl)benzamide (3k)

¹H NMR (400 MHz, d⁶– DMSO) δ : 11.21 (s, 1 H), 8.39 (d, *J*= 9.2 Hz, 1 H), 8.35 (d, *J*= 9.2 Hz, 1 H), 8.20 (d, *J*= 2.0 Hz, 1 H), 8.09 – 8.07 (m, 2 H), 7.80 – 7.79 (m, 2 H), 7.62 – 7.59 (m, 1 H), 7.54 – 7.50 (m, 2 H); ¹³C NMR (100 MHz, d⁶– DMSO) δ : 167.1, 152.9, 145.6, 137.8, 134.3, 133.4, 132.7, 130.3, 129.8, 128.9, 128.8, 127.6, 118.3, 116.9; HRMS (ESI) *m/z* calcd. for C₁₆H₁₂BrN₂O [M+H]⁺: 327.0128, found 327.0131.

methyl 2-benzamidoquinoline-6-carboxylate (31)

¹H NMR (400MHz, d⁶– DMSO) δ : 11.30 (s, 1 H), 8,60 (d, *J*= 2.0 Hz, 1 H), 8.56 (d, *J*= 9.2 Hz, 1 H), 8.42 (d, *J*= 9.2 Hz, 1 H), 8,16 (dd, *J*_{*I*}= 2.0 Hz, *J*₂= 8.8 Hz, 1 H) 8.09 – 8.08 (m, 2 H), 7.91 (d, *J*= 8.8 Hz, 1 H), 7.64 – 7.60 (m, 1 H), 7.54 – 7.51 (m, 2 H);¹³C NMR (100 MHz, d⁶– DMSO) δ : 167.2, 166.5, 154.3, 149.1, 140.1, 134.2, 132.8, 131.1, 129.5, 128.9, 128.8, 128.0, 126.4, 125.5, 116.6, 52.8; HRMS (ESI) *m*/*z* calcd. for C₁₈H₁₅N₂O₃ [M+H]⁺: 307.1077, found 307.1070.

2-methyl-N-(quinolin-2-yl)benzamide (3m)

¹H NMR (400MHz, d⁶– DMSO) δ : 11.08 (s, 1 H), 8.42 – 8.35 (m, 2 H), 7.95 (d, *J*= 8.4 Hz, 1 H), 7.83 (d, *J*= 8.4 Hz, 1 H), 7.74 – 7.70 (m, 1 H), 7.54 – 7.50 (m, 2 H), 7.39 (d, *J*= 7.6 Hz, 1 H), 7.30 (d, *J*= 8.0 Hz, 1 H), 2.43 (s, 3 H);¹³C NMR (100 MHz, d⁶- DMSO) δ : 169.4, 152.2, 146.9, 138.6, 136.7, 136.1, 131.0, 130.4, 128.5, 128.1, 127.6, 126.3, 126.0, 125.6, 115.6, 20.0; HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O [M+H]⁺: 263.1179, found 263.1174.

3-methyl-N-(quinolin-2-yl)benzamidee (3n)

¹H NMR (400MHz, d⁶- DMSO) δ : 11.06 (s, 1 H), 8.38 (s, 2 H), 7.94 - 7.87 (m, 4 H), 7.74 - 7.70 (m, 1 H), 7.52 - 7.48 (m, 1 H), 7.40 - 7.39 (m, 2 H), 2.38 (s, 3 H);¹³C NMR (100 MHz, d⁶- DMSO) δ : 167.1, 152.4, 146.9, 138.5, 138.2, 134.4, 133.2, 130.5, 129.3, 128.8, 128.3, 127.6, 126.3, 125.8, 125.6, 116.0, 21.4; HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O [M+H]⁺: 263.1179, found 263.1172.

