Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Fluorescent Boron Complexes Based on New *N,O*-Chelates as promising candidates for Flow Cytometry

Kseniya I. Lugovik,^[a] Alexander K. Eltyshev,^[a] Polina O. Suntsova,^[a] Leonid T. Smoluk,^[d] Anna V. Belousova,^[a, d] Maria V. Ulitko,^[a] Artem S. Minin,^[a, c] Pavel A. Slepukhin,^[a, e] Enrico Benassi,^{*[b]} Nataliya P. Belskaya^{*[a]}

^[a]Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation, e-mail: <u>n.p.belskaya@urfu.ru.</u>

^[b]School of Science and Technology, Nazarbaev University, 53 Kabanbay Batyr Ave., Astana 010000, Republic of Kazakhstan e-mail: <u>enrico.benassi@nu.edu.kz.</u>

^[c]M.N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Science, 18 S. Kovalevskaya Str., Yekaterinburg, 620108, Russian Federation.

^[d]Institute of Immunology and Physiology, Ural Branch of Russian Academy of Science, 20 S. Kovalevskaya Str., Yekaterinburg 620049, Russian Federation.

[e]Institute of Organic Synthesis, Ural Branch of Russian Academy of Science 20 S. Kovalevskaya Str., Yekaterinburg 620219, Russian Federation.

Kseniya I. Lugovik ORCID ID orcid.org/0000-0001-9099-7286

Alexander K. Eltyshev ORCID ID orcid.org/0000-0002-0157-7130

Polina O. Suntsova ORCID ID org/0000-0002-8883-5955

Leonid T. Smoluk ORCID ID org/0000-0001-8111-2589

Anna V. Belousova ORCID ID org/0000-0001-7714-2822

Maria V. Ulitko ORCID ID org/0000-0003-3193-2903

Artem S. Minin ORCID ID org/0000-0003-3305-3195

Pavel A. Slepukhin ORCID ID org/0000-0001-8132-9905

Enrico Benassi ORCID ID orcid.org/0000-0002-4614-1568

Nataliya P. Belskaya ORCID ID orcid.org/0000-0002-2509-7916

Table of contents

1 Experimental Section	S2
2 NMR spectra of new compounds	S6
3 XRD crystal structures of complex 1j	S37
4 Photophysical investigations	S38
5 Quantum mechanical calculations	S42
6 Biological investigation data	S65
7 References	S66
8. Cartesian coordinates for optimized structure	S68

1. Experimenal Section

General Information and Materials

¹H, ¹⁹F, ¹¹B, and ¹³C NMR spectra were recorded on a Bruker Avance II (Karlsruhe, Germany) spectrometer at 400 MHz for ¹H, 100 MHz for ¹³C, 128 MHz for ¹¹B, and 376 MHz for ¹⁹F NMR. Chemical shifts are reported in parts per million (ppm) relative to tetramethysilane (0 ppm) in ¹H NMR and residual solvent signals in ¹³C (internal references), and relative to BF₃·OEt₂ in ¹¹B and CFCl₃ in ¹⁹F NMR spectra (external references). Coupling constants (*J*) values are given in Hertz (Hz). Signal splitting patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), sextet (sext), quintet (quin), multiplet (m), broad (br), doublet of doublets (dd), and doublet of triplets (dt), in addition to AA'XX' for the spin system of *para*-substitued benzenes with two different substituents. The major isomer signal is highlighted with an asterisk (*). ¹³C NMR signal patterns for several compounds were analyzed using an attached proton test (APT) and described as follows: + for secondary or quaternary carbon atoms (positive signals); – for primary or tertiary carbon atoms (negative signals). Mass spectra were recorded with a Shimadzu GCMS-QP 2010 "Ultra" (Kyoto, Japan) mass spectrometer using electron impact (EI) ionization (40–200 °C, 70 eV). [M]⁺ denotes the molecular ion. Fourier-transform infrared (FTIR) spectra were obtained using a Bruker Alpha (NPVO, ZnSe) spectrometer (Ettlingen, Germany).

Elemental analyses were performed using a CHNS/O analyzer PerkinElmer 2400 Series II instrument (Shelton, CT USA). Melting points were determined on a Stuart SMP3 apparatus (Staffordshire, ST15 OSA, UK). The reactions were monitored by analytical thin-layer chromatography (TLC) on aluminumbacked silica gel plates (Sorbfil UV–254). Components were visualized using short wavelength UV light (254 nm). Solvents were dried and distilled according to common procedures. All solvents were of spectroscopic grade. All reactants were obtained from Acros Organics and used without further purification.

Preparation and Characterization of New Compounds

Thiophenes **3a-d** were synthesized according to a procedure described in our previous papers.^[1, 2] Dimethylaminoacryloylthiophenes **4a-d** were prepared according literature technique.^[3] Arylaminoprop-2-enethioamide **2a-k** were obtained from the corresponding arylamine and dimethylaminopropene thioamide according to the previously described procedure.^[4]

Synthesis of BF₂ complexes 1a-k: DIPA (5.0 mmol) and BF_3 ·OEt₂ (15.0 mmol) were added to a cold solution of enamine (1.0 mmol) in CH₂Cl₂ (2.5 mL). The resultant mixture was stirred at room temperature for 1–6 h. After reaction completion, the solvent was removed under vacuum and the product was purified by column chromatography using petroleum ether/ethyl acetate mixed solvent as the eluent.

1637; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 7.82 (1 H, s, CH), 3.66-3.62 (4 H, m, 2CH₂), 2.36 (3 H, s, Me), 2.13-2.10 (4 H, m, 2CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ_C 188.2, 165.4, 138.1, 125.4, 117.0, 82.7, 51.9 (2C), 25.4 (2C), 24.8; MS (EI) m/z (%): 220 (M+, 100); Found: C, 59.7; H, 5.6; N, 12.5. Calc. for C₁₁H₁₂N₂OS: C, 59.98; H, 5.49; N, 12.72%.

5-Acetyl-2-(piperidin-1-yl)thiophene-3-carbonitrile 3c. Beige powder (0.380 g, 68%); m.p. 94-96 °C; IR (ATR, ZnSe) v_{max}/cm⁻¹: 2940, 2881, 2202, 1641; ¹H

NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 7.99 (1 H, s, CH), 3.67-3.63 (4 H, m, 2CH₂), 2.38 (3 H, s, Me), 1.67-1.65 (6 H, m, 3CH₂); ¹³C NMR
(100 MHz, DMSO-*d*₆): δ_C 188.4, 169.1, 137.9, 125.9, 116.4, 84.4, 51.7 (2C), 24.8, 24.5 (2C), 22.6; MS (EI) m/z (%): 234 (M+, 100); Found:
C, 61.3; H, 6.3; N, 12.2. Calc. for C₁₂H₁₄N₂OS: C, 61.51; H, 6.02; N, 11.96%.

5-Acetyl-2-(dimethylamino)thiophene-3-carbonitrile 3d. Light-beige crystals (0.280 g, 58%); m.p. 176-178 °C; IR (ATR, ZnSe) v_{max}/cm⁻¹: 3035, 2934, 2860,

2206, 1635; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 7.78 (1 H, s, CH), 3.34 (6 H, s, NMe₂), 2.36 (3 H, s, Me); ¹³C NMR (100 MHz, DMSO-*d*₆): δ_C 188.4, 169.0, 138.5, 125.6, 117.0, 83.1, 43.1 (2C), 24.8; MS (EI) m/z (%): 194 (M+, 74); Found: C, 55.3; H, 5.3; N, 14.7. Calc. for C₉H₁₀N₂OS: C, 55.65; H, 5.19; N, 14.42%.

5-(3-(Dimethylamino)acryloyl)-2-morpholinothiophene-3-carbonitrile 4a. Light-beige powder (0.235 g, 98%); m.p. 175-177 °C; IR (ATR, ZnSe) vmax/cm⁻¹:

2955, 2916, 2862, 2808, 2204, 1630; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 8.84 (1 H, s, CH), 7.57 (1 H, d, *J* = 12.3 Hz, CH), 5.74 (1 H, d, J = 12.3 Hz, CH), 3.78-3.75 (4 H, m, 2CH₂), 3.53-3.51 (4 H, m, 2CH₂), 3.11 (3 H, br s, Me), 2.89 (3 H, br s, Me); ¹³C NMR (100 MHz, DMSO-d₆): δ_{C} 177.8, 168.4, 152.8, 132.2, 130.5, 116.7, 89.5, 85.7, 65.1 (2C), 50.1 (2C), 44.3, 37.1; MS (EI) m/z (%): 98 (M⁺,

100); 291 (M⁺, 47); Found: C, 57.6; H, 6.0; N, 14.4. Calc. for C₁₄H₁₇N₃O₂S: C, 57.71; H, 5.88; N, 14.42%. 5-(3-(Dimethylamino)acryloyl)-2-(pyrrolidin-1-yl)thiophene-3-carbonitrile 4b. Yellow powder (0.250 g, 90%); m.p. 237-239 °C; IR (ATR, ZnSe) vmax/cm⁻¹:

2957, 2927, 2855, 2811, 2197, 1630; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 7.59 (1 H, s, CH), 7.50 (1 H, d, *J* = 12.4 Hz, CH), 5.58

Me₂N~

(1 H, d, J = 12.4 Hz, CH), 3.61 (4 H, m, 2CH₂), 3.07 (3 H, br s, Me), 2.95 (3 H, br s, Me), 2.10 (4 H, m, 2CH₂); ¹³C NMR (100 MHz, CDCl₃): δ_{C} 177.5, 168.4, 152.6, 131.0, 129.7, 118.0, 89.9, 82.8, 51.7 (2C), 44.9, 37.3, 25.9 (2C); MS (EI) m/z (%): 275 (M+, 51);

Found: C, 60.8; H, 6.4; N, 15.0. Calc. for C14H17N3OS: C, 61.06; H, 6.22; N, 15.26%.

5-(3-(Dimethylamino)acryloyl)-2-(piperidin-1-yl)thiophene-3-carbonitrile 4c. Light peach color powder (0.260 g, 89%); m.p. 135-137 °C; IR (ATR, ZnSe) ν_{max}/cm⁻¹: 2990, 2853, 2810, 2197, 1633; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 7.61 (1 H, s, CH), 7.52 (1 H, d, *J* = 12.3 Hz, CH),

5.61 (1 H, d, J = 12.3 Hz, CH), 3.61-3.57 (4 H, m, 2CH₂), 3.11 (3 H, br s, Me), 2.92 (3 H, br s, Me), 1.74-1.69 (6 H, m, 3CH₂); ¹³C NMR (100 MHz, DMSO-d₆): δ_{C} 177.9, 168.0, 152.5, 130.9, 130.8, 117.0, 89.5, 84.5, 51.6 (2C), 44.3, 37.0, 24.7 (2C), 22.9; MS (EI) m/z

(%): 289 (M+, 56); Found: C, 62.0; H, 6.8; N, 14.2. Calc. for C₁₅H₁₉N₃OS: C, 62.26; H, 6.62; N, 14.52%.

2-(Dimethylamino)-5-(3-(dimethylamino)acryloyl)thiophene-3-carbonitrile 4d. Beige powder (0.225 g, 90%); m.p. 194-196 °C; IR (ATR, ZnSe) vmax/cm⁻¹: Me₂N

3026, 2923, 2875, 2809, 2201, 1628; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 7.56 (1 H, s, CH), 7.51 (1 H, d, *J* = 12.4 Hz, CH), 5.58 $(1 \text{ H}, \text{ d}, \text{J} = 12.4 \text{ Hz}, \text{CH}), 3.29 (6 \text{ H}, \text{ s}, 2\text{Me}), 3.11 (3 \text{ H}, \text{ br s}, \text{Me}), 2.94 (3 \text{ H}, \text{ br s}, \text{Me}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3): \delta_{\text{C}} 179.6, 168.5, \text{Me})$ 152.8, 131.2, 130.5, 117.8, 90.2, 84.2, 43.4 (4C); MS (EI) m/z (%): 249 (M+, 52); Found: C, 57.5; H, 6.3; N, 16.3. Calc. for C12H15N3OS:

5-(3-((4-Methoxyphenyl)amino)acryloyl)-2-morpholinothiophene-3-carbonitrile 2a. Bright yellow powder (0.325 g, 88%); m.p. 175-177 °C; IR (ATR, ZnSe)

C, 57.81; H, 6.06; N, 16.58%.

ν_{max}/cm⁻¹: 3011, 2980, 2967, 2898, 2834, 2206, 1640; ¹H NMR (400 MHz, DMSO-d₆, Me₄Si): δ_H 11.56* and 9.82 (1 H, both д, J = 12.6 Hz, NH), 7.77* and 7.65 (1 H, both s, CH), 7.90 and 7.62* (1 H, both m, CH), 7.17* and 7.08 (2 H, both d, J = 9.0 Hz, CH_{Ar}), 6.90-6.86 (2 H, m, CH_{Ar}), 6.11 and 5.82* (1 H, both d, J = 7.8 Hz, CH), 3.82-3.79 (4 H, m, 2CH₂), 3.76* and 3.75 (3 H,

both s, OMe), 3.59-3.55 (4 H, m, 2CH₂); Mixture of two isomers 1:3; ¹³C NMR (100 MHz, DMSO-d₆): δ_C 180.9*/178.6, 168.9*/168.7, 155.7*/155.2, 145.2*/143.9, 134.3/133.5*, 131.8*/131.1, 131.2/130.0*, 117.5* (2C), 116.6/116.5*, 114.9* (2C), 91.3*, 86.1*/86.0, 55.4*/55.3, 65.1* (2C), 50.1* (2C); MS (EI) m/z (%): 369 (M+, 73); Found: C, 61.5; H, 5.3; N, 11.0. Calc. for C₁₉H₁₉N₃O₃S: C, 61.77; H, 5.18; N, 11.37%.

5-(3-((4-Chlorophenyl)amino)acryloyl)-2-morpholinothiophene-3-carbonitrile 2b. Bright yellow powder (0.337 g, 90%); m.p. 227-229 °C; IR (ATR, ZnSe) v_{max}/cm⁻¹: 2980, 2942, 2873, 2213, 1640; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 11.49* and 10.01 (1 H, both d, *J* = 12.2 Hz, NH), 7.89* (1 H, s, CH), 7.73-7.68 (1 H, m, CH), 7.35-7.27 (4 H, m, CH_{Ar}), 6.21 and 5.94* (1 H, both d, J = 8.0 Hz, CH), 3.83-3.79 (4

H, m, 2CH₂), 3.62-3.58 (4 H, m, 2CH₂); mixture of isomers 1:8; 13 C NMR (100 MHz, DMSO-*d*₆): δ_c 181.2*/178.7, 168.9*/168.7, 143.8*/142.4, 139.9/139.0*, 132.5*/131.7, 130.5*/129.4, 129.0* (2C), 126.6*/125.8, 117.5* (2C), 116.3*/116.2, 96.4/92.7*, 86.0*/85.8, 64.9 (2C), 50.0

(2C); MS (EI) m/z (%): 374 (M+, 88); Found: C, 58.0; H, 4.6; N, 11.0. Calc. for C18H16CIN3O2S: C, 57.83; H, 4.31; N, 11.24%. 5-(3-((4-Cyanophenyl)amino)acryloyl)-2-morpholinothiophene-3-carbonitrile 2c. Yellow powder (0.340 g, 93%); m.p. 310-311 °C; IR (ATR, ZnSe) v_{max}/cm⁻

¹: 2931, 2904, 2214, 2207, 1643; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 11.56* and 10.28 (1 H, both d, *J* = 12.1 Hz, NH), 8.19 and 7.92* (1 H, both s, CH), 7.80-7.72 (1 H, m, CH), 7.69* and 7.64 (2 H, both d, J = 8.8 Hz, CH_{Ar}), 7.40* and 7.26 (2 H, both d, J = 8.8 Hz, CHAr), 6.32 and 6.04* (1 H, both d, J = 8.2 Hz, CH), 3.82-3.80 (4 H, m, 2CH₂), 3.62-3.60 (4 H, m, 2CH₂); mixture of

two isomers 1:3; ¹³C NMR (100 MHz, DMF-d₇): δ_c 178.3*, 171.7*, 143.7*/142.2, 135.6*, 135.1*/135.0 (2C), 134.7*/133.9, 120.2/120.0*, 117.5*/117.0 (2C), 117.4*; 117.3*/116.8, 101.1/96.2*, 85.3*/84.1, 66.6* (2C), 51.8* (2C); MS (EI) m/z (%): 364 (M+, 100); Found: C, 62.3; H, 4.6; N, 15.0. Calc. for C₁₉H₁₆N₄O₂S: C, 62.62; H, 4.43; N, 15.37%.

2-Morpholino-5-(3-((4-(trifluoromethyl)phenyl)amino)acryloyl)thiophene-3-carbonitrile 2d. Bright yellow powder (0.358 g, 88%); m.p. 177-179 °C; IR

(ATR, ZnSe) ν_{max}/cm⁻¹: 2858, 2206, 1637; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 11.59* and 10.13 (1 H, both d, *J* = 12.2 Hz, NH), 7.77-7.72* and 8.06-7.79 (1 H, both m, CH), 7.82* and 7.66 (1 H, both s, CH), 7.59-7.53 (2 H, m, CH_{Ar}), 7.37* and 7.26 (2 H, both d, J = 8.5 Hz, CH_{Ar}), 6.27 and 5.96* (1 H, both d, J = 8.1, CH), 3.83-3.81 (4 H, m, 2CH₂), 3.63-3.60 (4 H, m, 2CH₂); mixture

of two isomers 1:20; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_F - 61.0; ¹³C NMR (100 MHz, DMSO-*d*₆): δ_C 181.7*/179.0, 169.2*/169.0, 144.5/143.1*, 143.6/141.6*, 133.4*/132.4, 130.2/129.1* (2C), 126.7* (m, 2C), 124.5* (q, J = 270.0 Hz), 121.9* (q, J = 32.0 Hz), 116.4*/116.3, 115.9*/115.4, 98.0/93.9*, 85.9*/85.8, 65.0* (2C), 50.0* (2C); MS (EI) m/z (%): 407 (M+, 100); Found: C, 55.7; H, 4.2; N, 10.0. Calc. for C₁₉H₁₆F₃N₃O₂S: C, 56.01; H, 3.96; N, 10.31%.

2-Morpholino-5-(3-((2-(trifluoromethyl)phenyl)amino)acryloyl)thiophene-3-carbonitrile 2e. Bright yellow powder (0.370 g, 91%); m.p. 145-147 °C; IR (ATR, ZnSe) ν_{max}/cm⁻¹: 2875, 2844, 2205, 1638; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 12.04 (1 H, d, *J* = 11.4 Hz, NH), 7.97 (1 H, s CH), 7.81 (1 H, dd, J = 3.1 Hz, 11.2 Hz, H_Ar), 7.68-7.62 (3 H, m, H_Ar), 7.20 (1 H, t, J = 7.4 Hz, H_Ar), 6.08 (1 H, d, J = 8.0 Hz, CH), 3.82-3.80 (4 H, m, 2CH₂), 3.63-3.61 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, DMSO- d_6): δ_F - 61.2; ¹³C NMR (100 MZ) - 61.2; *d*₆): δ_c 182.0, 169.2, 143.6, 138.0, 134.0, 133.8, 128.7, 126.5 (q, *J* = 5.0 Hz), 124.1 (q, *J* = 271.0 Hz), 122.6, 116.5, 116.3, 116.0

(q, J = 29.0 Hz), 94.6, 85.9, 64.9 (2C), 50.0 (2C); MS (EI) m/z (%): 407 (M+, 73); Found: C, 55.8; H, 4.2; N, 10.6. Calc. for C₁₉H₁₆F₃N₃O₂S: C, 56.01; H, 3.96; N, 10.31%.

5-(3-((3,5-Bis(trifluoromethyl)phenyl)amino)acryloyl)-2-morpholinothiophene-3-carbonitrile 2f. Light yellow crystals (0.430 g, 90%); m.p. 223-225 °C; IR

(ATR, ZnSe) ν_{max}/cm⁻¹: 2987, 2868, 2216, 1639; ¹H NMR (400 MHz, DMSO-d₆, Me₄Si): δ_H 11.55* and 10.34 (1 H, both d, J = 12.1 Hz, NH), 8.00* (1 H, s, CH), 8.12 and 7.92* (1 H, both m, CH), 7.99* and 7.73 (2 H, both s, CH_{Ar}), 7.51* and 7.46 (1 H, both s, CH_{Ar}), 6.32 and 6.05* (1 H, both d, J = 8.2 Hz, CH), 3.82-3.80 (4 H, m, 2CH₂), 3.63-3.61 (4 H, m, 2CH₂); mixture of two isomers 1:6; ¹⁹F NMR (376.5 MHz, DMSO- d_6): δ_F - 62.3*/- 62.4; ¹³C NMR (100 MHz, DMSO- d_6): δ_C 181.6*/179.0, 169.3*/169.1,

143.2/142.6*, 142.8*/141.6, 133.8*/132.9, 131.3* (q, 2C, J = 33.0 Hz), 130.0/129.0*, 123.0* (q, 2C, J = 272.0 Hz), 116.3*, 116.3*/115.4 (m, 2C), 114.7*/113.9 (t, J = 4.0 Hz), 99.0/94.5*, 85.9*/85.8, 70.0 (2C), 50.0 (2C); MS (EI) m/z (%): 475 (M+, 100); Found: C, 50.2; H, 3.3; N, 8.6. Calc. for $C_{20}H_{15}F_6N_3O_2S$: C, 50.53; H, 3.18; N, 8.84%.

2-Morpholino-5-(3-(pyridin-3-ylamino)acryloyl)thiophene-3-carbonitrile 2g. Yellowish orange powder (0.260 g, 77%); m.p. 225-227 °C; IR (ATR, ZnSe)

v_{max}/cm⁻¹: 3093, 3050, 2981, 2928, 2210, 1658; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 11.46 and 10.83 (1 H, both d, *J* = 12.5 Hz, NH), 8.91 and 8.73 (1 H, both d, J = 2.3 Hz, H_A), 8.42 and 8.38 (1 H, both d, J = 5.3 Hz, H_A), 8.33 and 8.22 (1 H, both d, J = 7.4 Hz, H_{Ar}), 8.09-8.03 (1 H, m, CH), 7.85-7.78 (2 H, m, H_{Ar}+CH), 6.46 and 6.14 (1 H, both d, J = 8.3 Hz, CH), 3.80-3.79 (4 H, m, 2CH₂), 3.63-3.60 (4 H, m, 2CH₂); mixture of two isomers 1:1; ¹³C NMR (100 MHz, DMSO-*d₆*): δ_C 181.7/179.0*, 169.4/169.1*, 142.1/141.0*,140.7*/139.7, 136.1*, 134.6/134.3*, 133.2*/131.6, 130.0/129.7*,129.3/128.7, 129.4*/128.0, 127.0*/126.7, 116.3*, 100.2*/95.5, 85.9/85.8*, 65.0 (2C), 50.0 (2C); MS (EI) m/z (%): 340 (M+, 85); Found: C, 59.7; H, 4.9; N, 16.2. Calc. for C₁₇H₁₆N₄O₂S: C, 59.98; H, 4.74; N, 16.46%.

2-Morpholino-5-(3-(pyrazin-2-ylamino)acryloyl)thiophene-3-carbonitrile 2h. Yellowish orange powder (0.205 g, 60%); m.p. 230-232 °C; IR (ATR, ZnSe)

v_{max}/cm⁻¹: 2214, 1625; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 11.53* and 10.65 (1 H, both d, *J* = 11.6 Hz, NH), 8.62* and 8.29 (1 H, both br s, H_{Ar}), 8.25 (1 H, m, H_{Ar}), 8.20* and 8.13 (1 H, both d, J = 2.6 Hz, H_{Ar}), 8.44 and 7.98 (1 H, both t, J = 8.5 Hz, CH), 7.99* and 7.82 (1 H, both s, CH), 6.45 and 6.17* (1 H, both d, J = 8.5 Hz, CH), 3.80-3.79 (4 H, m, 2CH₂), 3.64-3.61 (4 H, m, 2CH₂); mixture of two isomers 2:3; ¹³C NMR (100 MHz, DMSO-*d*₆): δ_C 181.9/179.4*, 169.4/169.1*, 149.2*/148.3, 142.0*/141.9, 139.7/139.4*, 138.2/137.3*, 134.9/124.4*,1 34.2/133.1*, 129.8*/128.8, 116.4*/116.3, 99.7*/95.8, 85.9/85.8*, 65.0* (2C), 50.0* (2C); MS (EI) m/z (%): 341 (M+, 37); Found: C, 55.9; H, 4.6; N, 20.2. Calc. for C₁₆H₁₅N₅O₂S: C, 56.29; H, 4.43; N, 20.51%.

2-(Pyrrolidin-1-yl)-5-(3-((4-(trifluoromethyl)phenyl)amino)acryloyl)thiophene-3-carbonitrile 2i. Bright yellow crystals (0.328 g, 84%); m.p. 212-214 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 3066, 2980, 2913, 2870, 2203, 1634; ¹H NMR (400 MHz, DMSO- d_{6} , Me₄Si): δ_{H} 11.58* and 10.04 (1 H,

both d, J = 12.0 Hz, NH), 8.11 and 7.74* (1 H, both s, CH), 7.97 and 6.68* (1 H, both m, CH), 8.58-8.52 (2 H, m, H_{Ar}), 7.33* and 7.24 (2 H, both d, J = 8.5 Hz, H_{Ar}), 6.26 and 5.91* (1 H, both d, J = 8.1 Hz, CH), 3.68-3.65 (4 H, m, 2CH₂), 2.15-2.11 (4 H, m,

2CH₂); 1:9 isomer mixture; ¹⁹F NMR (376.5 MHz, DMSO- d_6): δ_F - 61.0; ¹³C NMR (100 MHz, DMSO- d_6): δ_C 181.7*/178.9, 164.9*/164.6, 144.7/143.8*, 142.3*/140.8, 134.2*/133.2, 128.2*/127.2 (2C), 126.7* (m, 2C), 124.5* (q, J = 269.0 Hz), 122.0* (q, J = 32.0 Hz), 117.3/117.2*, 115.8*/115.3, 98.2/94.2*, 82.8*/82.4, 51.8/51.7* (2C), 25.4* (2C); MS (EI) m/z (%): 391 (M+, 100); Found: C, 58.0; H, 4.3; N, 10.5. Calc. for C19H16F3N3OS: C, 58.30; H, 4.12; N, 10.74%. 2-(Piperidin-1-yl)-5-(3-((4-(trifluoromethyl)phenyl)amino)acryloyl)thiophene-3-carbonitrile 2j. Bright yellow crystals (0.350 g, 86%); m.p. 184-186 °C; IR

(ATR, ZnSe) ν_{max}/cm⁻¹: 3066, 2936, 2853, 2207, 1634; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 11.59 and 10.08 (1 H, both d, *J* = 12.1 Hz, NH), 8.10 and 7.75* (1 H, both s, CH), 7.99 and 7.58* (1 H, both m, CH), 7.58-7.52 (2 H, m, H_{Ar}), 7.35* and 7.25 (2 H, both d, J = 8.5 Hz, H_Ar), 6.26 and 5.93* (1 H, both d, J = 8.1 Hz, CH), 3.73-3.65 (4 H, m, 2CH₂), 1.78-1.73 (6 H, m, 3CH₂);

mixture of two isomers 1:20; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_F - 61.0; ¹³C NMR (100 MHz, DMSO-*d*₆): δ_C 181.8*/179.0, 168.8/168.6*, 144.6/143.7*, 142.7/141.3*, 134.1*/133.1, 128.9/127.9* (2C), 126.7* (m, 2C), 124.4* (q, J = 270.0 Hz), 121.7* (q, J = 32.0 Hz), 116.8/116.7*,115.9*/115.4, 98.1/94.1*,84.9/84.7*,51.7* (2C), 24.7* (2C), 22.8*; MS (EI) m/z (%): 405 (M+, 100); Found: C, 58.9; H, 4.6; N, 10.1. Calc. for C₂₀H₁₈F₃N₃OS: C, 59.25; H, 4.48: N. 10.36%.

2-(Dimethylamino)-5-(3-((4-(trifluoromethyl)phenyl)amino)acryloyl)thiophene-3-carbonitrile 2k. Bright yellow powder (0.325 g, 89%); m.p. 231-233 °C;

IR (ATR, ZnSe) v_{max}/cm^{-1} : 3279, 3106, 3052, 2981, 2924, 2202, 1651; ¹H NMR (400 MHz, DMSO- d_6 , Me₄Si): δ_H 11.50 and 10.20* (1 H, both d, J = 12.7 Hz, NH), 7.97* (1 H, m, CH), 8.03 and 7.75* (1 H, both s, CH), 7.66-7.60 (2 H, m, H_{Ar}), 7.34 and 7.30* (2 H, both d, J = 8.5 Hz, H_{Ar}), 6.31* and 6.02 (1 H, both d, J = 12.7 Hz, CH), 3.30 and 3.29* (3 H, both s, NMe₂); mixture of two isomers

2 : 3; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_F - 60.2; ¹³C NMR (100 MHz, DMSO-*d*₆): δ_C 181.7/178.9*, 168.5/168.3*, 144.7/143.7*, 142.5/141.0*, 134.5/133.5*,

128.4*/127.4 (2C), 126.7* (q, J = 4.0, 2C Hz), 124.5* (q, J = 270.0 Hz), 121.6* (q, J = 32.0 Hz), 117.3*/117.2, /115.8/115.3*, 98.1*/94.1, 83.3/83.0*, 43.1/43.0* (2C); MS (EI) m/z (%): 365 (M+, 75); Found: C, 55.5; H, 4.1; N, 11.3. Calc. for C₁₇H₁₄F₃N₃OS: C, 55.88; H, 3.86; N, 11.50%.

 $\textbf{5-(2,2-Difluoro-3-(4-methoxyphenyl)-2,3-dihydro-1\lambda^3,3,2\lambda^4-oxazaborinin-6-yl)-2-morpho-linothiophene-3-carbonitrile$ 1a. Orange powder (0.313 g,

75%); m.p. 162-164 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 2969, 2903, 2847, 2210, 1546; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 8.12 (1 H, s, CH), 8.08 (1 H, br s, CH), 7.36 and 6.95 (4 H, AA'XX', *J* = 9.0 Hz, H_{Ar}), 6.32 (1 H, d, *J* = 6.0 Hz, CH), 3.84-3.82 (7 H, m, 2CH₂+Me), 3.69-3.67 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_F - 131.7; ¹¹B NMR (128.4 MHz, DMSO-*d*₆):

 $δ_{B}$ 0.73; ¹³C NMR (100 MHz, DMSO-*d*₆): $δ_{C}$ 169.1, 165.3, 158.8, 158.4, 136.5, 135.6, 123.9 (2C), 118.7, 116.2, 114.4 (2C), 91.9, 87.2, 65.0 (2C), 55.4, 50.2 (2C); MS (EI) m/z (%): 417 (M+, 100); Found: C, 54.4; H, 4.6; N, 9.8. Calc. for C₁₉H₁₈BF₂N₃O₂S: C, 54.70; H, 4.35; N, 10.07%.

5-(3-(4-Chlorophenyl)-2,2-difluoro-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-morpholino-thiophene-3-carbonitrile 1b. Bright orange powder (0.383 g, 91%); m.p. 245-247 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 3108, 3064, 2962, 2920, 2854, 2210, 1557; ¹H NMR (400 MHz, DMSO-*d*₆), Me₄Si): δ_{H} 8.22 (1 H, s, CH), 8.16 (1 H, br s, CH), 7.47-7.42 (4 H, m, CH_{Ar}), 6.39 (1 H, d, *J* = 6.1 Hz, CH), 3.84-3.82 (4 H, m, 2CH₂), 3.72-3.69 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_{F} - 131.5; ¹¹B NMR (128.4 MHz, DMSO-*d*₆): δ_{B} 0.74; ¹³C NMR (100

MHz, DMSO-*d*₆): δ_C 169.5, 166.6, 159.1, 141.3, 137.9, 131.5, 129.2 (2C), 124.4 (2C), 118.2, 116.1, 92.2, 87.4, 65.0 (2C), 50.2 (2C); MS (EI) m/z (%): 421 (M+, 100); Found: C, 51.0; H, 3.7; N, 9.6. Calc. for C₁₈H₁₅BClF₂N₃O₂S: C, 51.27; H, 3.59; N, 9.97%.

5-(3-(4-Cyanophenyl)-2,2-difluoro-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-morpholino-thiophene-3-carbonitrile 1c. Red sparkled crystals (0.397 g,

92%); m.p. 310-312 °C; IR (ATR, ZnSe) v_{max}/cm⁻¹: 3111, 2918, 2848, 2212, 1575; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H: 8.40 (1 H, s, CH), 8.31 (1 H, br s, CH), 7.87 and 7.65 (4 H, AA'XX', *J* = 8.6 Hz, H_Ar), 6.52 (1 H, d, *J* = 6.3 Hz, CH), 3.84-3.81 (4 H, m, 2CH₂), 3.75-3.72 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, CDCl₃): δ_F - 131.3; ¹¹B NMR (128.4 MHz, CDCl₃): δB 0.81; ¹³C NMR (DMF-

*d*₇, *δ*, м.д.): 171.4, 169.6, 159.9, 147.9, 140.0, 134.7 (2C), 124.7 (2C), 119.7, 119.5, 116.9, 111.0, 94.1, 89.7, 66.5 (2C), 52.0 (2C); MS (EI) m/z (%): 412 (M+, 100); Found: C, 55.1; H, 3.8; N, 13.3. Calc. for C₁₉H₁₅BF₂N₄O₂S: C, 55.36; H, 3.67; N, 13.59%.

 $\label{eq:constraint} 5-(2,2-Difluoro-3-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1\lambda^3,3,2\lambda^4-oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile 1d. \ Orange \ sparkled \ and \ and$

powder (0.405 g, 89%); m.p. 274-276 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 3116, 3064, 2978, 2870, 2215, 1552; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_{H} 7.82 (1 H, br s, CH), 7.76 (1 H, s, CH), 7.71 and 7.57 (4 H, AA'XX', *J* = 8.4 Hz, H_Ar), 6.03 (1 H, d, *J* = 6.1 Hz, CH), 3.93-3.90 (4 H, m, 2CH₂), 3.75-3.72 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_{F} - 62.5 (s, 3F), - 133.3 (br s, 2F); ¹¹B NMR (128.4 MHz, DMSO-*d*₆): δ_{B} 0.93; ¹³C NMR (100 MHz, DMSO-*d*₆): δ_{C} 169.6, 167.3, 159.0,

145.7, 138.6, 127.1 (q, J = 33.0 Hz), 126.4 (q, 2C, J = 4.0 Hz), 124.0 (q, J = 270.0 Hz), 123.2 (d, 2C, J = 2.0 Hz), 117.9, 115.9, 92.5, 87.6, 64.9 (2C), 50.3 (2C); MS (EI) m/z (%): 455 (M+, 100); Found: C, 49.8; H, 3.5; N, 8.9. Calc. for C₁₉H₁₅BF₅N₃O₂S: C, 50.13; H, 3.32; N, 9.23%.

5-(2,2-Difluoro-3-(2-(trifluoromethyl)phenyl)-2,3-dihydro-1 λ^3 ,3,2 λ^4 -oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile 1e. Yellow powder (0.400 g, 88%); m.p. 98-100 °C; IR (ATR, ZnSe) v_{max}/cm⁻¹: 2974, 2866, 2212, 1547; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_H 8.20 (1 H, s, CH), 7.82-7.79 (2 H, m, H_{Ar}+CH), 7.73 (1 H, t, *J* = 7.9 Hz, H_{Ar}), 7.60 (1 H, t, *J* = 7.7 Hz, H_{Ar}), 7.54 (1 H, d, *J* = 7.8 Hz, H_{Ar}), 6.36 (1 H, d, *J* = 6.0 Hz, CH), 3.85-3.83 (4 H, m, 2CH₂), 3.73-3.70 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_F - 61.2 (s, 3 F), -137.7

(br s, 2 F); ¹¹B NMR (128.4 MHz, DMSO- d_6): δ_B 0.37; ¹³C NMR (100 MHz, DMSO- d_6): δ_C 169.6, 167.4, 162.4, 140.0, 138.1, 133.4, 129.0, 127.4 (q, J = 5.0 Hz), 125.2 (q, J = 30.0 Hz), 123.3 (q, J = 272.0 Hz), 118.2, 116.1, 90.9, 87.4, 65.0 (2C), 50.3 (2C); MS (EI) m/z (%): 455 (M+, 100); Found: C, 49.8; H, 3.5; N, 8.9. Calc. for C₁₉H₁₅BF₅N₃O₂S: C, 50.13; H, 3.32; N, 9.23%.

5-(3-(3,5-Bis(trifluoromethyl)phenyl)-2,2-difluoro-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile **1f.** Bright orange powder (0.382 g, 73%); m.p. 235-237 °C; IR (ATR, ZnSe) ν_{max}/cm⁻¹: 3104, 2993, 2875, 2215, 1534; ¹H NMR (400 MHz, DMSO-

 d_6 , Me₄Si): δ_H 8.55 (1 H, s, CH), 8.46 (1 H, br s, CH), 8.14 (2 H, s, CH_{Ar}), 8.08 (1 H, s, CH_{Ar}), 6.59 (1 H, d, J = 6.4 Hz, CH), 3.82-3.80 (4 H, m, 2CH₂), 3.76-3.73 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, DMSO- d_6) δ_F - 61.4 (s, 6 F), - 131.4 (br s, 2 F); ¹¹B NMR (128.4 MHz, DMSO- d_6): δ_B 0.86; ¹³C NMR (100 MHz, DMSO- d_6): δ_C 170.0, 168.0, 159.4, 144.1, 139.9, 131.3 (q, 2C, J = 33.0

Hz), 123.1 (2C), 120.0, 122.9 (q, 2C, *J* = 271.0 Hz), 117.5, 116.0, 92.7, 87.8, 65.0 (2C), 50.4 (2C); MS (EI) m/z (%): 523 (M+, 100); Found: C, 45.6; H, 2.9; N, 7.8. Calc. for C₂₀H₁₄BF₈N₃O₂S: C, 45.91; H, 2.70; N, 8.03%.

5-(2,2-Difluoro-3-(pyridin-3-yl)-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-morpholino-thiophene-3-carbonitrile 1g. Scarlet powder (0.345 g, 89%); m.p.

150-152 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 3091, 2997, 2870, 2214, 1541; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_{H} 8.89 (1 H, br s, CH), 8.70 (1 H, d, *J* = 4.7 Hz, H_{Ar}), 8.42 (1 H, s, CH), 8.37-8.35 (2 H, m, H_{Ar}), 7.91-7.87 (1 H, m, H_{Ar}), 6.57 (1 H, d, *J* = 6.4 Hz, CH), 3.85-3.82 (4 H, m, 2CH₂), 3.77-3.75 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_{F} - 131.8; ¹¹B NMR (128.4 MHz, DMSO-*d*₆): δ_{B} 0.72; ¹³C NMR (100 MHz, DMSO-*d*₆): δ_{C} 169.9, 168.0, 158.7, 143.6, 140.1, 139.8, 134.4, 125.7, 117.5,

115.8, 92.9, 87.9, 64.9 (2C), 50.4 (2C); MS (EI) m/z (%): 388 (M+, 33); Found: C, 52.4; H, 4.0; N, 14.1. Calc. for C₁₇H₁₅BF₂N₄O₂S: C, 52.60; H, 3.89; N, 14.43%.

5-(2,2-Difluoro-3-(pyrazin-2-yl)-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-morpholinothio-phene-3-carbonitrile 1h. Red-orange powder (0.276 g, 71%);

m.p. 204-206 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 3050, 2864, 2210, 1588; ¹H NMR (400 MHz, DMSO-*d*₆, Me₄Si): δ_{H} 8.87 (1 H, br s, CH), 8.80 (1 H, s, CH), 8.48-8.45 (3 H, m, H_{Ar}), 6.62 (1 H, d, *J* = 6.8 Hz, CH), 3.85-3.77 (8 H, m, 4CH₂); ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ_{F} - 131.6; ¹¹B NMR (128.4 MHz, DMSO-*d*₆): δ_{B} 1.05; ¹³C NMR (100 MHz, DMSO-*d*₆): δ_{C} 170.3, 169.2, 154.7, 148.4, 142.0, 142.0, 141.2, 137.5, 117.1, 115.7, 93.4, 88.3, 64.8 (2C), 50.4 (2C); MS (EI) m/z (%): 389 (M+, 41); Found: C, 49.1; H,

3.9; N, 17.7. Calc. for $C_{16}H_{14}BF_2N_5O_2S$: C, 49.38; H, 3.63; N, 18.00.

sparcled powder (0.405 g, 92%); m.p. 242-244 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 2983, 2922, 2878, 2209, 1576; ¹H NMR (400 MHz, DMSO- d_6 , Me₄Si): δ_H 8.31 (1 H, s, CH), 8.18 (1 H, br s, CH), 7.72 and 7.64 (4 H, AA'XX', J = 8.3 Hz, H_{Ar}), 6.40 (1 H, d, J = 6.4 Hz, CH), 3.75-3.72 (4 H, m, 2CH₂), 2.16-2.14 (4 H, m, 2CH₂); ¹⁹F NMR (376.5 MHz, DMSO- d_6): δ_F -61.3 (3F), -131.8 (2F); ¹¹B NMR (128.4 MHz, DMSO- d_6): δ_B 0.81; ¹³C NMR (100 MHz, DMSO- d_6): δ_C 167.5, 165.5, 157.7, 145.9, 139.4, 126.6

(q, J = 32.0 Hz), 126.5 (q, J = 3.7 Hz), 124.0 (q, J = 270.0 Hz), 122.9 (2C), 116.2, 116.0, 92.1, 86.0, 52.2 (2C), 25.3 (2C); MS (EI) m/z (%): 439 (M+, 87); Found: C, 51.6; H, 3.6; N, 9.2. Calc. for C₁₉H₁₅BF₅N₃OS: C, 51.96; H, 3.44; N, 9.57%.

5-(2,2-Difluoro-3-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-(piperidin-1-yl)thiophene-3-carbonitrile 1j. Bright orange

sparkled powder (0.395 g, 87%); m.p. 315-317 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 3065, 2941, 2858, 2211, 1565; ¹H NMR (400 MHz, DMSO- d_6 , Me₄Si): δ_H 8.29 (1 H, s, CH), 8.22 (1 H, br s, CH), 7.73 and 7.64 (4 H, AA'XX', J = 8.3 Hz, H_{Ar}), 6.42 (1 H, d, J = 6.2 Hz, CH), 3.79-3.77 (4 H, m, 2CH₂), 1.77-1.75 (6 H, m, 3CH₂); ¹⁹F NMR (376.5 MHz, DMSO- d_6): δ_F - 61.4 (3F), - 131.7 (2F); ¹¹B NMR (128.4 MHz, DMSO- d_6): δ_B 0.80; ¹³C NMR (100 MHz, DMSO- d_6): δ_C 169.1, 167.6, 158.4, 145.9, 139.6, 126.9

(q, J = 32.0 Hz), 126.5 (q, J = 3.8 Hz), 124.2 (q, J = 270.0 Hz), 123.1 (2C), 116.6, 116.3, 92.4, 87.0, 52.2 (2C), 24.8 (2C), 22.7; MS (EI) m/z (%): 453 (M+, 88); Found: C, 52.7; H, 3.9; N, 9.0. Calc. for C₂₀H₁₇BF₅N₃OS: C, 53.00; H, 3.78; N, 9.27%.

5-(2,2-Difluoro-3-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-(dimethylamino)thiophene-3-carbonitrile 1k. Scarled sparcled

rowder (0.268 g, 65%); m.p. 249-251 °C; IR (ATR, ZnSe) v_{max}/cm^{-1} : 2932, 2215, 1575; ¹H NMR (400 MHz, DMSO- d_6 , Me₄Si): δ_H 8.26 (1 H, s, CH), 8.18 (1 H, br s, CH), 7.71 and 7.64 (4 H, AA'XX', J = 8.0 Hz, H_{Ar}), 6.39 (1 H, d, J = 6.5 Hz, CH), 3.42 (6 H, s, NMe₂); ¹⁹F NMR (376.5 MHz, DMSO- d_6): δ_F -61.5 (3F), - 131.7 (2F); ¹¹B NMR (128.4 MHz, DMSO- d_6): δ_B 0.78; ¹³C NMR

(100 MHz, DMSO-*d*₆): δ_C 169.2, 167.6, 158.1, 145.9, 140.0, 126.8 (q, *J* = 32.0 Hz), 126.4 (q, *J* = 4.0 Hz), 124.1 (q, *J* = 270.0 Hz), 123.0 (2C), 116.5, 116.3, 92.2, 86.2, 43.5 (2C); MS (EI) m/z (%): 413 (M+, 78); Found: C, 49.1; H, 3.3; N, 9.9. Calc. for C₁₇H₁₃BF₅N₃OS: C, 49.42; H, 3.17; N, 10.17%.

Fig. S1. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-acetyl-2-(pyrrolidin-1-yl)thiophene-3-carbonitrile **3b**.

Fig. S2. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-acetyl-2-(piperidin-1-yl)thiophene-3-carbonitrile 3c.

Fig. S3. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-acetyl-2-(dimethylamino)thiophene-3-carbonitrile 3d.

Fig. S4. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-(3-(dimethylamino)acryloyl)-2-morpholinothiophene-3-carbonitrile 4a.

Fig. S5. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-(3-(dimethylamino)acryloyl)-2-(pyrrolidin-1-yl)thiophene-3-carbonitrile **4b**.

Fig. S6. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-(3-(dimethylamino)acryloyl)-2-(piperidin-1-yl)thiophene-3-carbonitrile 4c.

Fig. S7. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 2-(dimethylamino)-5-(3-(dimethylamino)acryloyl)thiophene-3-carbonitrile **4d.**

Fig. S8. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-(3-((4-methoxyphenyl)amino)acryloyl)-2-morpholinothiophene-3-carbonitrile 2a.

Fig. S9. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-(3-((4-chlorophenyl)amino)acryloyl)-2-morpholinothiophene-3-carbonitrile **2b**.

Fig. S10. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-(3-((4-cyanophenyl)amino)acryloyl)-2-morpholinothiophene-3-carbonitrile **2c.**

Fig. S11. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 2-morpholino-5-(3-((4-(trifluoromethyl)phenyl)amino)acryloyl)thiophene-3-carbonitrile **2d.**

Fig. S12. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 2-morpholino-5-(3-((2-(trifluoromethyl)phenyl)amino)acryloyl)thiophene-3-carbonitrile **2e.**

Fig. S13. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 5-(3-((3,5-bis(trifluoromethyl)phenyl)amino)acryloyl)-2-morpholinothiophene-3-carbonitrile 2f.

Fig. S14. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 2-morpholino-5-(3-(pyridin-3-ylamino)acryloyl)thiophene-3-carbonitrile 2g.

Fig. S15. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 2-morpholino-5-(3-(pyrazin-2-ylamino)acryloyl)thiophene-3carbonitrile **2h**.

Fig. S16. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 2-(pyrrolidin-1-yl)-5-(3-((4-trifluoromethyl-phenyl)amino)acryloyl)thiophene-3-carbonitrile 2i.

Fig. S18. ¹H NMR (400 MHz, DMSO-d₆, TMS) and ¹³C NMR (100 MHz, DMSO-d₆) spectra of 2-(dimethylamino)-5-(3-((4-(trifluoromethyl)phenyl)amino)acryloyl)thiophene-3-carbonitrile 2k.

Fig. S19. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5- (2,2-difluoro-3-(4-methoxyphenyl)-2,3-dihydro- $1\lambda^3$,3,2 λ^4 -oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile **1a**.

Fig. S20. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5- (3-(4-chlorophenyl)-2,2-difluoro-2,3-dihydro- $1\lambda^3$,3,2 λ^4 -oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile **1b**.

Fig. S21. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5-(3-(4-cyanophenyl)-2,2-difluoro-2,3-dihydro-1 λ^3 ,3,2 λ^4 -oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile **1c**.

3.84 3.82 3.74 3.72

Fig. S22. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5-(2,2-difluoro-3-(4-(trifluoromethyl)phenyl)-2,3-dihydro- $1\lambda^3$, 3, $2\lambda^4$ -oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile **1d**.

Fig. S23. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5-(2,2-difluoro-3-(2-(trifluoromethyl)phenyl)-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile **1e**.

0

 $\begin{array}{l} \textbf{Fig. S24. }^{1} \textbf{H} \ \textbf{NMR} \ (400 \ \textbf{MHz}, \ \textbf{DMSO-d_{6}, TMS)}, \ ^{13} \textbf{C} \ \textbf{NMR} \ \textbf{APT} \ (100 \ \textbf{MHz}, \ \textbf{DMSO-d_{6}}), \ ^{19} \textbf{F} \ \textbf{NMR} \ (376.5 \ \textbf{MHz}, \ \textbf{CDCl_{3}}) \ \textbf{and} \ ^{11} \textbf{B} \ \textbf{NMR} \ (128.4 \ \textbf{MHz}, \ \textbf{CDCl_{3}}) \ \textbf{spectra 5-} \ (3-(3,5-bis(trifluoromethyl)phenyl)-2,2-difluoro-2,3-dihydro-1\lambda^{3},3,2\lambda^{4}-oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile \ \textbf{1f.} \ \textbf{1f.} \ \textbf{1f.} \ \textbf{1f.} \ \textbf{MLz} \ \textbf{MLz}$

Fig. S25. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5-(2,2-difluoro-3-(pyridin-3-yl)-2,3-dihydro- $1\lambda^3$,3,2 λ^4 -oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile **1g**.