¹H NMR (400MHz, d⁶- DMSO) δ : 11.09 (s, 1 H), 8.38 (s, 2 H), 8.02 (d, *J*= 8.0 Hz, 2 H), 7.93 (dd, *J_I*= 8.0 Hz, *J₂*= 0.8 Hz, 1 H), 7.88 (d, *J*= 8.4 Hz, 1 H), 7.74 - 7.70 (m, 1 H), 7.52 - 7.48 (m, 1 H), 7.31 (d, *J*= 7.6 Hz, 2 H), 2.37 (s, 3 H);¹³C NMR (100 MHz, d⁶- DMSO) δ : 166.8, 152.5, 147.0, 142.8, 138.5, 131.6, 130.5, 129.5, 128.8, 128.3, 127.6, 126.3, 125.6, 116.0, 21.6; HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O [M+H]⁺: 263.1179, found 263.1174.

4-methoxy-N-(quinolin-2-yl)benzamide (3p)⁴

¹H NMR (400MHz, d⁶- DMSO) δ: 10.98 (s, 1 H), 8.36 (s, 2 H), 8.12 (d, *J*= 8.0 Hz, 2 H), 7.93 – 7.87 (m, 2 H), 7.71 – 7.70 (m, 1 H), 7.49 – 7.48 (m, 1 H), 7.05 (d, *J*= 8.4 Hz, 2 H), 3.83 (s, 3 H);¹³C NMR (100 MHz, d⁶- DMSO) δ: 166.3, 162.9, 152.6, 147.0,138.4, 130.7, 130.4, 128.3, 127.5, 126.5, 126.3, 125.6, 116.1, 114.1, 55.9.

4-fluoro-N-(quinolin-2-yl)benzamide (3q)

¹H NMR (400MHz, d⁶- DMSO) δ : 11.23 (s, 1 H), 8.36 (s, 2 H), 8.20 - 8.17 (m, 2 H), 7.92 - 7.87 (m, 2 H), 7.73 - 7.69 (m, 1 H), 7.49 (t, *J*= 7.6 Hz, 1 H), 7.33 (t, *J*= 8.8 Hz, 2 H);¹³C NMR (100 MHz, d⁶- DMSO) δ : 166.2, 166.0, 163.7, 152.4, 146.9, 138.6, 135.9, 135.8, 131.6, 131.5, 131.0, 130.5, 128.3, 127.6, 126.4, 125.7, 117.6, 117.4, 116.0, 115.9, 115.7;¹⁹F NMR (379MHz, d⁶- DMSO) δ : -107.9; HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O [M+H]⁺: 267.0928, found 267.0930.

4-chloro-N-(quinolin-2-yl)benzamide (3r)

¹H NMR (400MHz, d⁶- DMSO) δ : 11.23 (s, 1 H), 8.38 (d, *J*= 8.8 Hz, 1 H), 8.33 (d, *J*= 8.8 Hz, 1 H), 8.10 - 8.08 (m, 2 H), 7.93 (d, *J*= 8.0 Hz, 1 H), 7.88 (d, *J*= 8.4 Hz, 1 H), 7.74 - 7.70 (m, 1 H), 7.58 (d, *J*= 8.4 Hz, 2 H), 7.56 - 7.49 (m, 1 H); ¹³C NMR (100 MHz, d⁶- DMSO) δ : 166.1, 152.3, 146.9, 138.7, 137.6, 133.3, 130.7, 130.6, 129.0, 128.4, 127.7, 126.4, 125.9, 116.0;HRMS (ESI) *m/z* calcd. for C₁₆H₁₂ClN₂O [M+H]⁺: 283.0633, found 283.0627.

4-bromo-N-(quinolin-2-yl)benzamide (3s)

¹H NMR (400MHz, d⁶- DMSO) δ : 11.26 (s, 1H), 8.41 (d, *J*= 8.8 Hz, 1 H), 8.34 (d, *J*= 9.2 Hz, 1 H), 8.03 - 8.01 (m, 2 H), 7.95 (dd, J_I = 8.0 Hz, J_2 = 1.2 Hz, 1 H), 7.88 (d. *J*= 8.4 Hz, 1 H), 7.74 - 7.72 (m, 3 H), 7.56 - 7.51 (m, 1 H); ¹³C NMR (100 MHz, d⁶- DMSO) δ : 166.2, 152.3, 146.9, 138.7, 133.6, 131.9, 130.8, 130.6, 128.4, 127.6, 126.5, 126.4, 125.8, 115.9; HRMS (ESI) *m/z* calcd. for C₁₆H₁₂BrN₂O [M+H]⁺: 327.0128, found 327.0124.