Fig. S26. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5-(2,2-difluoro-3-(pyrazin-2-yl)-2,3-dihydro-1 λ^3 ,3,2 λ^4 -oxazaborinin-6-yl)-2-morpholinothiophene-3-carbonitrile **1h**.

Fig. S27. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5-(2,2-difluoro-3-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1λ³,3,2λ⁴-oxazaborinin-6-yl)-2-(pyrrolidin-1-yl)thiophene-3-carbonitrile **1i.**

Fig. S28. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5- (2,2-difluoro-3-(4-(trifluoromethyl)phenyl)-2,3-dihydro- $1\lambda^3$,3,2 λ^4 -oxazaborinin-6-yl)-2-(piperidin-1-yl)thiophene-3-carbonitrile **1j**.

Fig. 29. ¹H NMR (400 MHz, DMSO-d₆, TMS), ¹³C NMR APT (100 MHz, DMSO-d₆), ¹⁹F NMR (376.5 MHz, CDCl₃) and ¹¹B NMR (128.4 MHz, CDCl₃) spectra 5- (2,2-difluoro-3-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1 λ^3 ,3,2 λ^4 l4-oxazaborinin-6-yl)-2-(dimethylamino)thiophene-3-carbonitrile **1k**.
3. XRD crystal structures of complex 1j

XRD data were obtained on an "Xcalibur 3" (*Oxford-Diffraction Ltd, UK*) diffractometer using a standard procedure (MoK-irradiation, graphite monochromator, ω -scanning with step 1°, T= 295(2) K The single crystal (red prism, 0.41×0.33×0.22) of compound C₂₀H₁₇BF₅N₃OS was used for X-ray analysis. The analysis was performed at 295(2) K on standard procedure using graphite monochromated MoK-irradiation (λ = 0.71073 Å) and ω -scanning with step 1°. An empirical absorption correction was applied (μ = 0.224 mm⁻¹).

The crystal is monoclinic, space group P2₁/c with a = 17.347(2), b = 8.8962(15), c = 14.148(2) Å, β = 112.523(14)°, V = 2016.8(5) Å³, Z = 4. On the angles 2.77 < θ < 28.29° 19162 reflections measured, 4817 (R_{int} = 0.0611), 2140 reflections with I>2 σ (I). Completeness to θ = 28.29° is 96.2 % %. The structure was solved by SheIXS program and refined with the SheIXL⁵ refinement package using Least Squares minimisation. All non-hydrogen atoms were refined anisotropically, the positions of the hydrogen atoms at C-H bonds were calculated as a riding model in isotropic approximation with distance C_{sp2}-H = 0.93 Å.

Goodness to fit at F² 1.000; final R values [I> 2σ (I)]: R₁ = 0.0500, wR₂ = 0.0888; R value (all reflections): R₁ = 0.2070, wR₂ = 0.1009. Largest difference peak and hole were 0.245 and -0.235 \tilde{e} Å⁻³.

CCDC 1827433 for 1j can be obtained free of charge from the Cambridge Crystallographic Data Centre via link www.ccdc.cam.ac.uk/data_request/cif.

Table S1. Selected bonds length [Å] for BF₂AATs 1g and 1h (XRD data).

Bond	C15-N3	C8-N2	C7-C14	C2-C3	N3-C2	N3-B1	B1-O1	C4-01	C16…F4	C16H…F5
Length	1.414	1.340	1.404	1.359	1.307	1.567	1.459	1.297	2.380	2.569

Table S2. Selected bond (ϕ [°]) and torsion (ϑ [°]) angles for **BF**₂ **EAT 1j** (XRD data).

Angle	C16H15N9B1	C15N3B1O1	N3B1O1C4	B1O1C4C5	01C4C5S1	C4C5S1C8	C5S1C8N2	ф
0	-11.9	-174.3	-8.3	-173.9	-2.6	0.5	-179.3	5.9

Table S3 Selected noncovalent interactions for for BF2 AAT 1j (XRD data).

Bond	C16HF4	C16HF5	S1O	S1H
Length, [Å]	2.380	2.569	2.854	2.414

4. Photophysical investigations

UV-Vis absorption spectra were recorded on a Perkin-Elmer Lambda 35 UV-Vis spectrophotometer (Shelton, CT USA). Fluorescence of the sample solutions was measured using a Hitachi F-7000 spectrophotometer (Tokyo, Japan). The absorption and emission spectra were recorded in Toluene, Dioxane, CH₂Cl₂, CHCl₃, THF, EtOH, EtOAc, Acetone, MeCN, DMF, DMSO using 10.00 mm quartz cells. The excitation wavelength was at the absorption maxima. Atmospheric oxygen contained in solutions was not removed. Concentration of the compounds in the solution was 5.0×10^{-5} M and 5.0×10^{-6} M for absorption and fluorescence measurements, respectively. The relative fluorescence quantum yields (Φ_F) were determined using quinine sulfate (5×10^{-5} M) in 0.1 M H₂SO₄ as a standard ($\Phi_F = 0.546$).

Absolute quantum yield for solid state and time-resolution study were recorded on Horiba FlouroMax 4 Spectrofluorometer (Kyoto, Japan) with Quanta- ϕ integrating sphere using FluorEssence 3.5 Software.

Table S4. Photophysical properties of 1,3-thiazoles 3a-i and 4a-d in 1,4-dioxane

	Compound			UV-Vis		FL	
Entry			λ _{abs} , nm	ε _{<i>max,</i> M⁻¹.cm⁻¹}	λ _{em} , nm	Φ_{F}^{a}	SS, nm/cm⁻¹
1	Meo-CJ-H-J-S-N_O	2a	408 296 252	39437 6793 12433	464	0.82	56/2958
2		2b	405 293 255	44841 6740 11415	437	0.35	32/1808
3	NC HN SO	2c	411 281	59277 11098	441	0.56	30/1655
4	F ₃ C	2d	406 291	53046 6502	440	0.51	34/1903
5	CF ₃ H S N O	2e	401 296 256	50741 7741 10352	433	0.30	32/1843
6	$F_{3}C$ H S N S N O $F_{3}C$ S N O N O N O N N O N O N N O O N O N O N O N O O N O O N O O N O O O N O	2f	402 295 259	51706 7091 9468	438 512 (sh)	0.39	36/2045
7		2g	404 293 252	44325 7403 10557	444 519	0.33	40/2230
8		2h	399 270	39146 30913	427	0.47	28/1643
9	F ₃ C	2i	413 289 257	52325 8235 8362	444 518 (sh)	0.55	31/1691
10	F ₃ C	2j	410 294 259	53060 7278 9348	443	0.54	33/1817
11	F ₃ C S NMe ₂	2k	397 290 258	52896 7764 9217	435	0.37	38/2200

Fig. S30. Fluorescence decay curves of BF₂AATs 1a-j in 1,4-dioxane solution.

Start Wa End Wa

700.200

HORIBA Mank Sour

Quantum yield for solid samples

1j

455.150 495.100

> uantum Yield Abs Error± Relative Err ±

0.56 0.014 0.02549

End Wa

Fig. S31. Experimental data for the detection of absolute quantum yields for compounds 1d, f, i, j, k in solid state

5. Quantum Mechanical Calculations

The ground state molecular geometry of the compounds under investigation was fully optimized at density functional theory (DFT) level, both in vacuo and in solvents (1,4-dioxane; for molecule **1a** additional solvents were used, viz., DCM, EtOH, Acetone, MeCN, and DMSO) the same solvents used for optimisations). We compared the results obtained by employing different functionals and different basis sets with the experimental data. In particular, we chose hybrid (viz. B3LYP⁶, and M06–2X⁷), long-range corrected (viz. CAM–B3LYP⁸ and wB97X⁹), coupled with the 6–311++G^{**} basis set. The D3 version of Grimme's semi-empirical dispersion with Becke-Johnson damping GD3B¹⁰ was also included in the case of the B3LYP, CAM-B3LYP, and wB97X functionals. Solvent effects were taken into account via the implicit polarizable continuum model in its integral equation formalism (IEF–PCM).¹¹ For geometry optimizations and frequency calculations, the PCM molecular cavity was built according to the universal force field (UFF)¹² radii within the value used in the last implementation of the PCM (based on a continuum surface charge formalism). For topological analysis and the evaluation of energetics, SMD parameterization was employed.¹³ The standard values for dielectric constants and refractive indexes were always assumed. The vibrational frequencies and thermochemicals were computed in harmonic approximation at T = 298.15 K and p = 1 atm, and no imaginary frequencies were found.

The UV-vis absorption spectra for the equilibrium geometries were calculated at time dependent density functional theory (TD-DFT) level, accounting for $S_0 \rightarrow S_n$ (n = 1 to 5); the energy of the first 5 triplet states was also computed. The nature of the vertical excited electronic state was analysed both in vacuo and in the solvated phase (dioxane, DCM, EtOH, Acetone, MeCN and DMSO). This investigation was performed by employing the long-range corrected functional wB97X-D coupled with the 6–31++G** basis set. In the case of the solvated phase, state-specific (SS)¹⁴ treatment of the solvent effects was considered, both within the non-equilibrium (neq) and equilibrium (eq) solvation regimes¹⁵ of all non-dark electronic transitions were also simulated, including the Duschinsky and Herzberg–Teller effects. The first singlet excited state $S(\pi,\pi^*)$ state geometry was optimized using analytical gradients and the first transitions $S_1 \rightarrow S_0$ of the emission. In this case, SS (both eq and neq) treatment of the solvent effects was considered, and the electronic emission band was simulated by accounting for the vibronic progressions, as was done for the absorption. Solvent effects were taken into account via UFF parameterization of IEF-PCM.

The atomic charge population analysis, electric multiple moments, electronic density, and electrostatic potential were also computed using Mulliken's and the CHelpG procedure¹⁶ for both the ground and the S₁ excited (vertical and relaxed) states.

To investigate the presence and nature of possible intramolecular H-bonding interactions the non-covalent interaction (NCI) index combined with the second derivative of the reduced density gradient along the second main axis of variation were employed.¹⁷ This procedure was applied both to the ground and first singlet excited states.

The integration grid for the electronic density for topological and RDG analysis was set to 150 radial shells and 974 angular points. For the rest of the calculations, the integration grid was set as 99 radial shells and 590 angular points. The convergence criteria of the self-consistent field was set to 10-12 for the RMS change in the density matrix and 10-10 for the maximum change in the density matrix. The Convergence criteria for optimizations were set to 2 x 10⁻⁶ a.u. for maximum force, 1 x 10⁻⁶ a.u. for RMS force, 6 x 10⁻⁶ a.u. for maximum displacement and 4 x 10⁻⁶ a.u. for RMS displacement.

All calculations were performed using the GAUSSIAN G09.D01 software package.¹⁸ The location of BCPs and subsequent calculation of SF values were performed using a modified version of the PROAIMV program.¹⁹

Fig. S32. Optimized geometries of the investigated molecules 1a-e, i, j in their ground (GS) and exciting (ES) state, in 1,4-dioxane, depicted from two orthogonal viewpoints. Level of theory: DFT /IEF-PCM(UFF). Legend of colours: white (H), grey (C), lilac (N), yellow (S), red (O), and green (Cl).

Table S5. Differences in thermochemicals (kJ mol⁻¹) for rotamers A and B computed between as $\Delta X \equiv X(B) - X(A)$, at T = 298.15 K and p = 1.00 atm.

Thermochemicals	ACE	CHL	DMF	DMSO	EtOH	MeCN	THF	TOL
ΔΕ	4.2	3.8	4.3	4.2	3.5	4.2	4.3	3.9
Δ(E+ZPE)	3.7	3.8	3.8	3.9	3.6	3.9	3.5	2.9
ΔΗ	4.0	3.8	4.1	4.1	3.6	4.1	4.1	3.3
ΔG	1.4	3.7	0.3	1.9	3.9	1.3	-4.0	0.5

Table S6. Selected bonds lengths (in Å) for the GS (S₀) optimized geometries of compounds 1a-e, i, j in 1,4-dioxane

 $\theta_{\mathbf{B}}$ ČΝ. rotamer A rotamer B

Entry	Comp	CA-N	N-C1	C1-C2	C ₂ -C ₃	C3-0	N-B	O-B	C3-C4	C4-C5	C5-C6	C6-C7	C4-S	C7-S	C7-N	C6-C8
1	1a/A	1.426	1.313	1.400	1.382	1.305	1.568	1.483	1.446	1.365	1.417	1.400	1.744	1.739	1.359	1.421
2	1a/B	1.426	1.311	1.402	1.382	1.304	1.571	1.480	1.448	1.364	1.418	1.397	1.745	1.742	1.359	1.421
3	1b/A	1.423	1.317	1.395	1.387	1.303	1.567	1.484	1.443	1.366	1.415	1.403	1.745	1.740	1.356	1.421
4	1b/B	1.423	1.314	1.398	1.386	1.303	1.571	1.480	1.445	1.365	1.417	1.399	1.745	1.743	1.356	1.421
5	1c/A	1.418	1.321	1.391	1.391	1.302	1.567	1.485	1.440	1.367	1.414	1.405	1.746	1.740	1.354	1.421
6	1c/B	1.419	1.318	1.394	1.390	1.301	1.571	1.481	1.442	1.366	1.415	1.400	1.746	1.743	1.355	1.421
7	1d/A	1.421	1.320	1.393	1.389	1.302	1.567	1.485	1.441	1.366	1.414	1.404	1.745	1.740	1.354	1.421
8	1d/B	1.421	1.317	1.395	1.388	1.302	1.571	1.481	1.443	1.366	1.416	1.400	1.746	1.742	1.355	1.421
9	1e/A	1.429	1.316	1.395	1.388	1.303	1.564	1.485	1.444	1.366	1.415	1.402	1.745	1.739	1.356	1.421
10	1e/B	1.429	1.314	1.397	1.387	1.302	1.568	1.481	1.446	1.365	1.417	1.399	1.745	1.742	1.357	1.421
11	1i/A	1.419	1.323	1.389	1.394	1.303	1.565	1.485	1.434	1.369	1.411	1.412	1.754	1.742	1.329	1.420
12	1i/B	1.420	1.320	1.392	1.392	1.303	1.569	1.480	1.436	1.367	1.413	1.409	1.754	1.744	1.330	1.421
13	1j/A	1.420	1.321	1.391	1.391	1.302	1.566	1.485	1.438	1.367	1.412	1.408	1.748	1.743	1.347	1.420
14	1j/B	1.420	1.318	1.394	1.390	1.302	1.570	1.481	1.441	1.367	1.414	1.403	1.747	1.745	1.349	1.421

Table S7. Selected bond (φ (°)) and torsional (ϑ (°)) angles for the GS (S₁v) optimised geometries compounds 1a-e, i, j in 1,4-dioxane of BF₂AATs 1a-e, i, j in 1,4-dioxane

Table S8. Nonbonded intramolecular interactions for the GS (S₀) optimized geometries of compounds 1a-e, i, j in 1,4-dioxane

Entry	Comp	C₀H…F₁	$C_9H\cdots F_2$	S…O	S…H-C ₂	O…H-C₅	S…C11H
1	1a/A	2.441	2.744	2.878	-	-	2.636
2	1a/B	2.443	2.717	-	2.801	2.591	2.659
3	1b/A	2.426	2.736	2.867			2.615
4	1b/B	2.438	2.733		2.793	2.585	2.652
5	1c/A	2.417	2.667	2.869			2.606
6	1c/B	2.422	2.667		2.795	2.588	2.638
7	1d/A	2.421	2.690	2.868			2.609
8	1d/B	2.428	2.701		2.791	2.586	2.606
9	1e/A	2.578	3.499	2.866			2.632
10	1e/B	2.616	3.465		2.782	2.588	2.650
11	1i/A	2.421	2.684	2.867			2.804
12	1i/B	2.417	2.672		2.782	2.586	2.813
13	1j/A	2.420	2.675	2.877			2.564
14	1j/B	2.431	2.685		2.788	2.594	2.590

Table S9. Selected bonds lengths (in Å) for the excited state (S₀) optimized geometries compounds 1a-e, i, j in 1,4-dioxane

 \sim

Entry	Comp	C _A -N	N-C ₁	C1-C2	C ₂ -C ₃	C3-O	N-B	O-B	C3-C4	C4-C5	C5-C6	C6-C7	C4-S	C ₇ -S	C ₇ -N	C ₆ -C ₈
1	1a/A	1.378	1.366	1.375	1.417	1.324	1.579	1.470	1.406	1.393	1.406	1.411	1.756	1.750	1.349	1.419
2	1a/B	1.373	1.370	1.374	1.417	1.322	1.580	1.466	1.410	1.389	1.406	1.407	1.761	1.748	1.352	1.420
3	1b/A	1.387	1.356	1.380	1.416	1.324	1.583	1.470	1.405	1.399	1.402	1.416	1.754	1.755	1.342	1.419
4	1b/B	1.383	1.359	1.379	1.416	1.323	1.584	1.467	1.409	1.396	1.401	1.416	1.761	1.752	1.344	1.420
5	1c/A	1.386	1.355	1.381	1.414	1.324	1.587	1.469	1.406	1.400	1.401	1.418	1.753	1.757	1.339	1.419
6	1c/B	1.383	1.356	1.381	1.414	1.322	1.589	1.466	1.411	1.397	1.400	1.417	1.760	1.754	1.341	1.420
7	1d/A	1.390	1.353	1.381	1.415	1.324	1.584	1.470	1.405	1.401	1.401	1.418	1.753	1.757	1.339	1.419
8	1d/B	1.383	1.356	1.381	1.414	1.322	1.589	1.466	1.411	1.397	1.400	1.417	1.760	1.754	1.341	1.420
9	1e/A	1.402	1.346	1.382	1.416	1.326	1.577	1.471	1.404	1.406	1.400	1.418	1.753	1.762	1.338	1.419
10	1e/B	1.400	1.346	1.382	1.415	1.325	1.578	1.469	1.409	1.405	1.397	1.418	1.760	1.761	1.338	1.420
11	1i/A	1.390	1.352	1.382	1.414	1.326	1.585	1.469	1.407	1.402	1.402	1.419	1.756	1.753	1.328	1.418
12	1i/B	1.388	1.355	1.382	1.413	1.324	1.585	1.466	1.411	1.398	1.401	1.419	1.763	1.751	1.329	1.419
13	1j/A	1.391	1.352	1.382	1.414	1.325	1.583	1.469	1.406	1.401	1.403	1.420	1.751	1.761	1.336	1.419
14	1j/B	1.390	1.353	1.382	1.412	1.324	1.584	1.467	1.411	1.399	1.401	1.419	1.759	1.759	1.336	1.420

Table S10. Selected bond (ϕ (°)) and torsional (ϑ (°)) angles for the ES (S_{1v}) geometries of compounds **1a-e**, **i**, **j** in 1,4-dioxane

Entry	Comp	ϑѧ	CANBO	NBOC ₃	$NC_1C_2C_3$	BOC ₃ C ₂	BOC ₃ C ₄	ϑ _B	$C_3C_4SC_7$	NBF1	OBF ₂	NBO	φ
1	1a/A	-24.1	-158.3	-28.8	-3.7	16.4	-165.4	1.6	-179.7	110.0	110.0	110.0	25.8
2	1a/B	-23.0	-159.2	-29.2	-4.1	17.4	-164.0	-178.0	-178.6	109.9	107.6	110.1	25.5
3	1b/A	-27.1	-157.3	-30.8	-4.3	18.4	-163.9	1.8	-179.5	110.0	110.0	109.6	27.0
4	1b/B	-26.1	-156.9	-33.0	-4.9	19.2	-162.9	-178.1	-179.8	109.9	110.2	109.6	28.3
5	1c/A	-26.9	-157.5	-31.2	-4.4	19.2	-163.2	1.9	-179.2	109.9	110.2	109.4	27.1
6	1c/B	-26.4	-157.2	-32.5	-5.2	20.0	-162.3	-178.6	-179.8	109.8	107.9	109.4	28.2
7	1d/A	-28.2	-157.4	-31.5	-4.5	19.3	-163.1	1.9	-179.0	110.0	110.0	109.4	27.3
8	1d/B	-26.4	-157.2	-32.5	-5.2	20.0	-162.3	-178.6	-179.8	110.4	109.0	109.4	28.3
9	1e/A	-48.3	-154.3	-35.5	-5.6	20.4	-162.5	1.3	-179.6	110.0	109.7	108.7	32.5
10	1e/B	-47.8	-153.8	-36.7	-6.5	20.8	-161.4	-178.9	-178.7	110.0	110.0	108.7	33.9
11	1i/A	-28.2	-157.4	-31.6	-4.5	19.6	-162.5	2.9	-179.9	109.9	110.1	109.5	27.2
12	1i/B	-27.6	-156.5	-33.1	-5.0	20.5	-161.7	-178.8	-180.0	109.9	110.3	109.5	26.6
13	1j/A	-28.9	-156.1	-32.3	-4.7	19.2	-163.7	1.4	-179.8	110.0	110.1	109.3	28.6
14	1j/B	-28.4	-156.7	-33.0	-5.4	20.5	-161.9	-179.3	-179.5	109.9	110.2	109.4	28.7

Entry	Comp	$C_9H\cdotsF_1$	$C_9H\cdots F_2$	S…O	S…H-C ₂	O…H-C₅	S…C ₁₁ H
1	1a/A	2.392	2.507	2.863	-	-	2.566
2	1a/B	2.378	2.491	-	2.756	2.610	2.605
3	1b/A	2.440	2.5016	2.858			2.535
4	1b/B	2.409	2.526		2.753	2.609	2.577
5	1c/A	2.435	2.495	2.854			2.522
6	1c/B	2.411	2.507		2.759	2.602	2.554
7	1d/A	2.458	2.491	2.853			2.526
8	1d/B	2.411	2.507		2.759	2.602	2.554
9	1e/A	2.404	2.762	2.849			2.510
10	1e/B	2.414	2.735		2.750	2.606	2.558
11	1i/A	2.464	2.493	2.858			2.770
12	1i/B	2.437	2.518		2.758	2.601	2.803
13	1j/A	2.462	2.523	2.850			2.462
14	1j/B	2.461	2.510		2.757	2.603	2.482

Table S11. Nonbonded intramolecular interactions for the ES (S₀) optimized geometries of compounds 1a-e, i, j in 1,4-dioxane

Fig. S33. Absorption ($S_0 \rightarrow S_1$) vibronic spectra of compounds **1a-e**, **i**, **j** in the solvated phase (1,4-dioxane).

Fig. S34. Plots of the NCI isosurfaces (s = 0.5 a.u. and a blue-green-red colour scale from -0.012 a.u. < sign(λ_2) $\rho(r) < +0.012$ a.u.) compounds' **1a-e**, **i**, **j** in GS and ES

Fig. S35. Absorption ($S_0 \rightarrow S_1$) vibronic spectra of compound **1d** (rotamers A and B) in the EtOH, Chloroform (CHL), Acetone (AC), MeCN, THF, Toluene (TOL), DMF and DMSO.

Solvent	Rotamer	Сні	$\lambda_{_{abs}}$, nm	<i>f</i> 01	μ(S₀), D	μ(S _{1ν}), D	$\vartheta(S_0-S_{1v})/\text{degs}$	Сін	λ _{em} , nm	f_{10}	μ(<i>S</i> 1r), D	$\theta(S_0-S_{1r})/degs$
Toluene	А	0.67560	463.3	1.2880	5.7	8.9	11.7	-0.68545	519.3	1.3584	9.8	12.7
	В	0.67182	462.1	1.2887	11.5	13.8	14.7	0.68390	519.9	1.3948	14.9	15.6
CHCl₃	А	0.67548	456.8	1.3433	6.2	9.9	13.9	-0.68550	516.2	1.4315	11.1	15.6
	В	0.67151	457.4	1.3549	12.7	15.3	15.8	0.68334	514.6	1.4725	14.8	15.2
THF	А	0.67560	462.1	1.3703	6.6	10.6	13.3	-0.68554	524.6	1.4607	11.7	14.5
	В	0.67120	463.6	1.3790	13.4	16.1	16.3	-0.68338	523.0	1.5018	17.7	18.3
EtOH	А	0.67542	455.5	1.3888	6.8	11.1	17.5	-0.68528	520.2	1.4923	12.7	21.2
	В	0.67096	457.1	1.4026	14.0	16.9	17.7	0.68343	520.1	1.5390	18.8	20.4
Acetone	А	0.67570	459.4	1.3975	7.1	11.3	14.1	-0.68526	529.4	1.4888	12.7	16.2
	В	0.67100	460.6	1.4054	14.2	17.0	16.9	0.68343	528.1	1.5357	18.7	18.8
DMF	А	0.67573	467.3	1.4034	7.2	11.5	14.4	-0.68532	531.6	1.4978	12.8	16.4
	В	0.67094	469.3	1.4118	14.4	17.3	17.1	0.68344	532.5	1.5441	19.0	18.9
MeCN	А	0.67570	461.1	1.4042	7.2	11.5	14.5	-0.68532	524.5	1.4973	12.8	16.6
	В	0.67100	462.1	1.4114	14.4	17.3	17.1	0.68344	525.4	1.5437	19.0	19.1
DMSO	А	0.67575	471.7	1.4045	7.2	11.5	14.4	-0.68534	532.1	1.5001	12.9	16.4
	В	0.67087	472.6	1.4127	14.7	17.5	16.9	0.68344	533.1	1.5462	19.1	19.4

^aTransition coefficient (c_{H+L}), absorption wavelength (λ_a), oscillator strength (f_{01}), modulus of electric dipole moments of ground state (μ_0) and of vertical FC excited state (μ_{1v}), angles formed by the dipole moment vectors

(ϑ_{0,1v}).

^bTransition coefficient (c_{L-H}), emission wavelength (λ_e) and oscillator strength (f_{10}), modulus of electric dipole moments of relaxed excited state (μ_{1r}), and angles formed by dipole moment vectors ($\vartheta_{0,1r}$).

Table S13. Spectral overlap (J_{DA}), Förster radius (R_{DA}), rate constant of EET (k_{EET}) for solution complexes 1a-e, i, j in 1,4-dioxane.

Entry	Compd	τ _f , ns	Ф _{f,} %	J _{DA} , cm ³ M ^{−1}	R _{DA} , Å	k _{еет} , Hz	ratio
1	1a	0.99	0.96	3.67×10 ⁻¹⁰	9.941	3.73×10 ¹⁸	0.00
2	1b	1.21	0.15	1.30×10 ⁻⁸	9.833	1.78×10 ¹⁹	0.02
3	1c	2.21	0.35	1.99×10 ⁻⁷	9.871	3.47×10 ²⁰	0.31
4	1d	2.35	0.42	6.20×10 ⁻⁸	9.993	1.13×10 ²⁰	0.10
5	1e	2.05	0.42	5.27×10 ⁻⁷	9.979	1.11×10 ²¹	1.00
6	1i	2.73	0.28	1.04×10 ⁻⁷	9.912	1.16×10 ²⁰	0.10
7	1j	2.54	0.30	7.22×10 ⁻⁸	10.045	8.29×10 ¹⁹	0.07

Table S14. Spectral overlap (J_{DA}), Förster radius (R_{DA}), rate constant of EET (k_{EET}) for solution complex 1d in in different solvents

Entry	Solvent	n²	τ _f , ns	Φ_f	J _{DA} , cm ³ M ⁻¹)	R _{DA} , Å	k _{еет} , Hz	ratio
1	Dioxane	2.023222	2.35	0.42	1.57×10 ⁻¹⁵	9.993	1.1×10 ¹³	1.00
2	Acetone	1.846337		0.29	1.14×10 ⁻¹⁵	9.994		
3	CHCl₃	2.090627	2.32	0.28	1.52×10 ⁻¹⁵	9.995	7.17×10 ¹²	0.62
4	EtOAc			0.31	1.41×10 ⁻¹⁵			
5	EtOH	1.852593	2.16	0.28	1.09×10 ⁻¹⁵	9.992	6.99×10 ¹²	0.60
6	<i>i</i> -PrOH			0.29	1.38×10 ⁻¹⁵			
7	MeCN	1.806874		0.25	1.43E×10 ⁻¹⁵	9.994		
8	THF	1.974025		0.33	1.46×10 ⁻¹⁵	9.994		
9	Toluene	2.238315	2.33	0.30	1.83×10 ⁻¹⁵	9.993	8.01×10 ¹²	0.69
10	DMSO	2.007889	1.96	0.14	1.82×10 ⁻¹⁵	9.994	5.49×10 ¹²	0.47
11	DMF	2.04633	1.91	0.21	1.63×10 ⁻¹⁵	9.995	7.27×10 ¹²	0.62

Table S15. Quantum yield of BF₂AAT 1d in different solvents and calculated (TD-DFT) $\Delta E_{(S1-T2)}$

Entry	Solvent	$\Delta E(S_1-T_1) / eV$	QY
1	Dioxane	0.1654	0.42
2	THF	0.1437	0.33
3	Tol	0.1385	0.30
4	Ac	0.1376	0.29
5	EtOH	0.1365	0.28
6	CHCl₃	0.1351	0.28
7	MeCN	0.1314	0.25
8	DMF	0.1238	0.21
9	DMSO	0.1135	0.14

Fig. S36. Frontier molecular orbitals (FMOs) HOMO and LUMO in the ground and excited states for BF₂ATAs **1a-e**, i, j (|Isovalue(MO)| = 0.02 a.u.; |Isovalue(ρ)| = 0.0004 a.u.)

Entry	Compd/Rotamer	S ₀	S _{1v}	S ₁ r
1	1a/A			
2	1a/B			
3	1b/A			
4	1b/B			
5	1c/A			
	1c/B			

6	1d/A		50,30,000,000,000,000,000,000,000,000,00
7	1d/B		
8	1e/A		
9	1e/B		

Fig. S37. Plot of MEPs of complexes **1a-e**, **i**, **j** calculated at (TD-)DFT ω-B97X-D / 6–311++G** // IEF-PCM(UFF) level of theory, for GS and ESs in dioxane. Legend of map colours: red (negative potential), blue (positive potential). Legend of elements: hydrogen (white), carbon (grey), nitrogen (blue), oxygen (red), sulfur (yellow), chlorine (green).

6. Biological investigations

Cell cultivation

HeLa, human fibroblasts (FH), and rhabdomyosarcoma (RD) cell culture was obtained from the cell culture bank of the Institute of Cytology RAS (Russia, St. Petersburg). The cell culture was maintained in culture flasks (Eppendorf) in DMEM medium (Sigma-Aldrich, USA) supplemented with 10% fetal bovine serum (Biolot, Russia) and 0.5% gentamicin (Biolot, Russia)

Staining protocol

The cells were diluted to a concentration of 10^3 cells/mL, transferred to glass-bottomed bottles (Nest Biotechnology Co., China) and subjected to confocal microscopy. The dye solution in DMSO (10^{-3} mmol/L) was added at 10μ L/mL nutrient medium. Additional staining of the cell nucleus was performed using a nuclear dye Hoechst 33258 (incubation for 30 min at a dye concentration of 0.1μ g/mL in the medium). After staining, the preparations were washed twice with phosphate buffer (Biolot) and the medium in which subsequent microscopic studies were conducted.

Microscopic examination

Microscopic examination was performed using the equipment of the Shared Research Center of Scientific Equipment SRC IIP UrB RAS. After staining and washing, preparations of living cells were examined using a confocal laser scanning microscope LSM-710 (Carl Zeiss) with a multichannel QUASAR detector (34 channels). Lasers at wavelengths of 405 and 488 nm were used. Images were obtained using an immersion lens (40×, 1.3 Oil) with a resolution of 1024×1024 pixels and an image size of 212×212 microns. To obtain an informative fluorescent image using special software ZEN (Carl Zeiss), a special lambda mode (λ -mode) was used, which allowed determination of the emission range with the maximum contrast for this preparation.

Bleaching of the dye was investigated using standard functions of the microscope software. Laser action was conducted at 100% power of the 405nm laser for 30 s, after which the image was taken.

Flow cytometry

Cells were cultured in a 12-well plate to an 80% monolayer. The dye solution in DMSO (10^{-3} mmol/L) was added at 10 μ L/mL nutrient medium. The cells were incubated at 37 °C in an incubator for 30 min and then cleaved with trypsin–versene solution, centrifuged, and examined using a Beckman Coulter FC500 flow cytometer.

MTT test

Cells were crossed into a 96-well plate (Eppendorf) and cultured for a day to a concentration of about 105 cells/mL, with subsequently addition of a substance in DMSO solution. DMSO was used as the control. After incubating for 72 h, the medium was changed to fresh DMEM and methylthiazolyldiphenyl-tetrazolium bromide (MTT) was added at a concentration of 1 mg/mL. The cells were incubated with the dye for 4 h and the color intensity was determined using a flatbed photometer at a wavelength of 540 nm.

Fig. S38. Viability of HeLa cells in the presence complexes 1e-f, i, j. determined by MTT assay. All values are normalized to the DMSO negative control, which was set to 100 %.

Fig. S39. A series of images in the process of photo bleaching of HeLa cell culture stained with Hoechst 33258 (blue) and substance **1f** (green). The image was obtained by excitation with 405 wavelength laser for Hoechst 33258 dye and 488 for substance **1f**. Photo bleaching was carried out with a maximum laser power of 405 wavelength. Time is given directly for bleaching process.

Fig. S40. Fluorescence spectra of the dye 1f, taken in the process of photobleaching. The spectra were recorded with excitation at 488 nm, using the lambda-mode of a confocal microscope, at a bright point in the cell.

6. Reference

- [1] N. P. Belskaya, K. I. Lugovik, A. D. Ivina, V. A. Bakulev, Z. J. Fan, Chem. Heterocycl. Comp., 2014, 50, 888-900.
- [2] K. I. Lugovik, A. K. Eltyshev, E. Benassi, N. P. Belskaya, Chem.-Asian J., 2017, 18, 2410-2425.
- [3] Y-Z. Wei, Z. Cheng, W. Li, H-B. Zhu, J. Coordination Chem., 2017, DOI: 10.1080/00958972.2017.1364374.
- [4] K. I. Lugovik, A. V. Popova, A. K. Eltyshev, E. Benassi, N. P. Belskaya, Eur. J. Org. Chem., 2017, 4175-4187.
- [5] G. M. Sheldrick, Acta Cryst. **2008**, A64, 112-122.
- [6] A. D. Becke, J. Chem. Phys., **1993**, 98, 5648-5652.
- [7] Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.*, **2008**, *120*, 215-241.
- [8] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett., 2004, 393, 51-57.
- [9] J. D. Chai, M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106-1 084106-15.
- [10] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- [11] J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct: Theochem., 1999, 464, 211-226.
- [12] A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024-10035.
- [13] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-96.
- [14] R. Improta, V. Barone, G. Scalmani, M. J. Frisch, J. Chem. Phys., 2006, 125, 054103-1-054103-9.
- a) V. Barone, Computational Strategies for Spectroscopy: From Small Molecules to NanoSystems, Chichester, UK: Wiley-WCH, 2011; b)
 B. Mennucci, C. Cappelli, C. A. Guido, R. Cammi, J. Tomasi, J. Phys. Chem. A, 2009, 113, 3009-3020; c) F. Santoro, R. Improta, A. Lami, J. Bloino, V. Barone, J. Chem. Phys., 2007, 126, 169903-1; d) F. Santoro, A. Lami, R. Improta, V. Barone, J. Chem. Phys., 2007, 126, 184102-1-184102-11; (e) F. Santoro, A. Lami, R. Improta, J. Bloino, V. Barone, J. Chem. Phys., 2007, 126, 180102-15

Grimme, J. Chem. Phys., **2005**, 122, 244101-1-244101-4; g) H. C. Jankowiak, J. L. Stuber, R. Berger, J. Chem. Phys., **2007**, 127, 234101-1-234101-23; h) R. Borrelli, A. Capobianco, A. Peluso, *Can. J. Chem.*, **2013**, *91*, 495-504.

- [16] C. M. Breneman, K. B. Wiberg, J. Comp. Chem., **1990**, *11*, 361-373.
- [17] a) H. J. Bohórquez, C. F. Matta, R. J. Boyd, Int. J. Quant. Chem., 2010, 110, 2418-2425; b) E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garcia, A. J. Cohen, W. Yang, J. Am. Chem. Soc., 2010, 132, 6498-6506; c) P. Cacciani, P. Čermák, J. Cosléou, J. El Romh, J. Hovorka, M. Khelkhal, Mol. Phys., 2014, 18, 2476-2485; d) J. Andres, S. Berski, J. Contreras-Garcia, P. Gonzalez-Navarrete, J. Phys. Chem., 2014, 118, 1663-1672.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi J, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
- [19] a) F. W. Biegler-König, R. F. W. Bader, T. H. Tang. J. Comput. Chem., 1982, 3, 317-328; b) AIMPAC, http://www.chemistry.mcmaster.ca/aimpac/imagemap/imagemap.htm; c) N. Keith, Ph.D. Thesis, Ontario, Canada, 1993.

Ground state optimized geometries (S₀) (in dioxane)

Optimised Geometries (GS and ES in dioxane)

***	molea 47	cule	1a	rotamer	A	S_0	- (dioxa	ne			
	6	0.	8432	2251		0.9	903	80359)	0.0	994	5700
	6	1.	0058	2904	-	0.2	287	05357	1	0.7	459	1339
1	6	2.	3635	8817		1.5	522	65059)	-0.4	904	4496
	6	2.	3503	2736	-	0.7	733	70831		0.7	699	4065
	1	0.	1939	3763	-	0.8	364	29896	5	1.1	679	8856
	6	3.	2293	4527		0.1	L45	77656	5	0.1	256	2979
	6	2.	7097	0882	-	2.0	009	83244	ł	1.2	807	0296
	7	2.	9839	1650	-	3.0)52	63447	1	1.6	871	6147
	6	5.	2586	52442		1.()38	50549)	-0.8	616	7231
	6	5.	4086	54319	-	0.4	148	22245	5	1.0	668	2017
	6	6.	6112	7354		0.4	199	87486	5	-1.3	8010	2075
	1	5.	3901	.3765		1.9	966	50184	ł	-0.2	2872	7004
	1	4.	6623	8006		1.2	251	40069)	-1.7	509	4144
	6	6.	7509	0043	-	0.9	914	28140)	0.5	325	3248
	1	5.	5541	8274		0.3	375	28167	1	1.7	784	1259
	1	4.	9236	0851	-	1.2	274	00242	2	1.5	805	5748
	1	7.	1610	4912		1.2	277	05075	<u>)</u>	-1.8	320	3679
	1	6.	4629	3342	-	0.3	355	39980)	-1.9	9737	8863
	1	7.	4047	2434	-	1.1	L79	52062		1.3	632	8551
	1	6.	6096	0383	-	1.7	796	58039)	-0.1	.058	3239
	7	4.	5724	1533		0.0)34	64581	-	-0.0	459	9392
	8	7.	3975	9749		0.1		05335)	-0.1	.955	8917
	6	-0.	3705	7547		1.6	547	93670)	-0.1	.526	0459
	6	-⊥.	5955	4072		1.3	308	98235)	0.3	912	4723
	6	-2.	1331	4459		1.5	995	4561/	,	-0.0	14/8	8691
	1	-⊥.	6948 7170	5397		0.4	186	/3368	5	1.0	0818	6/46
		-3.	7172	7933		1.6	553	97695)	0.2	2631	2585
	8	-0.	2375	3393		2.6	554	91825)	-0.5)/18	3418
	5	-1.	2825 2752	0//69		3.6	293	4/561	-	-1.1	.45/	4123
		-2.	6/32 0/02	0001		3.0)4∠ ∽⊃⊿	12270	5	-0.8	5382	0967
	6	-3.	0005	0001		5.0)) 1 7	13270)	-1.J	1207	0500
	6	-3.	9004 0250	2426		5.U) T (10000		-1.4	30/ 707	0000
	6	-4.	3000 107/	5105		Z.C 5 0	200 211	42004	t	-1 C	707 2216	0117
	1	-3.	126/ 136/	1321		5.0	236 211	77356	-	-1.3	212	0322
	1 6	-5.	1004 1004	7/00		3.0	122 122	59192))	-2 2	. Z I J N 7 6	2002
	1	-0. _1	0902 8153	6531		1 -	±23 758	01/6/	•	_1 7	.420 1592	9350
	1 6	-4.	2022	5528		л с	215	01404	r A	-1.7	182	8553
	1	-5	2022 1773	1767		C	280 210	89622	,)	_1 0	102 1797	7180
	⊥ 1	-6	1 / / J 9 7 8 6	2389		2.6	21 Q	73730		-2 5	(210)	5381
	- 8	_7	3741	0642		5 2) 9 6) 9 6	92477	, 1	-2 7	,0±0 1961	7920
	6	-7	5082	8486		6 -		85980)	-2 0	140	0952
	1	-8	5046	0735		6 8	, <u>0 1</u> 376	25010)	-3 3	150	4833
	∸ 1	_7	4204	7040		7 1	92	91009	}	-1 0	411	2146
	∸ 1	-6	7650	9005		7 1	ר∠ ו1 ק	55258	, }	-7 6	2073 211	2170
	-	0.	, 000			′• -		55250	,	5.0	U-I-J	2 2 0 1

9	-1.24161217	4.15468166	-2.44210638
9	-1.05682350	4.72004787	-0.23138098

*** molecule 1a rotamer B $S_{\rm 0}$ - dioxane 47

6	0.89153270	1.00790445	0.02323586
6	0.99527655	-0.22448168	0.59840628
16	2.45457127	1.61723584	-0.45681291
6	2.32512150	-0.71620505	0.63950260
1	0 13877899	-0 78289922	0 95157209
6	3 25538666	0 17028629	0 09159440
6	2 64081841	-2 03317514	1 06997274
0	2.04001041	2.03317314 2.10500145	1 40442560
	2.09404107	-3.10588145	1.40442360
6	5.34842634	1.04608739	-0.//25//36
6	5.3/394849	-0.5165//80	1.10033393
6	6./0455114	0.48670700	-1.17533020
1	5.48117039	1.94567066	-0.15430610
1	4.79689309	1.31123621	-1.67657370
6	6.72351801	-1.00255171	0.60483921
1	5.51248676	0.27740430	1.84616164
1	4.84255893	-1.34438104	1.56272003
1	7.29931974	1.26782888	-1.64903763
1	6.56321257	-0.33584448	-1.88905551
1	7.33314616	-1.31996440	1.45073392
1	6.58458942	-1.85466634	-0.07368886
7	4.60130053	0.03023928	-0.02976179
8	7.42964079	0.03118967	-0.05382797
6	-0.33691587	1.73577484	-0.21440241
6	-0 41109574	2 89974075	-0 95616241
6	-1 62671923	3 59742772	-0 99309952
1	0 45766706	3 31713911	-1 44188603
1	-1 66719164	1 57955776	-1 /5618860
		1 22966940	0 26020202
5	2 76772520	1 62167112	0.30920202
5 7	2 72449295	2 12000576	0.02000000
	-2./3448385	3.12088576	-0.4/8436/2
6	-3.91/30586	3.91580396	-0.43599093
6	-5.15165560	3.32268469	-0.6/2/4968
6	-3.85282423	5.2/95883/	-0.14185264
6	-6.31565045	4.08271446	-0.64278546
1	-5.20570374	2.26325128	-0.89156992
6	-5.00601266	6.04205038	-0.11961775
1	-2.90186651	5.73911930	0.10257381
6	-6.24642293	5.44956831	-0.37183765
1	-7.26263073	3.59637235	-0.83289539
1	-4.97164132	7.09856845	0.11662360
8	-7.32006522	6.27275827	-0.31977386
6	-8.60033055	5.69814126	-0.51360030
1	-9.31458287	6.51267966	-0.41189553
1	-8.69244222	5.26210813	-1.51284823
1	-8.81086193	4.93692048	0.24347594
9	-3.56189023	1.51954611	1.13927256
9	-3,23149791	0.82916265	-1.01952647
2	0.20110.01	0.02910200	

*** molecule **1b** rotamer A S_0 - dioxane 43

6	0.83453606	0.90616063	0.14382056
6	1.01328327	-0.26783345	0.81814356
16	2.34423194	1.51713838	-0.48291912
6	2.35793781	-0.70913167	0.83342031
1	0.21364147	-0.83344329	1.27769980
6	3.22442927	0.15574335	0.14846399
6	2.72198973	-1.96850102	1.38130701
7	2.99446127	-2.99912523	1.81864689
6	5.23203442	1.04953518	-0.88093430
6	5.42475599	-0.46068895	1.02978098
6	6.57094670	0.50860600	-1.35806084
1	5.38031338	1.97418213	-0.30576259
1	4.61547281	1.26843960	-1.75473601
6	6.75068691	-0.92479366	0.45434808
1	5.59236889	0.34989881	1.75082899
1	4.94985630	-1.29303898	1.54163429
1	7.10951956	1.28854694	-1.89636843
1	6.40259169	-0.34013053	-2.03448532
1	7.42365982	-1.20368065	1.26494518
1	6.59007852	-1.79829644	-0.19151676
7	4.56108263	0.04602418	-0.05116766
8	7.38284641	0.10704877	-0.27653114
6	-0.38245202	1.63953095	-0.10730607
6	-1.62451258	1.24529055	0.36664131
6	-2.75427462	1.93764271	-0.07075015
1	-1.73753795	0.37227151	0.98932724
1	-3.74204609	1.56256282	0.18233388
8	-0.24225823	2.69424068	-0.86028116
5	-1.29659734	3.72845916	-1.00585409
7	-2.68639802	3.03716698	-0.79226304
6	-3.86852969	3.64268960	-1.30306749
6	-3.97656956	5.03330728	-1.30562584
6	-4.90365654	2.86207376	-1.81390091
6	-5.12639264	5.63753468	-1.79101935
1	-3.16672223	5.63811936	-0.91681352
6	-6.06057623	3.46280632	-2.29316669
1	-4.79807297	1.78491842	-1.86994749
6	-6.16092708	4.84608523	-2.27371875
1	-5.22038676	6.71593390	-1.79045376
1	-6.86620747	2.86225789	-2.69597434
17	-7.60964792	5.60754415	-2.88073654
9	-1.21987548	4.27130173	-2.26792455
9	-1.12009849	4.69489584	-0.01963186

*** molecule $\mathbf{1b}$ rotamer B S_0 - dioxane 43

6	0.72051245	0.77057376	0.13809992
6	1.98624391	1.08622699	-0.26424385
16	0.70552032	-0.68967591	1.09412452
6	2.96923541	0.18137115	0.20681631
1	2.21445706	1.96519430	-0.85202807
6	2.43696732	-0.85214835	0.98448127
6	4.36078486	0.39873124	0.01736751
7	5.48891098	0.58276069	-0.12558945
6	2.31964699	-2.75441727	2.49112202

6 1 1 6 1 1 1 1	4.15090485 3.27968299 1.73260777 1.64337577 5.02064755 3.69031501 4.76450780 2.72904970 3.77124140 5.75666115	-2.59747434 -3.49006380 -3.47666847 -2.15075772 -3.33303391 -3.31379577 -1.90320940 -4.21033642 -2.76832697 -3.94095533	0.88445017 3.41443307 1.90611142 3.09934737 1.88729210 0.19154274 0.31644791 4.01976346 4.08047169 1.36148162
1	5.54536786	-2.60900541	2.52435363
/ 8	3.07785901 4.24900133	-1.8/94//32	2.68526781
6	-0.47152110	1.54381105	-0.12479368
6	-1.71538713	1.24741698	0.40967848
6	-2.82493072	1.97603206	-0.02934740
1	-1.85564608	0.42357333	1.09274427
1	-3.82240392	1.66939570	0.27392492
8	-0.30483518	2.53672833	-0.95210151
С 7	-1.29/03694 -2.72058/11	3.62469141	-1.10386215
6	-3.88322820	3.67453212	-1.31635372
6	-3.91509503	5.06714561	-1.38276993
6	-4.97325488	2.92901956	-1.75988906
6	-5.04529287	5.71076277	-1.86349503
1	-3.06162391	5.64302928	-1.04694527
6	-6.11007772	3.56973163	-2.23548654
1 6	-4.92669/36	1.84633156	-1.76597299
1	-5 08087283	6 79160478	-2.27092290
1	-6.95862342	2.99669979	-2.58696261
17	-7.55836527	5.76747224	-2.88080334
9	-1.24251147	4.10785550	-2.39068162
9	-1.03053266	4.62069342	-0.16872164
*** n 44	nolecule 1c rotamer	A S_0 – dioxane	
6	0.83313818	0.91485179	0.13783338
6	1.01016916	-0.26295144	0.80833576
16	2.34624520	1.53198891	-0.47595889
6	2.35381336	-0.70155371	0.83145030
1	0.20857070	-0.83283928	1.25920655
6	3.22460081	0.16912315 -1 06259612	0.15548981
0 7	2.71332020	-2 99664893	1 81124635
6	5.23912428	1.07316029	-0.85325392
6	5.42171634	-0.47004999	1.03400856
6	6.57262091	0.52714080	-1.34032057
1	5.39526263	1.98806029	-0.26517409
1	4.62392334	1.30925227	-1.72347441
6	6.74161237	-0.93759491	0.44756381