N-(quinolin-2-yl)-4-(trifluoromethyl)benzamide (3t)

¹H NMR (400MHz, d⁶- DMSO) δ : 11.42 (s, 1 H), 8.42 (d, *J*= 9.2 Hz, 1 H), 8.36 (d, *J*= 9.2 Hz, 1 H), 8.25 (d, *J*= 8.0 Hz, 1 H), 7.96 (d, *J*= 9.2 Hz, 1 H), 7.89 (d, *J*= 8.4 Hz, 3 H), 7.76 - 7.72 (m, 1 H), 7.55 - 7.51 (m, 1 H);¹³C NMR (100 MHz, d⁶- DMSO) δ : 166.0, 152.1, 146.9, 138.8, 138.4, 130.6, 129.7, 128.4, 127.7, 126.4, 125.9, 125.9, 125.8, 115.9; ¹⁹F NMR (376MHz, d⁶- DMSO) δ : -61.4;HRMS (ESI) *m/z* calcd. for C₁₇H₁₂F₃N₂O [M+H]⁺: 317.0896, found 317.0887.

4-acetyl-N-(quinolin-2-yl)benzamide (3u)

¹H NMR (400MHz, d⁶- DMSO) δ : 11.35 (s, 1 H), 8.43 (d, *J*=8.8 Hz, 1 H), 8.36 (d, *J*= 9.2 Hz, 1 H), 8.20 - 8.18 (m, 2 H), 8.09 - 8.06 (m, 2 H), 7.97 (d, *J*= 8.0 Hz, 1 H), 7.89 (d, *J*= 8.4 Hz, 1 H), 7.75 (t, *J*= 7.2 Hz, 1 H), 7.56 - 7.52 (m, 1 H), 2.65 (s, 3 H); ¹³C NMR (100 MHz, d⁶- DMSO) δ : 198.3, 166.3, 152.2, 146.9, 139.7, 138.7, 138.3, 130.6, 129.0, 128.6, 128.3, 127.6, 126.4, 125.8, 115.9, 27.5; HRMS (ESI) *m/z* calcd. for C₁₈H₁₅N₂O₂ [M+H]⁺: 291.1128, found 291.1130.

N-(quinolin-2-yl)furan-2-carboxamide (3v)

¹H NMR (400MHz, d⁶ - DMSO) δ : 10.93 (s, 1 H), 8.39 (d, *J*= 9.2 Hz, 1 H), 8.33 (d, *J*= 9.2 Hz, 1 H), 7.98 (s, 1 H), 7.93 (d, *J*= 8.0 Hz, 1 H), 7.87 (d, *J*= 8.4 Hz, 1 H), 7.72 - 7.71 (m, 2 H), 7.51 (t, *J*= 7.2 Hz, 1 H), 6.73 - 6.71 (m, 1 H); ¹³C NMR (100 MHz, d⁶ - DMSO) δ : 157.4, 151.9, 147.3, 147.1, 146.9, 138.7, 130.6, 128.3, 127.5, 126.3, 125.7, 116.4, 115.6, 112.7; HRMS (ESI) *m/z* calcd. for C₁₄H₁₁N₂O₂ [M+H]⁺: 239.0815, found 239.0814.