0.32728653

-1.30537864

1.31071477

-0.30868164

-1.23696776

1.76710748

1.53373326

-1.86669781

-2.03037754

1.25192536

5.59914400

4.93958203

7.11762237

6.39537345

7.41321398

1

1

1

1

1

1	6.57116054	-1.79853506	-0.21247922
7	4.56050056	0.06438035	-0.03565471
8	7.38192744	0.10041448	-0.26684650
6	-0.38223658	1.64366275	-0.11751785
6	-1.62926530	1.24069046	0.34743172
6	-2.75655661	1.92561095	-0.09375600
1	-1.74129552	0.36623357	0.96826951
1	-3.74289637	1.54703861	0.15865005
8	-0.24427092	2.70209609	-0.86279998
5	-1.30357330	3.73170013	-1.01394052
7	-2.69116081	3.03020210	-0.81592135
6	-3.86981709	3.62893130	-1.32966720
6	-3.96163438	5.02218503	-1.37274992
6	-4.91968143	2.84069059	-1.80468969
6	-5.10950066	5.62097625	-1.86065396
1	-3.14030786	5.62761557	-1.01110669
6	-6.07322086	3.43857673	-2.28515708
1	-4.82321964	1.76202808	-1.83128971
6	-6.17102272	4.83073337	-2.31083970
1	-5.19066642	6.70030598	-1.88981749
1	-6.88907860	2.83240953	-2.65867986
9	-1.21880596	4.27717166	-2.27407416
9	-1.14050740	4.69511378	-0.02406655
6	-7.36296804	5.45268701	-2.81253809
7	-8.31990341	5.95192222	-3.21046463

*** molecule $\mathbf{1c}$ rotamer B S_0 - dioxane 44

6	0.87710905	1.00546035	0.06720021
6	1.00365331	-0.20989102	0.67812903
16	2.42546516	1.61054186	-0.46555569
6	2.33460210	-0.68985189	0.70843771
1	0.15939367	-0.76415941	1.06608966
6	3.24853436	0.18695079	0.11088965
6	2.66090313	-1.99125299	1.17744939
7	2.91715051	-3.05198580	1.54618802
6	5.31391383	1.06156266	-0.81760378
6	5.39753306	-0.49237650	1.06604411
6	6.65578701	0.49561715	-1.25794998
1	5.46546415	1.96790719	-0.21433968
1	4.73430316	1.31600443	-1.70694962
6	6.73019448	-0.98127356	0.52895674
1	5.56020429	0.30242381	1.80552863
1	4.88025836	-1.31850632	1.54629211
1	7.23538320	1.27185179	-1.75768035
1	6.49011232	-0.33298119	-1.95933010
1	7.36576760	-1.29530681	1.35670517
1	6.56989713	-1.83652232	-0.14078223
7	4.58876797	0.05660182	-0.03792400
8	7.41494253	0.04904699	-0.15631524
6	-0.35883353	1.71266087	-0.16324507
6	-0.45212965	2.87842849	-0.91358437
6	-1.66622770	3.56207894	-0.94116873
1	0.40866568	3.30071437	-1.40913394
1	-1.72082970	4.53761767	-1.41628551
8	-1.39918083	1.20139671	0.42797990
5	-2.78869417	1.58744626	0.09013425
---	-------------	------------	-------------
7	-2.77126750	3.07688198	-0.41032532
6	-3.95587163	3.85657649	-0.36811039
6	-5.18804248	3.23039448	-0.56879836
6	-3.89595244	5.22761006	-0.11388835
6	-6.35125485	3.97916301	-0.54412308
1	-5.22701982	2.16499341	-0.75678469
6	-5.05908079	5.97999649	-0.09671979
1	-2.94664752	5.70175337	0.10422676
6	-6.28869803	5.35673468	-0.31577026
1	-7.30954963	3.50191464	-0.70629446
1	-5.02021138	7.04318675	0.10482647
9	-3.57047687	1.47615892	1.21642616
9	-3.25085165	0.77700558	-0.94122193
6	-7.49440386	6.13465424	-0.29549490
7	-8.45930419	6.76072106	-0.28151274

*** molecule ${\bf 1d}$ rotamer A S_0 - dioxane 46

6	0.83754909	0.90749993	0.13689631
6	1.01622880	-0.26427252	0.81647032
16	2.34909519	1.52053946	-0.48416341
6	2.36094759	-0.70174943	0.84088193
1	0.21562884	-0.83105782	1.27296049
6	3.22958676	0.16377894	0.15709266
6	2.72313590	-1.95904275	1.39491664
7	2.99282108	-2.98835400	1.83693914
6	5.24127591	1.06273101	-0.86076350
6	5.42764815	-0.45929579	1.04257406
6	6.57894035	0.51956368	-1.33918240
1	5.39127967	1.98436643	-0.28151220
1	4.62663967	1.28694057	-1.73455119
6	6.75203891	-0.92488574	0.46474196
1	5.59806765	0.34632579	1.76834756
1	4.94934101	-1.29272166	1.54924347
1	7.12059687	1.30070736	-1.87260522
1	6.40836919	-0.32470140	-2.02060666
1	7.42332914	-1.21140937	1.27404672
1	6.58858502	-1.79381182	-0.18655451
7	4.56622513	0.05828448	-0.03508751
8	7.38822386	0.10916955	-0.25921103
6	-0.37932736	1.63443807	-0.12334934
6	-1.62360536	1.23904331	0.35094157
6	-2.75279768	1.92052626	-0.09599581
1	-1.73461561	0.37243181	0.98284998
1	-3.73903148	1.54495143	0.16170254
8	-0.24211052	2.68344948	-0.88284910
5	-1.30090247	3.71243251	-1.04151445
7	-2.68809943	3.01468123	-0.83075975
6	-3.87032279	3.60955778	-1.34735287
6	-3.96971389	4.99936891	-1.39058226
6	-4.91553568	2.81459455	-1.82285505
6	-5.12365472	5.59209128	-1.88278658
1	-3.15254104	5.60964133	-1.02754880
6	-6.07026430	3.40961098	-2.30397733
1	-4.81290099	1.73632043	-1.84671154

6	-6.17251151	4.79737603	-2.32878866
1	-5.20603400	6.6/122093	-1.90969848
l	-6.88296772	2./961/189	-2.6/614418
6	-7.42602387	5.40936043	-2.8/649585
9	-7.58015482	5.14975737	-4.18/8/458
9	-7.45454286 -9.52460712	0.74023244	-2.73071001
9	-0.52400712	4.92557260	-2.20002120
9	-1.210304770	4.00013443	-0.00107220
9	-1.21930439	4.24301400	-2.30733977
*** ~~	ologulo 14 motom	an D. C. diawana	
46		$B_1 = B_{-} = 0.10 \text{ xalle}$	
c	0 0000000		
6	0.72724301	0.77536357	0.13641494
6	1.99219939	1.0946/611	-0.26/448/1
16	0./18999/0	-0.6/939546	1.10128161
6	2.9/884923	0.19/399/4	0.20/53118
	2.21641978	L.9/09053/	-0.8609104/
6	2.4509/518	-0.83539010	0.99104899
0 7	4.300//410 5.40504541	0.42201000	-0 12220956
6	2 33653026	-2 73878570	-0.13320030
6	1 18178966	-2.75079570	0 00512061
6	3 29435216	-3 46883142	3 42568997
1	1 75903291	-3 46432192	1 90550955
1	1 65164355	-2 14064564	3 09974511
- 6	5 04698000	-3 29661594	1 91479469
1	3.73426884	-3.28274991	0.20535390
1	4.79617347	-1.86437740	0.34596756
1	2.74361422	-4.19358270	4.02550841
1	3.77562959	-2.74494219	4.09685125
1	5.79206986	-3.89778132	1.39404887
1	5.56089487	-2.57079127	2.55855162
7	3.09457224	-1.85751981	1.60570877
8	4.27425938	-4.18119020	2.70327285
6	-0.46779077	1.53782952	-0.13581192
6	-1.71357556	1.23295931	0.39519097
6	-2.82603805	1.94486009	-0.05488970
1	-1.84896115	0.41289234	1.08380389
1	-3.82095099	1.63232716	0.25026869
8	-0.30700200	2.52707107	-0.96679763
5	-1.31122994	3.60219140	-1.13880403
7	-2.72950123	2.99261793	-0.84662377
6	-3.89600908	3.62072288	-1.36115163
6	-3.93053645	5.01030956	-1.46415160
6	-4.98834514	2.85600400	-1.77438037
6	-5.06906300	5.63508903	-1.95257074
1	-3.07550417	5.59549744	-1.15016573
6	-6.12684840	3.48346809	-2.25330922
1	-4.93548850	1.77418297	-1.75104947
6	-6.16543805	4.87216232	-2.33589430
1	-5.10202280	6./14/3410	-2.02538074
	-6.9/655003	2.89350049	-2.5//46943
6	-1.4011/044	5.51999753	-2.88351837
9	-/.2020211/ _7 2000/207	J.20U/0102 6 05162742	-4.193612/1
9	-/.J00U4J0/ _0 510150/1	0.0J103/43 5.07226226	-2.74905230
9	-0.31213241	0.0/220230	-2.2/14009/

9	-1.06168549	4.61219220	-0.21526276
9	-1.25338005	4.06824249	-2.43161367

*** molecule 1e rotamer A S_0 - dioxane 46

6	0.84238189	0.97685485	0.28691014
6	1.05548780	-0.10322760	1.09492392
16	2.30631792	1.46278069	-0.52868838
6	2.39035634	-0.57261962	1.06429439
1	0.28462209	-0.58575673	1.68077494
6	3.21280123	0.17559663	0.21032365
6	2.78388475	-1.76269293	1.73326286
7	3.08732738	-2.73725575	2.26783155
6	5.14847675	0.85312583	-1.08897933
6	5.46620452	-0.34356445	1.01511525
6	6 43931969	0 21038024	-1 57316336
1	5.35484451	1.85083206	-0.67667225
1	4 46951574	0 95104217	-1 93813782
6	6 73303494	-0.93321918	0 42330560
1	5 70617745	0.56916429	1 57630883
1	5 01881280	-1 06549306	1 69290973
1	6 94849513	0 88547313	-2 26095176
1	6 20785937	-0.72508872	-2 09994041
1	7 46237050	-1 10536812	1 21464759
1	6 50480455	-1 89037306	-0 06424944
7	4 52959138	0 00584602	-0.06719321
, 8	7.32482792	-0.04591494	-0.50469491
6	-0.38158107	1,69895841	0.03141307
6	-1.57915346	1,41596856	0.67243489
6	-2.73644296	2.05573057	0.22907598
1	-1.64506258	0.64838256	1.42672653
1	-3.70512928	1.75021739	0.61385344
8	-0.29019175	2,62226178	-0.88288284
5	-1.34811738	3.63540906	-1.12390446
7	-2.71130675	3.01761914	-0.66896575
6	-3.92158267	3.58993941	-1.16829485
6	-4.24015959	4.89662612	-0.81770544
6	-4.75612928	2.87816568	-2.03691380
6	-5.40338634	5.48118711	-1.30392462
1	-3.56634390	5.44038200	-0.16679726
6	-5.92199102	3.46741006	-2.51447019
6	-6.24748705	4.76651720	-2.14466175
1	-5.64721375	6.49882411	-1.02359038
1	-6.56487366	2.91427646	-3.18699629
1	-7.15407812	5.22100344	-2.52442127
6	-4.39404800	1.48459280	-2.47554774
9	-4.50529784	0.59200026	-1.46676538
9	-3.13678905	1.39536654	-2.92257406
9	-5.19292350	1.04500504	-3.45549290
9	-1.38861282	3.94618924	-2.46221037
9	-1.08587900	4.75877019	-0.34375377
-			

*** molecule 1e rotamer B S_0 - dioxane 46

6	0.72186359	0.78127183	0.17741651
6	1.93800791	0.96478022	-0.41411388
16	0.75825052	-0.55281836	1.30129401
6	2.92765705	0.05863410	0.04125777
1	2.12990705	1.74981605	-1.13327700
6	2.44906824	-0.84226563	0.99798202
6	4.29079587	0.16003788	-0.34747712
7	5.39746215	0.25295544	-0.65342400
6	2.41549539	-2.56718290	2.70552605
6	4.03893111	-2.69804566	0.88800702
6	3.43240691	-3.28574074	3.57966446
1	1.71449059	-3.29281413	2.26888345
1	1.86017588	-1.86065826	3.32515814
6	4.97574074	-3.40340491	1.85130876
1	3.45212895	-3.43770821	0.32758543
1	4.62406300	-2.10882902	0.18700506
1	2.91516690	-3.90247648	4.31485027
1	4.04866630	-2.54514115	4,10671026
1	5,59952860	-4.11109838	1,30549764
1	5,62231660	-2.66746921	2,34730056
7	3,10962308	-1.83758759	1.64280404
8	4 25472914	-4 14253635	2 81822788
6	-0.46202812	1 58080746	-0 04458934
6	-1 63609721	1 42639209	0.67800415
6	-2 77550659	2 11528551	0.25437301
1	_1 71334218	0 71167209	1 /8301772
⊥ 1	-3 7/162182	1 89244659	0 6981/089
8	-0 36197837	2 43827327	-1 01914748
5	-1 34661648	3 52409774	-1 23174332
7	-2 73136089	3 02053663	-0 69664861
6	-3 92429101	3 63440411	-1 18775987
6	-4 15482735	4 97480475	-0 90264544
6	-4 82637866	2 92554616	-1 98794066
6	-5 29919573	5 59855962	-1 38484270
1	-3 /2826558	5 51304594	-0 30592583
6	-5 972719/1	3 55460870	-2 16192668
6	-6 21087832	4 88900197	-2 15673848
1	-5 17526752	6 64266104	-1 15590718
⊥ 1	-6 66848773	3 00343694	-3 08137647
⊥ 1	-7 10250770	5 37/36071	-2 53362448
T G	-1.55962164	1 40040775	-2.33302440 -2.35425150
0	-4.55662164	1.49040773	-2.55425150
9	-4.00010034 _2 20011070	1 20204/34	-2 02046050
9	-3.32311372 -5.41205140	1 04206338	-2.03040039
9	-5.41205140 -1.42261620	1.U42903U3 2 01005001	-3.202//UIS
9	-1.43361620	3.01225034	-2.5/222522
9	-0.96906510	4.63898498	-0.48/6439/

*** molecule **1i** rotamer A S_0 - dioxane 45

6	0.82278601	0.87101178	0.11210266
6	1.00975277	-0.25948396	0.86034495
16	2.33250377	1.43975126	-0.57519159
6	2.35136568	-0.69496145	0.91234772
1	0.21506430	-0.77717603	1.38145716
6	3.21660410	0.13520259	0.16689197
6	2.75005323	-1.81067307	1.69575688

7	3.03931683	-2.71448933	2.35020709
6	-0.38321652	1.60537542	-0.14054085
6	-1.62755791	1.24529024	0.37326723
6	-2.75291996	1.92798580	-0.06934617
1	-1.73705668	0.40417216	1.03890804
1	-3.73845362	1.58082131	0.22790088
8	-0.25115382	2.62856870	-0.93688253
5	-1.30046432	3.66427225	-1.11212508
7	-2.69044446	2.99661619	-0.84639419
6	-3.87470213	3.58577610	-1.35952933
6	-3.95463261	4.97747961	-1.46068455
6	-4.94217492	2.79143163	-1.77487088
6	-5.10861638	5.56329665	-1.95029862
1	-3.11983336	5.58887325	-1.14247194
6	-6.10209705	3.38298979	-2.25827413
1	-4.85764980	1.71150941	-1.75248107
6	-6.18296418	4.76614087	-2.34044840
1	-5.17800909	6.64265178	-2.02122900
1	-6.93016629	2.76543613	-2.58272344
6	-7.40463173	5.43131011	-2.89644152
9	-7.18784585	5.93813563	-4.12436964
9	-7.80664628	6.46139230	-2.13231632
9	-8.44465043	4.59250164	-3.00349695
9	-1.09531270	4.67649358	-0.17823832
9	-1.23863001	4.14662724	-2.40068525
7	4.52766008	0.03224654	-0.02647419
6	5.35388723	-1.11015262	0.40245627
6	5.30215748	1.03414325	-0.77082401
6	6.65280986	-0.89964012	-0.37506642
1	5.51411303	-1.07007479	1.48368574
6	6.74705496	0.62287583	-0.50011818
1	5.05515537	0.97632839	-1.83773771
1	7.50692498	-1.34363986	0.13456795
1	7.08394708	1.05916377	0.44332637
1	5.06686680	2.03853389	-0.41040453
1	4.85776800	-2.04930168	0.15657808
1	6.56751589	-1.35281927	-1.36579682
1	7.41984758	0.94917548	-1.29197725

*** molecule **1i** rotamer B S_0 - dioxane 45

6	0.77074972	0.86946907	0.22519888
6	2.03785562	1.21114629	-0.15878961
16	0.77449854	-0.60135028	1.18127119
6	3.03679833	0.32313014	0.29935977
1	2.25059298	2.09448268	-0.74635454
6	2.50912316	-0.73888713	1.06050429
6	4.41946033	0.55113219	0.06588645
7	5.53548818	0.76354945	-0.12816826
6	-0.43095658	1.59777721	-0.07108969
6	-1.68719917	1.24252428	0.41292863
6	-2.80484566	1.92725069	-0.05480673
1	-1.81695222	0.40464801	1.08101962
1	-3.79743311	1.58171157	0.22019993
8	-0.28023269	2.61167917	-0.87592606
5	-1.31562174	3.65339277	-1.06086661

7	-2.72013585	2.99433098	-0.82671236
6	-3.89012156	3.59716460	-1.35862753
6	-3.95488824	4.98762116	-1.45511689
6	-4.95918176	2.81284656	-1.79486012
6	-5.09721925	5.58947418	-1.95960008
1	-3.11917723	5.58973983	-1.12209231
6	-6.10400663	3.41840093	-2.28963192
1	-4.88484472	1.73214272	-1.77721054
6	-6.17208885	4.80528585	-2.36466698
1	-5.15287921	6.66888250	-2.02630389
1	-6.93562798	2.81262583	-2.62995730
6	-7.39428288	5.44294232	-2.95182032
9	-7.37128141	5.43492439	-4.29795240
9	-7.53291312	6.72251512	-2.57840889
9	-8.51870463	4.80145947	-2.59156444
9	-1.13037385	4.65688788	-0.11301788
9	-1.23055827	4.14698153	-2.34347385
7	3.12773396	-1.76313661	1.64052428
6	4.55364022	-2.09311849	1.46297820
6	2.42353468	-2.75311805	2.46539067
6	4.63594848	-3.52595252	1.98786370
1	4.83347822	-2.00811935	0.41286805
6	3.56170529	-3.56590545	3.07721491
1	1.80485375	-2.25112811	3.21350726
1	4.38502962	-4.22657595	1.18774232
1	3.24895524	-4.57639130	3.33701015
1	1.77759273	-3.37159963	1.83021886
1	5.17173731	-1.40665382	2.04845205
1	5.63216416	-3.76639157	2.35662013
1	3.92294565	-3.07094137	3.98180866
***	molecule 1j rotamer	A S_0 - dioxane	
4	8		
-			
6	0.86055628	0.98444396	0.16100630

0	0.00033020	0.90444390	0.10100030
6	1.04440625	-0.22336432	0.77534704
16	2.37884553	1.66478485	-0.37380692
6	2.39450415	-0.63601435	0.81660771
1	0.23996897	-0.83532405	1.16148354
6	3.27006527	0.28799394	0.21593745
6	2.77022012	-1.92811075	1.27137204
7	3.05820630	-2.98599256	1.62674129
6	5.31668942	1.17301440	-0.77770351
6	5.45379331	-0.37387143	1.12732606
6	6.54116155	0.51538455	-1.40971778
1	5.61157616	2.04392235	-0.17477982
1	4.64406303	1.51424958	-1.56487512
6	6.65733697	-1.07793005	0.51831420
1	5.78738305	0.44875674	1.77591161
1	4.87016706	-1.05792480	1.73500074
1	7.07584877	1.27014645	-1.99104292
1	6.19879086	-0.25602491	-2.10682787
1	7.27658746	-1.47328928	1.32668111
1	6.30592449	-1.92733436	-0.07585934
7	4.60700959	0.21369778	0.07388609
6	-0.36475772	1.68958931	-0.10412685
6	-1.60988891	1.25395077	0.33814681

6	-2.74545689	1.91836569	-0.11199010
1	-1.70989590	0.37237336	0.95102673
1	-3.72663151	1.51614528	0.12358637
8	-0.24071425	2.76113527	-0.83384990
5	-1.32269039	3.76497414	-0.99460000
7	-2.69544611	3.03077354	-0.82312462
6	-3.88260118	3.60606271	-1.34799932
6	-4.01026583	4.99415440	-1.38053810
6	-4.90662563	2.79529538	-1.84371412
6	-5.16965624	5.56821947	-1.88191399
1	-3.20993173	5.61751538	-1.00260795
6	-6.06730271	3.37145587	-2.33305338
1	-4.78264924	1.71954378	-1.87718650
6	-6.19722397	4.75711137	-2.34755061
1	-5.27303507	6.64572391	-1.90092605
1	-6.86283232	2.74498275	-2.72045250
6	-7.45767119	5.34806739	-2.90161522
9	-7.61119311	5.06909762	-4.20917790
9	-7.50084447	6.68032277	-2.77958768
9	-8.55076138	4.86082870	-2.28609323
9	-1.19685732	4.72717518	0.00340014
9	-1.22963469	4.32268047	-2.24966400
6	7.45241625	-0.11086223	-0.35673127
1	8.28635433	-0.62576698	-0.83834624
1	7.88093056	0.67810017	0.27239700

*** molecule **1j** rotamer B S₀ - dioxane 48

6	0.68705023	0.72302689	0.10323501
6	1.96392733	1.05150924	-0.25689085
16	0.65006025	-0.76709020	1.01492215
6	2.93554578	0.13641869	0.21039217
1	2.20520438	1.95049459	-0.80823885
6	2.38642909	-0.92698254	0.94257114
6	4.33143108	0.37217787	0.08855306
7	5.46346613	0.57025504	0.00672429
6	2.27954548	-2.84266519	2.44451808
6	4.13417963	-2.64326583	0.84192693
6	3.22821692	-3.43875931	3.48084758
1	1.78359829	-3.64035126	1.87162698
1	1.51298022	-2.25509077	2.95088718
6	5.11597483	-3.21534425	1.85358790
1	3.70742180	-3.45214481	0.23143242
1	4.63064796	-1.94828871	0.17174016
1	2.66007095	-4.11996655	4.11861656
1	3.60239976	-2.62790916	4.11367996
1	5.90817913	-3.73760704	1.31230360
1	5.57949280	-2.38978866	2.40272178
7	3.01394150	-1.96899001	1.52551737
6	-0.49584638	1.50168865	-0.16281267
6	-1.74940401	1.19919169	0.35579291
6	-2.85146854	1.92902339	-0.08554498
1	-1.89493234	0.37052159	1.03177170
1	-3.85024464	1.62290433	0.21314651
8	-0.32279659	2.50563516	-0.97405687
5	-1.31755664	3.59151396	-1.13217554

7 6 6 6 6 1 6 1 6 1 6 9 9 9 9 9 9 9 9 9 9	-2.74230706 -3.90076503 -3.91918247 -5.00382685 -5.05071423 -3.05677843 -6.13534704 -4.96525711 -6.15731264 -5.07024351 -6.99247958 -7.38666051 -7.56738742 -7.35085660 -8.49995647 -1.06441853 -1.24702293 4.40097218 5.09381235 4.03138257	2.99000496 3.63659638 5.02756181 2.88967703 5.67055125 5.59980309 3.53512911 1.80717652 4.92488126 6.75112533 2.95797661 5.59203942 5.33330997 6.92354501 5.16383571 4.58344361 4.08119307 -4.15816036 -4.52750516 -5.03097803	-0.86016937 -1.36769621 -1.45887976 -1.78610839 -1.93991804 -1.14129903 -2.25733252 -1.77275812 -2.32782806 -2.00325172 -2.58513428 -2.86580003 -4.17401379 -2.73386221 -2.24343209 -0.18935910 -2.41628307 2.81922690 3.57814488 2.26819549
47	orecure La rotamer	A S _{1r} - GIOXalle	
6 6 16 6 1 6	0.82827932 1.02237531 2.35534052 2.37131237 0.22190883 3.25001008	0.90368932 -0.30305646 1.56753172 -0.69428683 -0.90080042 0.22070244	0.07081338 0.74001428 -0.48563961 0.80131059 1.15200883 0.18458001
6 7 6 6	2.75038268 3.02721987 5.30266941 5.45155505 6.57469090	-1.95343199 -2.99077094 1.14903052 -0.43861860 0.52312198	1.33436264 1.75830529 -0.75653218 1.08579958 -1.31550323
1 1 6 1 1	5.55097349 4.66998820 6.71148463 5.71714771 4.93019133	2.03118148 1.46046200 -0.99232769 0.33663221 -1.23711655	-0.15107691 -1.58866994 0.44051399 1.81693998 1.60548508
1 1 1 7	7.15601093 6.30924825 7.39455842 6.45282810 4.59257948	1.28234817 -0.27353683 -1.34594465 -1.83360355 0.17086306	-1.83914412 -2.02492802 1.21283660 -0.21753228 0.06491113
8 6 6 1	7.39331057 -0.35298426 -1.63453510 -2.77232848 -1.72786965	0.00544427 1.61266466 1.15917982 1.84035348 0.26509291	-0.29089966 -0.20743117 0.19414612 -0.16807696 0.79382267
1 8 5 7	-3.74395878 -0.22684372 -1.30419026 -2.70782664	1.48562121 2.72939811 3.72413271 3.01568538	0.14836534 -0.90769584 -1.00634230 -0.86186638

3.60011080

4.99005810

2.84398257

-1.34078311

-1.58363504

-1.59789047

6

6

6

-3.85970072

-3.90798679

-5.02951778

6	-5.05966357	5.59623188	-2.04077576
1	-3.03592789	5.59576451	-1.38274077
6	-6.17445507	3.44875766	-2.05803062
1	-5.01849591	1.76755421	-1.48371914
6	-6.20878606	4.83261738	-2.28122589
1	-5.05736470	6.66628636	-2.19912952
1	-7.06186288	2.86621028	-2.27407911
8	-7.37555785	5.32937739	-2.72729933
6	-7.46946925	6.72048673	-2.98913139
1	-8.48463124	6.88870670	-3.34172423
1	-7.29780523	7.30429908	-2.07966408
1	-6.75879856	7.02373690	-3.76396229
9	-1.20273499	4.32980750	-2.25343062
9	-1.17668126	4.67071024	0.02184541

*** molecule **1a** rotamer B S_{1r} - dioxane 47

6 0.88790714 1.05655736 0.10738840 6 1.01057229 -0.21260186 0.65871789 -0.35191029 2.46643529 1.68657169 16 6 2.33439455 -0.685940120.68854293 0.99433020 -0.78209005 1 0.15604513 6 3.27317027 0.22826272 0.17533675 -2.01024682 1.09180298 6 2.64861668 7 2.88648547 -3.09442869 1.40709724 6 5.38203839 1.10256891 -0.68360359 6 5.41767280 -0.58287033 1.07681494 -1.232699126 6.65255114 0.46516629 1.94560063 -0.02677612 1 5.63894578 1 4.78603005 1.47460944 -1.51852104 -1.14232670 6 6.68128572 0.44517560 1 5.68046993 0.14162490 1.85957380 1 4.85212148 -1.39137781 1.53154748 1 7.27543930 1.23001843 -1.69721230 1 6.38676649 -0.28558207-1.99035356 1 7.32666602 -1.55757181 1.21916515 -1.93888976 -0.26524561 1 6.42013232 7 0.10701961 0.05981081 4.61474628 8 7.41849484 -0.12973901 -0.20962954 6 -0.30810568 1.77723868 -0.08875790 6 -0.36271262 3.06523319 -0.67588960 -1.54911456 3.75028725 -0.78684428 6 1 0.53967465 3.52740609 -1.053644681 -1.57347285 4.72795396 -1.24800012 8 -1.41573817 1.19684868 0.34127588 5 -2.75099301 1.63564838 -0.076812247 -0.40917275 -2.73656939 3.18050692 6 -3.89095235 3.92417389 -0.41322529 6 -5.15077963 3.28879303 -0.51666340 6 -3.87211330 5.34008211 -0.32372738 6 -6.31944248 4.01828945 -0.54273161 1 -5.19698477 2.21289988 -0.60461689 6 -5.03859636 6.06415183 -0.34374673 1 5.86501453 -0.18437481 -2.93596295 6 -6.27827536 5.41688152 -0.45858614 -7.25996850 1 3.49250231 -0.63806946

1 8 1 1 9 9	-5.02422045 -7.35854592 -8.64509115 -9.35299323 -8.75166004 -8.83755785 -3.62456219 -3.14842789	7.14356887 6.21354569 5.62168080 6.44728434 5.06464572 4.96052382 1.38724177 0.94032757	-0.25375199 -0.47477700 -0.57135396 -0.55757463 -1.50702785 0.27877231 0.97684233 -1.22965926
*** 43	molecule 1b rotamer	A S_{1r} - dioxane	
6	0.83774337	0.92408171	0.07753378
6	1.03381847	-0.28506374	0.75416592
16	2.36003550	1.59843205	-0.47553974
6	2.38192657	-0.66283335	0.83054274
1	0.23329202	-0.88629549	1.16037885
6	3.26218766	0.26297753	0.21994777
6	2.76349901	-1.91811895	1.37078590
7	3.03843344	-2.95355439	1.80017962
6	5 32806302	1 10121761	-0 70000006

1	0.23329202	-0.88629549	1.16037885
6	3.26218766	0.26297753	0.21994777
6	2.76349901	-1.91811895	1.37078590
7	3.03843344	-2.95355439	1.80017962
6	5.32806302	1.19124764	-0.70923206
6	5.46996469	-0.43669069	1.09665511
6	6.52980420	0.49791063	-1.34349887
1	5.66066632	2.03640293	-0.09360679
1	4.67802477	1.56542799	-1.50025770
6	6.65927259	-1.05786770	0.38003383
1	5.82097806	0.31720971	1.81297910
1	4.92674847	-1.20179551	1.64239699
1	7.13098986	1.23089509	-1.88180004
1	6.17902229	-0.26470345	-2.05308843
1	7.35669925	-1.46498646	1.11196011
1	6.31587535	-1.87095379	-0.27448281
7	4.60066004	0.23880710	0.12858249
8	7.36254390	-0.09013649	-0.37028344
6	-0.34473918	1.62810417	-0.20355228
6	-1.62390162	1.16282512	0.18826391
6	-2.76517631	1.84615308	-0.17783472
1	-1.71880752	0.26069549	0.77524889
1	-3.73904891	1.47274780	0.11144354
8	-0.22235546	2.74455040	-0.90532625
5	-1.29767366	3.74440714	-0.97317232
7	-2.70113054	3.02417063	-0.84641294
6	-3.86012160	3.61733092	-1.32516795
6	-3.92354936	5.01575880	-1.48541220
6	-4.99433190	2.85066042	-1.65538187
6	-5.07964628	5.61933866	-1.93729041
1	-3.06853406	5.62474584	-1.22797626
6	-6.15053881	3.45730532	-2.11104994
1	-4.95838209	1.76971698	-1.60504284
6	-6.19079584	4.83966510	-2.24573819
1	-5.12397570	6.69585375	-2.04396067
1	-7.01203383	2.85827502	-2.37828736
17	-7.64958459	5.60660481	-2.81634730
9	-1.20326953	4.38697276	-2.19833341
9	-1.17566700	4.65301905	0.08740256

***	molecule	1b	rotamer	В	$S_{1\mathrm{r}}$	-	dioxane
43	3						

6	0.70026847	0.76002239	0.11614237
6	2.00629434	1.06569120	-0.27147585
16	0.65711870	-0.73774978	1.04178535
6	2.95231045	0.13416646	0.17560566
1	2.24788499	1.95616086	-0.83321179
6	2.39243307	-0.93880032	0.90713550
6	4.34595268	0.34031744	0.00081835
7	5.47566229	0.53207351	-0.13310088
6	2.28572600	-2.89174523	2.37668408
6	4.19446695	-2.63207087	0.88318114
6	3.26014122	-3.42040950	3.42490796
1	1.84305166	-3.72726859	1.81858755
1	1.49064776	-2.34029064	2.87982863
6	5.07962764	-3.16622684	1.99797601
1	3.86811625	-3.45891938	0.23894985
1	4.75016814	-1.92294114	0.27708591
1	2.75916586	-4.16066776	4.04915711
1	3.59862708	-2.58980186	4.06004225
1	5.91278842	-3.72382951	1.57069551
1	5.47728078	-2.33059479	2.59015751
7	2.99534573	-2.00840376	1.45422253
8	4.36600644	-4.05869648	2.82908070
6	-0.45543138	1.51339609	-0.16891029
6	-1.75552602	1.14120378	0.25094970
6	-2.86133789	1.87465453	-0.12616402
1	-1.89980062	0.26900245	0.87446710
1	-3.85090509	1.56652989	0.18452317
8	-0.28051984	2.59711680	-0.90683983
5	-1.28951227	3.66000095	-0.97905061
7	-2.73582844	3.03103146	-0.82846367
6	-3.85998637	3.67682145	-1.31143205
6	-3.83756787	5.07061511	-1.52861521
6	-5.04918253	2.97286317	-1.59234190
6	-4.95997244	5.72852730	-1.98720494
1	-2.94116178	5.63307308	-1.30977840
6	-6.17067188	3.63429480	-2.05615217
1	-5.08288290	1.89491767	-1.49781797
6	-6.12440297	5.01033358	-2.24742413
1	-4.93747589	6.80054300	-2.13713364
1	-7.07356876	3.08257579	-2.28597529
17	-7.54018809	5.84601036	-2.82680287
9	-1.16834698	4.27696850	-2.21521631
9	-1.10486979	4.57615660	0.06627063

*** molecule 1c rotamer A S_{1r} - dioxane 44

6	0.83861845	0.92138131	0.06567771
6	1.03629683	-0.28297948	0.75143508
16	2.35844242	1.60378312	-0.47936974
6	2.38513144	-0.65030092	0.84427874
1	0.23594272	-0.88700064	1.15378569
6	3.26525033	0.27996550	0.23581038
6	2.76857236	-1.89909258	1.39786593

7	3.04310288	-2.92995249	1.83817012
6	5.33624928	1.21450893	-0.68070991
6	5.47302328	-0.42484369	1.11447668
6	6.51318143	0.49889472	-1.33808459
1	5.69637450	2.04542777	-0.06213553
1	4.68308436	1.61031383	-1.45817766
6	6.63785913	-1.06822470	0.37631224
1	5.85140685	0.32238527	1.82327377
1	4.92315263	-1.17742374	1.67047747
1	7.12088644	1.22233552	-1.88187321
1	6.13482585	-0.25172863	-2.04621327
1	7.33817022	-1.49212184	1.09576495
1	6.26742115	-1.87177553	-0.27512055
7	4.60219505	0.27111337	0.16247191
8	7.34800058	-0.11150168	-0.38105075
6	-0.34703816	1.61905371	-0.22704178
6	-1.62479891	1.15113332	0.15703436
6	-2.76687629	1.83172901	-0.21610663
1	-1.72218759	0.24795322	0.74197026
1	-3.74081247	1.45237521	0.06476188
8	-0.22329596	2.73142980	-0.93415550
5	-1.29541451	3.73317678	-1.00413915
7	-2.70287546	3.00991351	-0.88152489
6	-3.85945471	3.60391667	-1.36149812
6	-3.91884140	5.00374222	-1.51959948
6	-4.99358263	2.83462899	-1.69257122
6	-5.07364122	5.60587327	-1.96770845
1	-3.06238299	5.60978866	-1.26127447
6	-6.14610753	3.44221206	-2.14519615
1	-4.95560183	1.75401756	-1.64315574
6	-6.20028092	4.83351512	-2.28151555
1	-5.11412888	6.68323600	-2.07090359
1	-7.00626194	2.84027046	-2.41180331
9	-1.20029598	4.37457764	-2.22799542
9	-1.18117478	4.63731583	0.05866857
6	-7.39672646	5.46107875	-2.74557580
7	-8.36402291	5.96606665	-3.11896488

*** molecule $\mathbf{1c}$ rotamer B S_{1r} - dioxane

44

6	0.89230059	1.07510566	0.13433547
6	1.04261240	-0.16747620	0.75582337
16	2.44763841	1.70410955	-0.39613593
6	2.36923214	-0.61123809	0.79933542
1	0.20059134	-0.72893524	1.13351826
6	3.29169726	0.29736554	0.22452778
6	2.70606543	-1.90631338	1.27300091
7	2.95524942	-2.96929088	1.64542331
6	5.38843773	1.14639826	-0.70725824
6	5.46884855	-0.51385375	1.07731915
6	6.56002174	0.41241450	-1.35348564
1	5.75751482	1.97089557	-0.08415106
1	4.74952864	1.55273434	-1.49188889
6	6.63068952	-1.17054980	0.34795487
1	5.85061843	0.21333073	1.80537633
1	4.89380513	-1.26445792	1.61064386

1	7.18872090	1.12706212	-1.88505793
⊥ 1	7 21296244	-0.52000004 -1.61562769	-2.07003413
⊥ 1	6 25/69682	-1.01303700	_0 31783275
⊥ 7	A 62617142	0 21/58659	0.12207596
7 Q	7 3606/70/	_0 21885133	_0.38913280
6	-0 32056039	1 76702760	-0.06182076
6	-0.32030039	3 03645606	-0.679/9883
6	-1 61333574	3 70075596	-0.77102291
1	0 47844343	3 51093744	-1 08222585
1	-1 65827654	4 68412062	-1 22321520
2	-1 40775196	1 18556974	0 41495354
5	-2 75201843	1 56923517	-0 02741624
5 7	-2 77190700	3 11946233	-0 37467724
6	-3 94950444	3 84506533	-0 36281686
6	-5 18708072	3 18230152	-0.50201000
6	-3 94506023	5 24847718	-0 21495482
6	-6 36305793	3 89803050	-0.52531831
1	-5 20870844	2 10909208	-0.63080500
6	-5 12633093	5 95930313	-0.22769892
1	-3 01774730	5 77746950	-0 03692261
÷	-6 34648935	5 29336319	-0.38944412
1	-7 30614607	3 38089420	-0 65250246
1	-5 11247106	7 03436034	-0 09590740
9	-3 63302279	1 30867788	1 00934038
9	-3 10285449	0 86739855	-1 18726653
6	-7.56772720	6.03364208	-0.40789894
7	-8.55230922	6.63418452	-0.42357057
•	0.00200922	0.00110101	0.1200/00/

*** molecule ${\bf 1d}$ rotamer A $S_{\rm lr}$ - dioxane 46

6	0.84539426	0.92244594	0.07307348
6	1.04905924	-0.26576025	0.78780664
16	2.36039521	1.59022868	-0.50409369
6	2.39890447	-0.62959463	0.87760233
1	0.25215564	-0.85951031	1.21154127
6	3.27353734	0.28543512	0.23919052
6	2.79022445	-1.86411006	1.45723166
7	3.07330606	-2.88338583	1.91861791
6	5.33821237	1.18909049	-0.72296904
6	5.48873529	-0.38663661	1.12610988
6	6.50681257	0.44811369	-1.36718906
1	5.70705245	2.03870688	-0.13567039
1	4.67843092	1.56105511	-1.50656324
6	6.64485559	-1.05900004	0.40005959
1	5.87585271	0.38520421	1.80321321
1	4.94270950	-1.11677960	1.71489799
1	7.11117329	1.15064268	-1.94133442
1	6.11951808	-0.32525399	-2.04536375
1	7.35156930	-1.45880859	1.12702099
1	6.26603338	-1.88419408	-0.21870150
7	4.61037080	0.27615759	0.15796021
8	7.34960304	-0.13156430	-0.39795722
6	-0.34159588	1.61278138	-0.22567598
6	-1.61649854	1.15389935	0.18307105
6	-2.76145613	1.82632077	-0.19784141

1	-1.70811156	0.26586927	0.79162278
1	-3.73413518	1.45394894	0.09761365
8	-0.22485175	2.70726196	-0.96197315
5	-1.29968781	3.70682692	-1.04273450
7	-2.70192985	2.98626546	-0.89128989
6	-3.86653558	3.57006462	-1.37699245
6	-3.93502932	4.96640650	-1.54427735
6	-4.99205846	2.79261970	-1.70236183
6	-5.09579013	5.55487649	-2.00055289
1	-3.08257950	5.57973452	-1.28894339
6	-6.15058871	3.39244142	-2.16225628
1	-4.94756502	1.71258346	-1.64258308
6	-6.21153831	4.77426402	-2.30570318
1	-5.13959290	6.63200955	-2.10862258
1	-7.00479712	2.77890210	-2.41988984
6	-7.44503244	5.43280916	-2.84543448
9	-7.31943026	5.74254599	-4.15407686
9	-7.72215132	6.58662945	-2.21005282
9	-8.53379236	4.65264185	-2.73928908
9	-1.17216776	4.63395009	0.00014588
9	-1.21655360	4.32445021	-2.28005466

*** molecule $\mathbf{1d}$ rotamer B S_{1r} - dioxane 46

6	0.68906464	0.71691592	0.08398201
6	1.99179456	1.01872281	-0.32747579
16	0.65954888	-0.75435177	1.05055949
6	2.94424051	0.10093082	0.12841019
1	2.22263007	1.89657335	-0.91295805
6	2.39503433	-0.95865179	0.89186703
6	4.33499811	0.30769569	-0.06731947
7	5.46189342	0.50181550	-0.21945249
6	2.32201703	-2.87487927	2.41549666
6	4.22233081	-2.63041971	0.91013224
6	3.31360910	-3.30618417	3.49316371
1	1.91689264	-3.75574229	1.90165325
1	1.50304839	-2.32920514	2.88479557
6	5.12631419	-3.06594975	2.05330372
1	3.92223490	-3.50608155	0.32060112
1	4.74993145	-1.94164027	0.25769184
1	2.83897426	-4.02880788	4.15732546
1	3.61802298	-2.42881665	4.08079504
1	5.97947721	-3.61662489	1.65788911
1	5.49280630	-2.18339402	2.59531197
7	3.00206172	-2.01810284	1.44627569
8	4.44389956	-3.93433318	2.93425929
6	-0.47233293	1.45880183	-0.21127478
6	-1.76649913	1.09194918	0.22690337
6	-2.87702568	1.81717104	-0.15928050
1	-1.90579292	0.23122746	0.86717759
1	-3.86537679	1.50716812	0.15459514
8	-0.30571761	2.52396965	-0.97751457
5	-1.31380235	3.58809243	-1.05322750
7	-2.75817337	2.95874839	-0.87800861
6	-3.89048653	3.59864498	-1.36264413
6	-3.87803600	4.99290754	-1.56606136

6	-5.06664919	2.88283762	-1.65283580
6	-5.00732141	5.63784001	-2.02344927
1	-2.98759778	5.56067521	-1.33695980
6	-6.19266992	3.53933954	-2.11540774
1	-5.08676480	1.80402543	-1.56467213
6	-6.17217966	4.91811389	-2.29515830
1	-4.98814140	6.71260162	-2.15931770
1	-7.08554509	2.97225077	-2.34683122
6	-7.37073958	5.63922936	-2.83353912
9	-7.22437902	5.95593873	-4.13803363
9	-7.59518969	6.79895786	-2.18738970
9	-8.49600749	4.91136837	-2.73905984
9	-1.11861767	4.51489684	-0.01997840
9	-1.20860083	4.18902202	-2.29713531

*** molecule 1e rotamer A S_{1r} - dioxane 51

6	0.80782414	0.82349309	-0.00480277
6	1.00453020	-0.40283821	0.60755913
16	2.33899020	1.53255714	-0.48646452
6	2.36297566	-0.78040446	0.68072049
1	0.20444084	-1.03278930	0.96993984
6	3.23626272	0.16850631	0.12964735
6	2.75843805	-2.05526469	1.16170006
7	3.05862570	-3.10330727	1.54162056
6	5.28685127	1.16509835	-0.72479050
6	5.40371141	-0.39709434	1.13718329
6	6.65178029	0.65221355	-1.16276179
1	5.40581304	2.06974105	-0.11092312
1	4.70624669	1.41899745	-1.61337405
6	6.75937616	-0.84060743	0.61450126
1	5.53366972	0.39497391	1.88792319
1	4.90967367	-1.24218335	1.60958936
1	7.21122542	1.45703028	-1.64029949
1	6.52067844	-0.16664530	-1.88448848
1	7.39869177	-1.13197179	1.44804806
1	6.63391067	-1.70257249	-0.05573912
7	4.59131652	0.12887145	0.03375428
8	7.41852273	0.20889469	-0.06472119
6	-0.38220788	1.53023417	-0.28560309
6	-1.66377357	1.06471973	0.08244653
6	-2.79705927	1.74727282	-0.27594908
1	-1.76005390	0.15733766	0.66168526
1	-3.76944424	1.39570590	0.04007999
8	-0.24600285	2.66987411	-0.94580905
5	-1.32953508	3.65454170	-1.07109597
7	-2.72847144	2.94572070	-0.95264058
6	-3.86970361	3.52762328	-1.43080544
6	-3.90968423	4.91861421	-1.71939596
6	-5.06104726	2.78972902	-1.65459375
6	-5.04833031	5.52025524	-2.17910349
1	-3.02723334	5.51847207	-1.54946255
6	-6.20282658	3.39088638	-2.12186306
1	-5.06970640	1.71768055	-1.50743748
6	-6.24314986	4.78138558	-2.39642888
1	-5.02517151	6.58507388	-2.36501593

1	-7.07355600	2.77407059	-2.29678296
9	-1.21907788	4.61552241	-0.05185678
9	-1.20354737	4.25537073	-2.32314158
7	-7.37347061	5.38305457	-2.84943671
6	-7.37764132	6.80285731	-3.15739890
1	-6.63883482	7.04467696	-3.92813652
1	-8.36018479	7.08328630	-3.52992780
1	-7.16513654	7.40482610	-2.26779512
6	-8.58644817	4.61063539	-3.04997141
1	-8.44861148	3.84031799	-3.81656135
1	-8.90604827	4.12688889	-2.12139371
1	-9.38290967	5.27555587	-3.37586240

*** molecule 1e rotamer B S_{1r} - dioxane 51

6	0 71863318	0 81053766	0 16628890
6	2.01331556	1,20335941	-0.11276332
16	0.71184927	-0.72899027	1.01466802
6	2,99099807	0.30717951	0.37416421
1	2,24161362	2,12863569	-0.62163352
6	2.45510214	-0.81079495	1,02095016
6	4.38102057	0.58680084	0.30649196
7	5.50927895	0.82529354	0.26157661
6	2.34710942	-2.81676765	2,39571612
6	4,24065546	-2.48598995	0.90400550
6	3,29020901	-3.56163289	3,33089139
1	1.82548519	-3.53387325	1.74409044
1	1.60673389	-2.28297637	2.99468249
6	5.09753138	-3.24126213	1.90497114
1	3.85519984	-3.17904774	0.14291104
1	4.84841872	-1.73257998	0.40877962
1	2.74461035	-4.34400245	3.85933591
1	3.70579667	-2.85867416	4.06676373
1	5.88019027	-3.79076530	1.38172707
1	5.56569715	-2.53167809	2.60136137
7	3.10489421	-1.86087862	1.59429538
8	4.33446287	-4.19154784	2.62207107
6	-0.46856889	1.51458388	-0.15227337
6	-1.76319470	1.07663722	0.19918712
6	-2.88242630	1.76251820	-0.19852245
1	-1.88701083	0.18543877	0.80014654
1	-3.86458798	1.43158975	0.10886331
8	-0.30673661	2.63001709	-0.84334807
5	-1.36959249	3.62790037	-1.00698017
7	-2.78362031	2.94618039	-0.89973038
6	-3.90667060	3.53592271	-1.40608355
6	-3.91510917	4.91962886	-1.73566017
6	-5.11133072	2.81541979	-1.62320863
6	-5.03357580	5.52872255	-2.23117220
1	-3.02300164	5.50623300	-1.57064277
6	-6.23285377	3.42448125	-2.12644115
1	-5.14486436	1.74925408	-1.44178275
6	-6.23997089	4.80647115	-2.44589407
1	-4.98625770	6.58667760	-2.44875737
1	-7.11420373	2.82089124	-2.29402372
9	-1.26411449	4.60915142	-0.00591922