N-(quinolin-2-yl)thiophene-3-carboxamide (3w)

¹H NMR (400MHz, d⁶- DMSO) δ : 11.01 (s, 1 H), 8.66 (dd, J_1 = 2.8 Hz, J_2 = 1.2 Hz, 1 H), 8.38 (s, 2 H), 7.94 (d, J= 8.0 Hz, 1 H), 7.88 (d, J= 8.4 Hz, 1 H), 7.78 (dd, J_1 = 5.2 Hz, J_2 = 1.2 Hz, 1 H), 7.73 - 7.72 (m, 1 H), 7.66 - 7.64 (m, 1 H), 7.52 - 7.48 (m, 1 H); ¹³C NMR (100 MHz, d⁶- DMSO) δ : 162.1, 152.3, 146.9, 138.6, 137.5, 131.6, 130.5,

128.3, 128.1, 127.5, 127.4, 126.3, 125.6, 115.9; HRMS (ESI) *m/z* calcd. for C₁₈H₁₅N₂O₂ [M+H]⁺: 255.0587, found 255.0582.

N-(quinolin-2-yl)acetamide (3x)

¹H NMR (400MHz, d⁶ – DMSO) δ: 10.83 (s, 1 H), 8.33 (d, *J*= 8.8 Hz, 1 H), 8.28 (d, *J*= 9.2 Hz, 1 H), 7.90 (d, *J*= 12.0 Hz, 1 H), 7.81 – 7.79 (m, 1 H), 7.71 – 7.68 (m, 1 H), 7.49 – 7.45 (m, 1 H), 2.15 (s, 3 H);¹³C NMR (100 MHz, d⁶ – DMSO) δ: 170.5, 152.2, 146.8, 138.8, 130.5, 128.3, 127.3, 126.1, 125.4, 114.8, 24.6.

N-(quinolin-2-yl)pivalamide (3y)

¹H NMR (400MHz, d⁶- DMSO) δ: 10.13 (s, 1 H), 8.32 (d, *J*= 8.8 Hz, 1 H), 8.24 (d, *J*= 9.2 Hz, 1 H), 7.86 - 7.80 (m, 2 H), 7.65 (t, *J*= 7.2 Hz, 1 H), 7.41 (t, *J*= 7.6 Hz, 1 H), 1.28 (s, 9 H);¹³C NMR (100 MHz, d⁶- DMSO) δ: 178.2, 152.6, 146.9, 138.3, 130.3, 128.2, 127.4, 126.2, 125.2, 115.7, 40.1, 27.4.

N-(quinolin-2-yl)cyclohexanecarboxamide (3z)

¹H NMR (400MHz, d⁶ – DMSO) δ : 10.69 (s, 1 H), 8.31 (s, 2 H), 7.88 (dd, J_1 = 8.0 Hz, J_2 = 0.8 Hz, 1 H), 7.79 (d, J= 8.4 Hz, 1 H), 7.70 – 7.66 (m, 1 H), 7.48 – 7.44 (m, 1 H), 2.59 – 2.53 (m, 1 H), 1.83 (d, J= 12.0 Hz, 2 H), 1.75 – 1.72 (m, 2 H), 1.64 – 1.62 (m, 1 H), 1.43 -1.36 (m, 2 H), 1.28 – 1.15 (m, 3 H); ¹³C NMR (100 MHz, d⁶ – DMSO) δ : 176.3, 152.5, 146.9, 138.6, 130.4, 128.2, 127.4, 126.1, 125.3, 114.9, 44.9, 29.5, 25.9, 25.7; HRMS (ESI) *m/z* calcd. for C₁₆H₁₉N₂O [M+H]⁺: 255.1492, found 255.1487.

3-phenyl-N-(quinolin-2-yl)propanamide (3aa)

¹H NMR (400MHz, d⁶- DMSO) δ : 10.86 (s, 1 H), 8.33 (s, 2 H), 7.89 (dd, J_1 = 8.0 Hz, J_2 = 0.8 Hz, 1 H), 7.79 (d, J= 8.4 Hz, 1 H), 7.71 - 7.67 (m, 1 H), 7.49 - 7.45 (m, 1 H), 7.28 - 7.27 (m, 4 H), 7.19 - 7.15 (m, 1 H), 2.94 (t, J= 7.2 Hz, 2 H), 2.78 (t, J= 8.4 Hz, 2 H);¹³C NMR (100 MHz, d⁶- DMSO) δ : 172.5, 152.2, 146.9, 141.6, 138.8, 130.5, 128.8, 128.3, 127.4, 126.5, 126.1, 125.3, 114.8, 38.4, 31.2; HRMS (ESI) *m*/zcalcd. for C₁₈H₁₇N₂O [M+H]⁺: 277.1335, found 277.1338.