9	-1.21335912	4.20133926	-2.26897663
7	-7.34937343	5.41550201	-2.93653802
6	-7.31974269	6.82466083	-3.29060132
1	-6 56429738	7 02576153	-4 05673530
1	-8 29052822	7 11198478	-3 68765681
1	-7 10979104	7 45064044	-2 1755511
	-/.100/0104	1.45004044	-2.417JJJ14
0	-8.37441036	4.00130232	-3.13546501
Ţ	-8.43/59/6/	3.8638/36/	-3.8/381009
Ţ	-8.92115707	4.21519106	-2.19/98469
Ţ	-9.35043858	5.33117024	-3.49832193
*** ma	olecule 25A S1r -	- dioxane	
46			
6	0.92954407	1.09486346	0.29776769
6	1.17592042	-0.06485093	1.05322134
16	2.41165500	1.77024361	-0.34913941
6	2.53422312	-0.39921282	1.11504972
1	0.40175090	-0.65921331	1.51583108
- 6	3 37282221	0 50906169	0 41970467
6	2 96404098	-1 60694602	1 72430296
0 7	2.70404070	-2 60624140	2 21005502
C I	5.2/4/0059	1 22275022	2.21003303
0	5.40146426	1.233/5023	-0./65/6548
6	5.62724568	-0.26788628	1.11221649
6	6.09748104	0.17876939	-1.62940595
1	6.14005306	1.91512650	-0.33375139
1	4.70348345	1.81053237	-1.37096528
6	6.31445403	-1.27545647	0.19422608
1	6.37671192	0.40940523	1.53462897
1	5.11407815	-0.76044247	1.93198687
1	6.69442688	0.66531133	-2.40117360
1	5.33760916	-0.45368725	-2.11036996
1	7.07120386	-1.83201354	0.74676878
1	5.57234123	-1,98183719	-0.20313041
7	4.70668549	0.54906619	0.32438684
8	6 97860429	-0 60957906	-0.86070986
6	-0 27991804	1 74168122	-0 00258053
6	-1 53454331	1 25809452	0.44181787
6	-2 70230423	1 86340237	0.01620335
1	_1 593/0029	1.00540257	1 08867803
1	-1.59540029	1 44002422	1.00007003
1 O	-3.66575696	1.44992425	0.20015009
8	-0.20436549	2.81088312	-0./8312094
5	-1.31536962	3.//21/894	-0.85209479
/	-2.6/5/6/23	2.98307465	-0.72992560
6	-3.85266872	3.51095457	-1.27917329
6	-4.08617940	4.88426114	-1.11614345
6	-4.80436960	2.74569993	-1.98720749
6	-5.24845351	5.47046556	-1.57927279
1	-3.34597095	5.47139257	-0.58835244
6	-5.97496291	3.35306728	-2.43747698
6	-6.20953358	4.70262442	-2.22861154
1	-5.40848327	6.53102628	-1.42404366
1	-6.69897499	2.76307143	-2.98442645
1	-7.12631447	5.15313248	-2.58869196
- 6	-4.59959157	1.29822900	-2.35938170
Ğ	-4,98919345	0.44735199	-1,37729480
G	-3 30326710	1 00103672	-2 64306484
)	J.JZJUU/IZ	T.00T00012	2.01300104

9	-5.32125532	0.95950423	-3.44067799
9	-1.25840124	4.43076694	-2.06732953
9	-1.22722857	4.67567845	0.22105384

*** molecule 25B S1r - dioxane

46

C	0 (5050330	0 00104001	0 10046204
6	0.65859330	0.62164381	0.12946384
6	1.94979687	0.84918323	-0.37417950
16	0.61575692	-0.81658763	1.14315372
6	2.87881613	-0.10798009	0.04140114
1	2.18479468	1.70176525	-0.99384966
6	2.32640295	-1.12401103	0.86246598
6	4 26474764	0 01810598	-0.24093201
7	5 30023105	0 14505654	-0 /5055037
ć	2 20220201	0.1747076	-0.43933937
6	2.38338291	-2.91/4/2/5	2.544/2133
6	4.12/19160	-2.835/1199	0.86185959
6	3.48769513	-2.95258365	3.60387540
1	2.09723788	-3.93656965	2.26422077
1	1.51090960	-2.39956555	2.94179028
6	5.16656413	-2.87302714	1.97669512
1	3.88020460	-3.85996478	0.55988774
1	4.50036102	-2.30499048	-0.00862616
1	3.16079618	-3.54527898	4.45871770
1	3 69984589	-1 92751514	3 93942903
1	6 05082980	-3 41680237	1 64528058
1	5 45867232	_1 8/03008/	2 24788651
⊥ 7	2.43007232	-1.04950004	2.24/000JI 1.26/00775
/	2.89645587	-2.22580805	1.36408773
8	4.65813557	-3.55/88069	3.10414058
6	-0.48417387	1.40653149	-0.12149451
6	-1.76724468	1.10245571	0.39111831
6	-2.86734718	1.84615001	0.00671334
1	-1.90976342	0.26951843	1.06609171
1	-3.86150602	1.56195724	0.32658365
8	-0.31091370	2.44803880	-0.92121573
5	-1.28298397	3.54892934	-0.93914602
7	-2.73083568	2.94815550	-0.75470773
6	-3.85150240	3.62162877	-1.25634624
6	-3 89013799	5 01644110	-1 10858842
6	-1 93322300	2 00257103	-1 00256578
C	-4.95522500		-1.90230370
0	-4.98536972	5./4861443	-1.52408922
Ţ	-3.05203641	5.50453757	-0.62864157
6	-6.03314491	3.73849822	-2.30516166
6	-6.07339592	5.10982381	-2.11006683
1	-4.99327158	6.82286316	-1.38116456
1	-6.85726850	3.24590918	-2.80475629
1	-6.93881912	5.67568506	-2.43244173
6	-4.94522337	1.51792718	-2.25970579
9	-5.39808335	0.73765080	-1.24585202
9	-3.73777843	1.04575018	-2.59881669
9	-5.75919326	1.26951918	-3.29919112
g	-1 19422476	4 20200871	-2 15550426
a	-1 02050570	Λ Λ2711670	0 120/60/5
3	-I.02920219	4.42/110/9	0.12940043

*** molecule **1i** rotamer A S_{1r} - dioxane 45

6	0.80927843	0.82487561	0.02002064
6	0.99504058	-0.34378263	0.77122769
16	2.33080728	1.42788728	-0.61518153
6	2.33570190	-0.74772174	0.84386978
1	0.19335417	-0.88132714	1.25661133
6	3.21347980	0.10976874	0.13084541
6	2.73076993	-1.88397152	1.59536265
7	3.00529577	-2.81160318	2.22517298
6	-0.36533946	1.53949888	-0.27635575
6	-1.63757399	1.14762161	0.19942330
6	-2.77275559	1.84533903	-0.16760252
1	-1.73727432	0.29052263	0.84963649
1	-3.74570915	1.52048432	0.17838075
8	-0.23883720	2.59314303	-1.07094157
5	-1.27788471	3.62762531	-1.15537435
7	-2.69946546	2.97029047	-0.91482110
6	-3.86118198	3.57558980	-1.38100734
6	-3.88812258	4.96407407	-1.60973119
6	-5.02605916	2.82643285	-1.62666300
6	-5.04508610	5.57439280	-2.04879430
1	-3.00607565	5.55731324	-1.41488119
6	-6.17979611	3.44723024	-2.06846850
1	-5.01743614	1.74931545	-1.51816555
6	-6.19871709	4.82320901	-2.27353380
1	-5.05500532	6.64629966	-2.20498242
1	-7.06501239	2.85452211	-2.26365393
6	-7.43205924	5.49054460	-2.80153102
9	-7.41145049	5.59780460	-4.14840064
9	-7.57935052	6.73970728	-2.32516519
9	-8.55283787	4.81497389	-2.49168706
9	-1.07485964	4.59751845	-0.16353687
9	-1.22403801	4.18576503	-2.42292558
7	4.52973669	0.02918640	-0.02999108
6	5.37344429	-1.07683782	0.44801270
6	5.31206770	1.04832269	-0.74304182
6	6.70990689	-0.82830982	-0.24794538
1	5.46469345	-1.02429959	1.53767228
6	6.75487831	0.69315460	-0.39863922
1	5.12150973	0.96904428	-1.82017063
1	7.54425360	-1.22770831	0.32780393
1	7.03869467	1.16214969	0.54705119
1	5.02305679	2.04863588	-0.41188651
1	4.92668580	-2.03645787	0.18545714
1	6.71304391	-1.30712165	-1.23074228
1	7.44955341	1.02806607	-1.16836687

*** molecule **1i** rotamer B S_{1r} - dioxane 45

6	0.76216625	0.85574660	0.18569614
6	2.06103909	1.20482667	-0.19740662
16	0.76596416	-0.61228673	1.16117723
6	3.04065036	0.32469842	0.28045529
1	2.26863646	2.08205719	-0.79245853
6	2.50819191	-0.74522800	1.04512270
6	4.42315538	0.54130976	0.04509038

7	5.53847941	0.75548728	-0.15896662
6	-0.42090383	1.55312490	-0.13834956
6	-1.70988646	1.13720669	0.26276828
6	-2.83653095	1.82584639	-0.14580555
1	-1.83504001	0.26427997	0.88947108
1	-3.82075910	1.47999364	0.14253857
8	-0.27281813	2.62639342	-0.89989840
5	-1.31456128	3.65421073	-0.99322278
7	-2.74017821	2.97455176	-0.85716907
6	-3.88139254	3.57605955	-1.36888337
6	-3.91283727	4.97050392	-1.56923414
6	-5.02509841	2.82136861	-1.68926789
6	-5.05215120	5.57755548	-2.05302382
1	-3.04840202	5.56811660	-1.31764539
6	-6.16146060	3.44004414	-2.17798352
1	-5.01027364	1.74229755	-1.60359503
6	-6.18483948	4.81928965	-2.35448640
1	-5.06638093	6.65274805	-2.18614024
1	-7.02825057	2.84291121	-2.43217045
6	-7.39365586	5.49820010	-2.92257014
9	-7.23616474	5.79962937	-4.22986455
9	-7.66176947	6.66083583	-2.29848146
9	-8.49988530	4.74017845	-2.83514648
9	-1.17810762	4.58198620	0.04989387
9	-1.19993343	4.26849208	-2.23064261
7	3.12794861	-1.76729087	1.62705655
6	4.55745657	-2.08304237	1.48036195
6	2.43185493	-2.74824120	2.46956172
6	4.66353279	-3.49799393	2.04431177
1	4.85568949	-2.01636943	0.43357975
6	3.56913593	-3.53671101	3.11218011
1	1.79568116	-2.23902480	3.19813522
1	4.45387369	-4.22891886	1.25884666
1	3.26258898	-4.54836292	3.37657977
1	1.80022460	-3.38896997	1.84145310
1	5.15376161	-1.36899838	2.05726705
1	5.65790026	-3.70011412	2.44126437
1	3.90570910	-3.03154792	4.02114990

*** molecule ${\bf 1j}$ rotamer A $S_{\rm lr}$ - dioxane 48

6	0.96016109	1.09898361	0.33017671
6	1.18742555	-0.12533550	0.97239255
16	2.46524933	1.88136659	-0.10569075
6	2.54860169	-0.43116203	1.11643694
1	0.40102457	-0.78714216	1.30519009
6	3.40949677	0.57203879	0.59743571
6	2.94894375	-1.68201700	1.65355291
7	3.21626000	-2.72038973	2.08128352
6	5.46980123	1.53852879	-0.31099897
6	5.61972025	-0.34892963	1.20967306
6	6.03492327	0.70575155	-1.46526733
1	6.27781292	2.01001662	0.25685223
1	4.81789903	2.33124860	-0.67426636
6	6.18484906	-1.26046876	0.11980544
1	6.43078910	0.19945678	1.70029798

1	5.09122758	-0.90094004	1.98022983
1	6.60351998	1.36226920	-2.12880325
1	5.19756039	0.30173160	-2.04451512
1	6.85929822	-1.98724182	0.57884962
1	5.36147293	-1.82332149	-0.33289590
7	4.74258834	0.65752039	0.60812828
6	-0.24444735	1.73908977	-0.01245309
6	-1.51331734	1.18007790	0.26302412
6	-2.66514574	1.80037018	-0.18198167
1	-1.59517629	0.25329448	0.81241464
1	-3.63215624	1.34888735	0.00156532
8	-0.14188992	2.88442961	-0.67145454
5	-1.27167254	3.81768733	-0.78009271
7	-2.62627558	2.99863132	-0.80694917
6	-3.78052130	3.52615256	-1.37711757
6	-3.94516939	4.92025892	-1.47051174
6	-4.80016660	2.68941024	-1.86371927
6	-5.09766791	5.44917100	-2.01450979
1	-3.17617517	5.57843328	-1.09175005
6	-5.95094806	3.22908565	-2.40876492
1	-4.67361183	1.61413581	-1.86037036
6	-6.10938842	4.60927795	-2.47988593
1	-5.21697128	6.52463446	-2.06559818
1	-6.72245204	2.57115721	-2.78940530
6	-7.33058992	5.19833331	-3.11797147
9	-7.13352917	5.47539955	-4.42576662
9	-7.70048623	6.35455316	-2.53854622
9	-8.38915331	4.37120491	-3.06012217
9	-1.30139561	4.67067891	0.33205516
9	-1.12376576	4.53157160	-1.95875637
6	6.91463103	-0.43151943	-0.94029139
1	7.23237488	-1.07105065	-1.76692158
1	7.82468005	-0.00709153	-0.49927687
***	molecule 1j rotamer	B S_{1r} – dioxane	
48	3		
~	0 (2700470		0 07000706
6	0.62/024/0	U.43013836 0.750(1000	
10	1.941669/5	U./5261U99 1.07025662	-0.445/9618
ТP	0.54/56290	-1.0/935663	0./834/999
6	2.86/06946	-0.22464398	-0.05/83664

L 6	0.54/56290	-1.0/935663	0./834/999
6	2.86706946	-0.22464398	-0.05783664
1	2.20231763	1.66691362	-0.95839842
6	2.28070501	-1.32956422	0.61319831
6	4.25982312	-0.02645213	-0.24867545
7	5.38398142	0.18271892	-0.40329780
6	2.21037106	-3.27172351	2.10865513
6	4.22046104	-2.84888764	0.80592754
6	2.97025750	-3.04966142	3.41966755
1	2.26708261	-4.32128585	1.80283309
1	1.15761304	-3.01334764	2.21401651
6	5.05816274	-2.61063219	2.06185248
1	4.20886396	-3.91623289	0.55838980
1	4.60861096	-2.32056470	-0.05946204
1	2.52569969	-3.67828044	4.19557853
1	2.83636871	-2.00653882	3.72633869
1	6.08373042	-2.93552251	1.87114668
1	5.09205476	-1.53551948	2.26646433

2.82795763	-2.46722147	1.05099659
-0.51159754	1.25260228	-0.31497142
-1.82073983	0.88390220	0.06560600
-2.90363890	1.67358392	-0.27119618
-1.99588369	-0.02938583	0.61824040
-3.90679156	1.36285936	-0.00853020
-0.30199793	2.37675791	-0.98226390
-1.27830594	3.47200220	-0.97338328
-2.74094562	2.87230596	-0.87718059
-3.84813301	3.58725137	-1.31744963
-3.79952223	4.99332333	-1.37589342
-5.03222080	2.93416692	-1.70371276
-4.90346028	5.70988952	-1.78780048
-2.90169283	5.51193340	-1.07101662
-6.13295325	3.66200585	-2.11839923
-5.07776145	1.85267792	-1.72676038
-6.07787826	5.05109969	-2.15472212
-4.85680279	6.79205919	-1.81226242
-7.03312662	3.14368442	-2.42434051
-7.24804286	5.84921145	-2.64339080
-7.08927880	6.24681394	-3.92457711
-7.43395877	6.97038310	-1.92173560
-8.39903765	5.15649156	-2.59817891
-1.07327889	4.29531585	0.14365427
-1.13585190	4.18317850	-2.15461183
4.45840783	-3.36514543	3.25088786
4.99929457	-3.11730212	4.16692405
4.58097604	-4.44328959	3.09123110
	2.82795763 -0.51159754 -1.82073983 -2.90363890 -1.99588369 -3.90679156 -0.30199793 -1.27830594 -2.74094562 -3.84813301 -3.79952223 -5.03222080 -4.90346028 -2.90169283 -6.13295325 -5.07776145 -6.07787826 -4.85680279 -7.03312662 -7.24804286 -7.08927880 -7.43395877 -8.39903765 -1.07327889 -1.13585190 4.45840783 4.99929457 4.58097604	2.82795763 -2.46722147 -0.51159754 1.25260228 -1.82073983 0.88390220 -2.90363890 1.67358392 -1.99588369 -0.02938583 -3.90679156 1.36285936 -0.30199793 2.37675791 -1.27830594 3.47200220 -2.74094562 2.87230596 -3.84813301 3.58725137 -3.79952223 4.99332333 -5.03222080 2.93416692 -4.90346028 5.70988952 -2.90169283 5.51193340 -6.13295325 3.66200585 -5.07776145 1.85267792 -6.07787826 5.05109969 -4.85680279 6.79205919 -7.03312662 3.14368442 -7.24804286 5.84921145 -7.08927880 6.24681394 -7.43395877 6.97038310 -8.39903765 5.15649156 -1.07327889 4.29531585 -1.13585190 4.18317850 4.45840783 -3.36514543 4.99929457 -3.11730212 4.58097604 -4.44328959

Optimised Geometries of compound 1d (GS and ES in different solvents) *** molecule 1d S₀ acetone

46

6	0.84811036	0.96497399	0.19728164
6	1.02159711	-0.21996537	0.85680057
16	2.36595750	1.57973079	-0.41831839
6	2.36271098	-0.66574650	0.87449245
1	0.21593466	-0.78903620	1.30277171
6	3.24394103	0.20624257	0.20188990
6	2.69160252	-1.93829380	1.40974468
7	2.91273946	-2.98554184	1.83868487
6	5.27301511	1.14136713	-0.76143081
6	5.43985240	-0.55659971	0.99109135
6	6.55933614	0.57175851	-1.33986745
1	5.49050126	1.99535212	-0.10716617
1	4.64984960	1.47356559	-1.59312486
6	6.70731668	-1.04649614	0.31557126
1	5.68699886	0.17328367	1.77148677
1	4.93463612	-1.40169716	1.44741156
1	7.12342088	1.37155187	-1.81941458
1	6.31573316	-0.19344369	-2.08823453
1	7.38417343	-1.45170123	1.06745525
1	6.46253458	-1.83426145	-0.40886052
7	4.56999410	0.10608343	0.00442773
8	7.38313047	0.01381665	-0.33493030
6	-0.36658430	1.68870897	-0.05418347
6	-1.61103892	1.29657402	0.42398536
6	-2.74122715	1.96508217	-0.03286076
1	-1.72050319	0.43145129	1.05926872
1	-3.72478447	1.58401902	0.22488858
8	-0.23474163	2.74285499	-0.81885272
5	-1.30390274	3.74427851	-1.00127030
7	-2.68004256	3.05569920	-0.78271265
6	-3.86450678	3.62278579	-1.32609402
6	-3.98345262	5.01027734	-1.40736575
6	-4.89311001	2.80035258	-1.79345775
6	-5.13708484	5.57588730	-1.93326937
1	-3.18497540	5.64604284	-1.04593960
6	-6.04802918	3.36728796	-2.30796170
1	-4.78156823	1.72269367	-1.77759004
6	-6.16728107	4.75339482	-2.37381035
1	-5.23078951	6.65331623	-1.98781029
1	-6.84664390	2.73057727	-2.67261611
6	-7.41903630	5.33274015	-2.95570165
9	-7.55503563	5.03570875	-4.26385033
9	-7.47031233	6.66776440	-2.85798219
9	-8.52469168	4.85516632	-2.35261890
9	-1.13284365	4.76579220	-0.05753813
9	-1.21046383	4.25918622	-2.28608763

* * *	molecule	1d	S_0	chloroform	
4	6				

0.834//136 $0.906/5185$ $0.906/5185$	14613553
--------------------------------------	----------

6	1.01494410	-0.26443603	0.82694686
16	2.34581872	1.51919234	-0.48147870
6	2.35991817	-0.70129594	0.84868921
1	0.21466845	-0.82956095	1.28675965
6	3.23027928	0.16376870	0.16109505
6	2.71396996	-1.96027678	1.40210466
7	2.96791707	-2.99424104	1.84375886
6	5.24092291	1.08329546	-0.84092000
6	5.42849727	-0.48581541	1.02644434
6	6.57637580	0.54941342	-1.33482214
1	5.39319079	1.99036193	-0.24045291
1	4.62802595	1.32691084	-1.71055009
6	6.74778718	-0.94390129	0.43262964
1	5.60526943	0.30247231	1.76883672
1	4.94969111	-1.32892086	1.51545826
1	7.11749479	1.34446191	-1.84746782
1	6.40607600	-0.27751155	-2.03637376
1	7.41800514	-1.25598299	1.23341303
1	6.57886033	-1.79164792	-0.24416267
7	4.56344454	0.06307361	-0.03372491
8	7.38709359	0.10873705	-0.26456751
6	-0.38141572	1.63227873	-0.10955820
6	-1.62559117	1.24391757	0.36992923
6	-2.75283686	1.93052984	-0.07201977
1	-1.73833023	0.37754442	1.00242772
1	-3.73905438	1.55982101	0.19154423
8	-0.24467675	2.68265973	-0.87305773
5	-1.30079495	3.70440006	-1.04353324
7	-2.68652935	3.02499779	-0.81079506
6	-3.86937767	3.61595870	-1.33254390
6	-3.97032141	5.00553893	-1.38959236
6	-4.91222351	2.81484902	-1.80420468
6	-5.12196152	5.59329352	-1.89456705
1	-3.15752535	5.62251049	-1.02779296
6	-6.06486828	3.40415972	-2.29786960
1	-4.81056293	1.73618598	-1.81237484
6	-6.16735431	4.79217831	-2.33811226
1	-5.20369165	6.67229558	-1.93205771
1	-6.87497032	2.78521635	-2.66720207
6	-7.41801065	5.39750433	-2.89769811
9	-7.57043643	5.12186475	-4.20743666
9	-7.44867095	6.73077885	-2.77707926
9	-8.52150863	4.92383058	-2.28867718
9	-1.11192817	4.71066550	-0.09390978
9	-1.21994438	4.21475684	-2.32523904

*** molecule 1d S₀ DMF

46

6	0.84754702	0.96370195	0.19606272
6	1.02263227	-0.21964518	0.85832600
16	2.36503062	1.57950642	-0.42024311
6	2.36435902	-0.66272228	0.87832779
1	0.21755871	-0.78907229	1.30500236
6	3.24491367	0.20881994	0.20384417
6	2.69557250	-1.93301181	1.41683802
7	2.91942757	-2.97868576	1.84818374

6	5.27188101	1.13908960	-0.76839835
6	5.44330020	-0.54621730	0.99551891
6	6.55286451	0.56101191	-1.34954704
1	5.49481548	1.99665001	-0.12077117
1	4.64575890	1.46742251	-1.59932162
6	6.70733530	-1.04297642	0.31844012
1	5.69377894	0.18938840	1.76936684
1	4.93877944	-1.38713910	1.46034265
1	7.11538374	1.35494759	-1.84033957
1	6.30165938	-0.20996005	-2.08953351
1	7.38684286	-1.44270076	1.07102685
1	6.45814263	-1.83732166	-0.39735586
7	4.57053969	0.11064052	0.00770521
8	7.38197443	0.01000780	-0.34529286
6	-0.36758272	1.68599370	-0.05533524
6	-1.61219862	1.29138562	0.42035182
6	-2.74276698	1.95880192	-0.03688291
1	-1.72145758	0.42395981	1.05253602
1	-3.72618616	1.57440900	0.21627817
8	-0.23640736	2.74228522	-0.81824600
5	-1.30626078	3.74380326	-0.99186361
7	-2.68142862	3.05277751	-0.78217291
6	-3.86512065	3.62103130	-1.32567351
6	-3.98623051	5.00887058	-1.39805821
6	-4.89082093	2.79985858	-1.80144154
6	-5.13864424	5.57618771	-1.92458975
1	-3.19072205	5.64398286	-1.02895806
6	-6.04458445	3.36840808	-2.31668542
1	-4.77822554	1.72225033	-1.79097636
6	-6.16550632	4.75470526	-2.37464740
1	-5.23378783	6.65382244	-1.97221829
1	-6.84087688	2.73267902	-2.68806985
6	-7.41515373	5.33559094	-2.95896188
9	-7.54532502	5.04442328	-4.26915609
9	-7.46807053	6.67017120	-2.85572478
9	-8.52331249	4.85479222	-2.36313436
9	-1.13782117	4.75679411	-0.03727786
9	-1.21117039	4.27386735	-2.27094322

*** molecule 1d S_0 DMSO 46

6	0.84845132	0.96685621	0.19620110
6	1.02250757	-0.21726554	0.85733387
16	2.36652919	1.58191881	-0.41952171
6	2.36375407	-0.66137303	0.87725673
1	0.21681264	-0.78641215	1.30320642
6	3.24516713	0.21003597	0.20371581
6	2.69340367	-1.93231833	1.41486151
7	2.91545290	-2.97871767	1.84536992
6	5.27330355	1.13967093	-0.76645429
6	5.44263513	-0.54861011	0.99436620
6	6.55281075	0.56036261	-1.34928316
1	5.49780951	1.99550768	-0.11716629
1	4.64762359	1.47079605	-1.59657874
6	6.70528490	-1.04657767	0.31579392
1	5.69465240	0.18568281	1.76890519