N-(quinolin-2-yl)cinnamamide (3ab)

¹H NMR (400MHz, d⁶– DMSO) δ: 11.09 (s, 1 H), 8.50 (d, J= 8.8 Hz, 1 H), 8.36 (d, J= 9.2 Hz, 1 H), 7.91 (d, J=

7.6 Hz, 1 H), 7.84 (d, J= 8.4 Hz, 1 H), 7.74 – 7.69 (m, 2 H), 7.64 – 7.62 (m, 2 H), 7.50 – 7.40 (m, 4 H), 7.14 (d, J= 15.6 Hz, 1 H);¹³C NMR (100 MHz, d⁶– DMSO) δ : 165.1, 152.4, 147.0, 141.9, 138.8, 135.1, 130.5, 130.5, 129.5, 128.4, 128.3, 127.4, 126.2, 125.4, 122.4, 115.0; HRMS (ESI) m/z calcd. for C₁₈H₁₅N₂O [M+H]⁺: 275.1179, found 275.1177.

4. Reference

- J. L. Vrijdag, F. Delgado, N. Alonso, W. M. De Borggraeve, N. Perez-Macias and J. Alcazar, *Chem. Commun.*, 2014, 50, 15094-15097.
- 2. S. Sharif, J. Day, H. N. Hunter, Y. Lu, D. Mitchell, M. J. Rodriguez and M. G. Organ, *J.Am.Chem.Soc.*, 2017, 139, 18436-18439.
- 3. M. Couturier, L. Caron, S. Tumidajski, K. Jones and T. D. White, *Org. Lett.*, 2006, 8, 1929-1932.
- 4. L. Deng, B. Huang and Y. Liu, Org. Biomol. Chem., 2018, 16, 1552-1556.

5. Copies of ¹H NMR and ¹³C NMR spectra

N-(quinolin-2-yl)benzamide (3a)

N-(4-methylquinolin-2-yl)benzamide(3b)

N-(5-methylquinolin-2-yl)benzamide(3c)

N-(6-methylquinolin-2-yl)benzamide (3d)

N-(7-methylquinolin-2-yl)benzamide (3e)

N-(8-methylquinolin-2-yl)benzamide (3f)

N-(6-methoxyquinolin-2-yl)benzamide (3g)

N-(6-phenylquinolin-2-yl)benzamide (3h)

N-(6-fluoroquinolin-2-yl)benzamide (3i)

N-(6-chloroquinolin-2-yl)benzamide (3j)

N-(6-bromoquinolin-2-yl)benzamide (3k)

methyl 2-benzamidoquinoline-6-carboxylate (31)

2-methyl-N-(quinolin-2-yl)benzamide (3m)

3-methyl-N-(quinolin-2-yl)benzamidee (3n)

4-methyl-N-(quinolin-2-yl)benzamide (30)

4-methoxy-N-(quinolin-2-yl)benzamide (3p)

4-fluoro-N-(quinolin-2-yl)benzamide (3q)

4-chloro-N-(quinolin-2-yl)benzamide (3r)

4-bromo-N-(quinolin-2-yl)benzamide(3s)

N-(quinolin-2-yl)-4-(trifluoromethyl)benzamide (3t)

4-acetyl-N-(quinolin-2-yl)benzamide(3u)

N-(quinolin-2-yl)furan-2-carboxamide(3v)

N-(quinolin-2-yl)thiophene-3-carboxamide(3w)

N-(quinolin-2-yl)acetamide (3x)

N-(quinolin-2-yl)pivalamide(3y)

N-(quinolin-2-yl)cyclohexanecarboxamide (3z)

3-phenyl-N-(quinolin-2-yl)propanamide (3aa)

N-(quinolin-2-yl)cinnamamide (3ab)