1 1 1 1 7 8 6 6 6 1 1 8 5 7 6 6 6 6 1 6 1 6 1 1 6 9 9 9 9 9	4.93704582 7.11620883 6.29956452 7.38426873 6.45406749 4.57053777 7.38179303 -0.36635200 -1.61037077 -2.74149470 -1.71877894 -3.72466813 -0.23586923 -1.30615671 -2.68071113 -3.86471715 -3.98784184 -4.88879314 -5.14060750 -3.19377265 -6.04286791 -4.77462302 -6.16559797 -5.23734682 -6.83789348 -7.41507467 -7.54321165 -7.46956349 -8.52350246 -1.13733467	-1.38924149 1.35416667 -0.20895561 -1.44911151 -1.83905755 0.11100064 0.00617062 1.68970979 1.29604817 1.96211895 0.42952159 1.57758042 2.74517205 3.74631337 3.05510356 3.62185793 5.00951243 2.79924166 5.57530727 5.64578396 3.36625528 1.72180960 4.75234943 6.65280652 2.72945018 5.33124856 5.03846401 6.66586317 4.84996554 4.75921992	1.45856243 -1.83922442 -2.09028952 1.06732217 -0.40131841 0.00791073 -0.34653076 -0.05416464 0.42378708 -0.03375324 1.05734640 0.22011497 -0.81866603 -0.99090016 -0.78057508 -1.32465009 -1.39642691 -1.80121958 -1.92370123 -1.02620059 -2.31731637 -1.79050026 -2.37522479 -1.97095089 -2.68952987 -2.96153956 -4.27158135 -2.85991156 -2.36668996 -0.03604440
9	-1.13733467	4.75921992	-0.03604440
9	-1.21209818	4.27735361	-2.26980958
*** mo 46	lecule 1d S_0 Etc	DH	

6	0.84307289	0.93081073	0.14832451
6	1.00987632	-0.25268711	0.81132072
16	2.36138036	1.53077214	-0.47770543
6	2.34872915	-0.70706830	0.82358303
1	0.20148497	-0.81379968	1.26241606
6	3.23190318	0.15707958	0.14785076
6	2.67302769	-1.97987006	1.36065413
7	2.88793121	-3.02838003	1.78944217
6	5.25603323	1.11146904	-0.78503269
6	5.40906071	-0.57050733	0.98877529
6	6.60227049	0.61337941	-1.28186285
1	5.39088263	1.98449248	-0.13302841
1	4.66476370	1.40002346	-1.65600242
6	6.73910349	-0.98993553	0.39386732
1	5.56713604	0.16293527	1.78883606
1	4.92571366	-1.44807128	1.40716688
1	7.14933722	1.44196053	-1.73084379
1	6.45659357	-0.17043290	-2.03536488
1	7.39061923	-1.35517823	1.18738213
1	6.58864455	-1.78854682	-0.34324719
7	4.56202705	0.04897638	-0.04722982
8	7.39415487	0.10847346	-0.22012948

-0.36736413	1.66621258	-0.09507913
-1.60275001	1.31324700	0.42917401
-2.73343742	1.99249793	-0.01305557
-1.70912114	0.47237406	1.09693288
-3.71594624	1.64077479	0.28776216
-0.23699384	2.69495588	-0.89606281
-1.29339454	3.70517704	-1.09653575
-2.67401306	3.05819345	-0.79653312
-3.86483601	3.63077188	-1.32195795
-3.96975559	5.01760847	-1.42468761
-4.91173178	2.81180096	-1.75158267
-5.12875737	5.58689418	-1.93437401
-3.15684525	5.65092645	-1.09203290
-6.07146511	3.38257547	-2.25095976
-4.81097875	1.73334418	-1.71806257
-6.17716112	4.76844577	-2.33805842
-5.21168271	6.66435930	-2.00486731
-6.88418869	2.74808090	-2.58707916
-7.43195446	5.35266219	-2.90870828
-7.56764211	5.07767720	-4.22192268
-7.48763341	6.68587834	-2.78898160
-8.53507636	4.86137994	-2.31298692
-1.06524050	4.77493529	-0.22120798
-1.23534022	4.14591677	-2.41197394
	-0.36736413 -1.60275001 -2.73343742 -1.70912114 -3.71594624 -0.23699384 -1.29339454 -2.67401306 -3.86483601 -3.96975559 -4.91173178 -5.12875737 -3.15684525 -6.07146511 -4.81097875 -6.17716112 -5.21168271 -6.88418869 -7.43195446 -7.56764211 -7.48763341 -8.53507636 -1.06524050 -1.23534022	-0.36736413 1.66621258 -1.60275001 1.31324700 -2.73343742 1.99249793 -1.70912114 0.47237406 -3.71594624 1.64077479 -0.23699384 2.69495588 -1.29339454 3.70517704 -2.67401306 3.05819345 -3.86483601 3.63077188 -3.96975559 5.01760847 -4.91173178 2.81180096 -5.12875737 5.58689418 -3.15684525 5.65092645 -6.07146511 3.38257547 -4.81097875 1.73334418 -6.17716112 4.76844577 -5.21168271 6.66435930 -6.88418869 2.74808090 -7.43195446 5.35266219 -7.56764211 5.07767720 -7.48763341 6.68587834 -8.53507636 4.86137994 -1.06524050 4.77493529 -1.23534022 4.14591677

*** molecule ${\bf 1d}~S_0$ MeCN 46

6	0.84689196	0.96428751	0.20082767
6	1.02119400	-0.22130265	0.85915242
16	2.36447342	1.58091175	-0.41429860
6	2.36261102	-0.66601941	0.87653439
1	0.21555387	-0.79117099	1.30423634
6	3.24379281	0.20753080	0.20499858
6	2.69130653	-1.93880791	1.41094670
7	2.91149557	-2.98654464	1.83933264
6	5.27298247	1.14785397	-0.75374454
6	5.44086424	-0.56059964	0.98764046
6	6.55550982	0.57843201	-1.34059102
1	5.49512314	1.99586765	-0.09357168
1	4.64851947	1.48797666	-1.58112410
6	6.70386433	-1.05152911	0.30471239
1	5.69382223	0.16567176	1.76938410
1	4.93475374	-1.40569513	1.44273507
1	7.12056544	1.37999233	-1.81572706
1	6.30724579	-0.18086099	-2.09321795
1	7.38188643	-1.46326315	1.05188631
1	6.45366743	-1.83352909	-0.42386756
7	4.56931994	0.10938769	0.00743032
8	7.38100387	0.01057741	-0.34211465
6	-0.36765379	1.68768789	-0.04996594
6	-1.61206814	1.29760259	0.42982923
6	-2.74184244	1.96684001	-0.02654643
1	-1.72149509	0.43303763	1.06589059
1	-3.72554668	1.58690689	0.23209621
8	-0.23574878	2.74133824	-0.81630157
5	-1.30380740	3.74229335	-0.99979187

7	-2.68009652	3.05717403	-0.77750662
6	-3.86414931	3.62329063	-1.32280281
6	-3.98233276	5.01070080	-1.40830056
6	-4.89279628	2.79992860	-1.78861008
6	-5.13494850	5.57552841	-1.93744370
1	-3.18412295	5.64723221	-1.04762524
6	-6.04674392	3.36605119	-2.30629215
1	-4.78241550	1.72226016	-1.76844620
6	-6.16494571	4.75207370	-2.37680831
1	-5.22800154	6.65282605	-1.99533901
1	-6.84544521	2.72875373	-2.66967229
6	-7.41525681	5.33012999	-2.96277411
9	-7.54765182	5.03160549	-4.27113994
9	-7.46759607	6.66531875	-2.86707055
9	-8.52258450	4.85289596	-2.36250134
9	-1.12814672	4.76848957	-0.06098503
9	-1.21061473	4.25345259	-2.28712147

*** molecule $\boldsymbol{1d}$ S_{0} THF 46

6	0.84422451	0.94796142	0.18182294
6	1.02099647	-0.23047597	0.85133901
16	2.35898217	1.56158272	-0.43921351
6	2.36379202	-0.67228553	0.87142079
1	0.21815253	-0.79803381	1.30383841
6	3.23976162	0.19586202	0.19069877
6	2.70421815	-1.93858118	1.41545487
7	2.94110012	-2.97947525	1.85075472
6	5.26047614	1.11679634	-0.79912821
6	5.43950833	-0.52288280	1.00740815
6	6.55986145	0.54906003	-1.34919884
1	5.46062488	1.99546597	-0.17189984
1	4.63666800	1.41248973	-1.64416438
6	6.72282505	-1.00981316	0.35952022
1	5.66618728	0.23303863	1.76934011
1	4.94343715	-1.36329609	1.48278686
1	7.11556906	1.34001852	-1.85247754
1	6.33327077	-0.24497343	-2.07273794
1	7.40118457	-1.37626981	1.12981218
1	6.50023305	-1.82726691	-0.33890206
7	4.56832578	0.09455721	-0.00745735
8	7.38412951	0.03984688	-0.32091942
6	-0.37174923	1.67143903	-0.07230939
6	-1.61684451	1.27382804	0.39922241
6	-2.74658811	1.94623862	-0.05537850
1	-1.72720910	0.40468675	1.02853946
1	-3.73107976	1.56306850	0.19595348
8	-0.23823112	2.72748638	-0.83078368
5	-1.30488378	3.73748713	-0.99917438
7	-2.68376227	3.04223628	-0.79440635
6	-3.86660024	3.61824469	-1.33163826
6	-3.98191942	5.00667515	-1.39505018
6	-4.89676373	2.80435894	-1.80982049
6	-5.13442996	5.58107006	-1.91324111
1	-3.18043093	5.63455673	-1.02676484
6	-6.05052700	3.38020356	-2.31661989

1	-4.78563725	1.72656726	-1.81061433
6	-6.16680724	4.76706435	-2.36391979
1	-5.22636235	6.65914638	-1.95487917
1	-6.85067586	2.75092011	-2.69038466
6	-7.41802700	5.35682691	-2.93736963
9	-7.55829547	5.07106918	-4.24683136
9	-7.46251951	6.69079164	-2.82708515
9	-8.52295630	4.87801146	-2.33442706
9	-1.13981952	4.73493662	-0.03275941
9	-1.21097261	4.27234598	-2.27202459

*** molecule $\mathbf{1d} S_0$ Toluene 46

6	0.83702288	0.91368576	0.15206161
6	1.01705473	-0.26052265	0.82719068
16	2.34799134	1.52981997	-0.46861268
6	2.36203112	-0.69780757	0.84852813
1	0.21706050	-0.82932603	1.28236643
6	3.23036560	0.17057615	0.16630160
6	2.72327291	-1.95755244	1.39777677
7	2.99166716	-2.98881236	1.83626626
6	5.24201089	1.07540776	-0.84996413
6	5.43219902	-0.47011446	1.03477537
6	6.57131184	0.52639102	-1.34590731
1	5.40417413	1.98886666	-0.26129409
1	4.62239298	1.31420145	-1.71624225
6	6.74690409	-0.94168114	0.43971584
1	5.61704404	0.32673225	1.76651699
1	4.95071689	-1.30406729	1.53705527
1	7.11584460	1.30930857	-1.87375264
1	6.38744976	-0.30777280	-2.03618434
1	7.42266270	-1.24370915	1.23962676
1	6.56941140	-1.80114154	-0.22044498
7	4.56583308	0.06716653	-0.02927994
8	7.38547028	0.09540878	-0.27764297
6	-0.38027916	1.64006026	-0.10656556
6	-1.62583064	1.24109292	0.36207729
6	-2.75410360	1.92371958	-0.08509507
1	-1.73795199	0.37100588	0.98902475
1	-3.74050365	1.54594942	0.16831697
8	-0.24243758	2.69372103	-0.85969385
5	-1.30240682	3.71980354	-1.02297907
7	-2.68900012	3.02075884	-0.81648256
6	-3.87039220	3.61222270	-1.33948982
6	-3.97167435	5.00181950	-1.38987483
6	-4.91215062	2.81352311	-1.81711597
6	-5.12346394	5.59058747	-1.89244507
1	-3.15730086	5.61498830	-1.02544567
6	-6.06486585	3.40445201	-2.30820746
1	-4.80821077	1.73528159	-1.83491993
6	-6.16869397	4.79213100	-2.34057949
1	-5.20718811	6.66944882	-1.92559010
1	-6.87462530	2.78812710	-2.68215808
6	-7.42067781	5.39951673	-2.89696161
9	-7.57471573	5.12418335	-4.20533742
9	-7.44758614	6.73211290	-2.77364582

9	-8.52091325	4.92504940	-2.28437769
9	-1.13871062	4.69671222	-0.04516784
9	-1.21577254	4.25126014	-2.28981143

*** molecule 1d rotamer B $S_{\rm 0}$ Acetone 46

6	0.72698896	0.76571984	0.12514584
6	1.99282656	1.08294018	-0.28032334
16	0.71758760	-0.69715578	1.08321556
6	2.97954211	0.18088222	0.18248724
1	2.22469711	1.96058583	-0.86945459
6	2.45102808	-0.86288598	0.96463319
6	4.35990529	0.43651662	-0.02534629
7	5.47364914	0.68195515	-0.19458179
6	2.30240838	-2.82700524	2.39058552
6	4.25806679	-2.52126375	0.95442037
6	3.22317976	-3.52288194	3.38112010
1	1.81081734	-3.56405981	1.74234622
1	1.54605677	-2.28161858	2.95723138
6	5.07975911	-3.22240224	2.02022551
1	3.90729127	-3.24743360	0.21096509
1	4.87804953	-1.78118950	0.45778884
1	2.66285054	-4.28667452	3.92010214
1	3.61045970	-2.78886205	4.09951756
1	5.89757442	-3.76559606	1.54715992
1	5.49567545	-2.48391873	2.71795479
7	3.07601804	-1.88996121	1.56856875
8	4.29905713	-4.16803196	2.72866813
6	-0.46519239	1.52720726	-0.13924615
6	-1.70601438	1.24164207	0.41140899
6	-2.81918331	1.95729945	-0.02776177
1	-1.84295888	0.43176323	1.11240651
1	-3.80914309	1.65615224	0.30169047
8	-0.31157387	2.51129364	-0.98848465
5	-1.31548630	3.57185182	-1.16966586
7	-2.72622455	2.99824353	-0.83588199
6	-3.89711585	3.62753260	-1.34255484
6	-3.91346689	5.01374097	-1.49484732
6	-5.01161571	2.86650463	-1.70364144
6	-5.04892103	5.64118018	-1.98935243
1	-3.04866775	5.60197710	-1.21524200
6	-6.14721134	3.49577605	-2.18789999
1	-4.98368483	1.78609109	-1.62977389
6	-6.16223304	4.88154056	-2.32812943
1	-5.06167520	6.71810903	-2.10126181
1	-7.01263434	2.90633041	-2.47058446
6	-7.39967922	5.52863328	-2.86882701
9	-7.68744006	5.10804156	-4.11632293
9	-7.30783790	6.86387999	-2.92409107
9	-8.48563800	5.24453674	-2.12370641
9	-1.02569732	4.63004348	-0.29795069
9	-1.26701555	4.00821714	-2.48550571

*** molecule ${\bf 1d}$ rotamer B S_0 CHCl_3 46

6	0.71964593	0.75163998	0.11979948
6	1.98348957	1.07887703	-0.28259545
16	0.72045023	-0.70022991	1.09131912
6	2.97626006	0.19029817	0.19479727
1	2.20447135	1.95540634	-0.87750036
6	2.45481490	-0.84676431	0.98364481
6	4.35963899	0.44112059	-0.00601843
7	5.47800363	0.66864591	-0.16570795
6	2.32699120	-2.77712401	2.45226951
6	4.23619416	-2.52674329	0.94547770
6	3.26210199	-3.49996198	3.40958422
1	1.79243106	-3.50395410	1.82556530
1	1.60540440	-2.20835709	3.04138339
6	5.07505894	-3.25311316	1.98045930
1	3.84102130	-3.24214654	0.21331266
1	4.85834986	-1.80163780	0.42879499
1	2.70205065	-4.24906726	3.96929518
1	3.69815734	-2.77904295	4.11336418
1	5.85894508	-3.82155649	1.48047468
1	5.53716133	-2.52808682	2.66283787
7	3.09623036	-1.86169152	1.60395523
8	4.29195787	-4.17509376	2.71640380
6	-0.47668660	1.50625989	-0.15576912
6	-1.72308432	1.20623607	0.37491069
6	-2.83246290	1.92886765	-0.06421278
1	-1.86310179	0.38666408	1.06364206
1	-3.82572688	1.62480141	0.25326565
8	-0.31651761	2.49711239	-0.99095410
5	-1.31779317	3.56541639	-1.17116897
7	-2.73427113	2.97972672	-0.85575441
6	-3.90118381	3.61965805	-1.35749043
6	-3.91533887	5.00811311	-1.48485002
6	-5.01406885	2.86656993	-1.73799771
6	-5.05019664	5,64416283	-1.96890400
1	-3.04823887	5.58767091	-1.19470752
6	-6.14884026	3.50455297	-2.21215469
1	-4.98273367	1.78496313	-1.68982052
6	-6.16440933	4.89258959	-2.32231445
1	-5.06400816	6.72283902	-2.06120302
1	-7.01293825	2,92155649	-2.51082566
6	-7.39842983	5.55074298	-2.85936274
9	-7 62447138	5 22577141	-4 14673832
9	-7,34052437	6.88726575	-2.80241593
9	-8 50140128	5 17749258	-2 18328801
9	-1 04338221	4 60332758	-0 27780399
a	_1 2610/176	1 01116QQ0	-2 /7770/25
9	-I.ZUI041/0	4.01140090	-2.4///9420

*** molecule ${\bf 1d}$ rotamer B S_0 DMF 46

6	0.73040798	0.77031402	0.12478778
6	1.99692168	1.08510862	-0.28037068
16	0.71761946	-0.69434547	1.08043317
6	2.98168799	0.18018084	0.18050969
1	2.23114669	1.96287968	-0.86825742
6	2.45078866	-0.86416352	0.96125798

6	4.36190977	0.43459037	-0.02799660
7	5.47542352	0.68047764	-0.19837993
6	2.29655803	-2.83278898	2.38066746
6	4.25963531	-2.52103025	0.95611552
6	3.21384204	-3.52598413	3.37617761
1	1.81043985	-3.57040535	1.72919866
1	1.53585475	-2.28997856	2.94386200
6	5.07714355	-3.21922137	2.02691770
1	3.91517778	-3.24834716	0.21092917
1	4.88040350	-1.77952622	0.46274577
1	2.65225589	-4.29129715	3.91163610
1	3.59361017	-2.79090252	4.09751544
1	5.89971129	-3.75921812	1.55848163
1	5.48713500	-2.47916910	2.72656923
7	3.07202332	-1.89359068	1.56274625
8	4.29615896	-4.16765466	2.73102904
6	-0.46058239	1.53362264	-0.13773644
6	-1.69986376	1.25089883	0.41760621
6	-2.81438088	1.96350157	-0.02260063
1	-1.83544466	0.44347482	1.12171936
1	-3.80359160	1.66237920	0.30894004
8	-0.30855392	2.51531636	-0.99066793
5	-1.31351408	3.57436892	-1.17136484
7	-2.72294797	3.00164424	-0.83479818
6	-3.89483736	3.62797949	-1.34260591
6	-3.91280787	5.01379172	-1.49837217
6	-5.00900085	2.86488260	-1.70030182
6	-5.04951383	5.63920248	-1.99239404
1	-3.04873014	5.60403793	-1.22073000
6	-6.14590131	3.49215144	-2.18404589
1	-4.98055461	1.78466794	-1.62345962
6	-6.16248461	4.87753394	-2.32757499
1	-5.06330231	6.71589839	-2.10638658
1	-7.01125721	2.90106086	-2.46347547
6	-7.40182577	5.52216806	-2.86628983
9	-7.69555155	5.09495918	-4.11022138
9	-7.30973257	6.85709742	-2.92953369
9	-8.48479179	5.24308988	-2.11488121
9	-1.02223180	4.63509356	-0.30210628
9	-1.26727400	4.01049748	-2.48809001

*** molecule 1d rotamer B S_0 DMSO 46

0.73228763	0.79037516	0.15153725
1.99446420	1.09280429	-0.27586501
0.72321786	-0.66846052	1.11586616
2.97904746	0.18237293	0.17418763
2.22616464	1.96453473	-0.87359394
2.45232854	-0.85363126	0.96842659
4.35764529	0.42364616	-0.05863975
5.47013202	0.65960550	-0.24856701
2.30311917	-2.81683163	2.39409807
4.24143398	-2.52887597	0.93106839
3.22989568	-3.52712266	3.36800241
1.79312159	-3.54534060	1.75055213
1.56222769	-2.26497970	2.97468518
	0.73228763 1.99446420 0.72321786 2.97904746 2.22616464 2.45232854 4.35764529 5.47013202 2.30311917 4.24143398 3.22989568 1.79312159 1.56222769	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

6 1 1 1 1 1 1 7 8 6 6 6 1 1 8 5 7 6 6 6 6	5.06920107 3.87162905 4.86407083 2.66761636 3.63672410 5.87368023 5.50449661 3.07531204 4.28815609 -0.45840081 -1.69181615 -2.81117929 -1.82050901 -3.79744634 -0.31357776 -1.32170722 -2.72750002 -3.90318765 -3.92528851 -5.01447461 -5.06370861	-3.24442457 -3.24690834 -1.79433155 -4.28506133 -2.80082510 -3.79466987 -2.51396180 -1.88622214 -4.18376537 1.55684847 1.28401743 1.98674278 0.48674951 1.68833143 2.52784790 3.58303916 3.01110314 3.62104208 5.00580013 2.84907348 5.61370737	$\begin{array}{c} 1.98217254\\ 0.18908599\\ 0.42966401\\ 3.91304368\\ 4.08344788\\ 1.49462692\\ 2.67653135\\ 1.56329095\\ 2.69826356\\ -0.10286537\\ 0.47018510\\ 0.02661489\\ 1.18708462\\ 0.36913142\\ -0.96925826\\ -1.15462546\\ -0.80380470\\ -1.32173457\\ -1.50781423\\ -1.65808445\\ -2.01065113\end{array}$
1	-3.06232951	5.60431141	-1.24474724
6	-6.15826453	3.46182642	-2.15281723
1	-4.98378518	1.77086119	-1.55723935
6	-6.17930873	4.84031614	-2.32454725
1	-5.08397247	6.68850168	-2.15016995
L 6	-7.02003589	2.859958/3	-2.41396428
9	-7.21392713	5.81845225	-4.20995060
9	-7.66656006	6.67257647	-2.28818072
9	-8.48657327	4.75421647	-2.83613763
9	-1.02800755	4.65352503	-0.29816704
9	-1.28402153	4.00569881	-2.47613533
*** 46	molecule 1d rotamer	B S_0 EtOH	
6	0.72713386	0.76761674	0.13581557
6	1.99220248	1.09350982	-0.26497424
10	U./2332556 2 98197797	-0.6914/4/6	1.09800884 0.20512935
1	2.21992063	1.97231849	-0.85438980
6	2.45704458	-0.84435155	0.98811563
6	4.36186176	0.45842395	0.00082994
7	5.47464669	0.70922565	-0.16633048
6	2.31195146	-2.80341936	2.41526984
6	4.24862255	-2.51010807	0.95371294
0 1	1 79753203	-3.53585648	3.3/90034/ 1.76129241
1	1.57394677	-2.25566177	3.00379738
6	5.07393939	-3.24938911	1.98869336
1	3.87065733	-3.21216776	0.20037727
1	4.87866050	-1.77394822	0.46313787
1	2.66257118	-4.29883284	3.91144884
⊥ 1	3.04940438 5 86991371	-2.02/4002/	4.1040/651 1 49063822
⊥ 1	5.51720252	-2.53742182	2.69605757

7	3.09157211	-1.86408513	1.60132664
8	4.28310657	-4.19328157	2.69458597
6	-0.46782740	1.52219086	-0.13592685
6	-1.70876087	1.23867730	0.41151447
6	-2.82131033	1.95411946	-0.03170861
1	-1.84830654	0.43157676	1.11530189
1	-3.81133306	1.65435496	0.29922399
8	-0.31312594	2.50361342	-0.99130226
5	-1.31793923	3.56134149	-1.18443192
7	-2.72762763	2.99312693	-0.84133813
6	-3.89821397	3.62374528	-1.34809778
6	-3.91311377	5.00984726	-1.49915234
6	-5.01281185	2.86386434	-1.71018132
6	-5.04806494	5.63899150	-1.99245735
1	-3.04835857	5.59778422	-1.21863071
6	-6.14797754	3.49481233	-2.19318495
1	-4.98570307	1.78322346	-1.63793400
6	-6.16195490	4.88068280	-2.33179665
1	-5.05925492	6.71615155	-2.10280830
1	-7.01378472	2.90592089	-2.47608694
6	-7.39966620	5.52969025	-2.86938549
9	-7.69482181	5.10479993	-4.11364937
9	-7.30351363	6.86437551	-2.93082132
9	-8.48293068	5.25264894	-2.11764094
9	-1.02339086	4.63234775	-0.33035744
9	-1.27026181	3.97760503	-2.50762650

*** molecule ${\bf 1d}$ rotamer B S_0 MeCN 46

6	0.72862158	0.76629689	0.12443177
6	1.99410026	1.08437177	-0.28161087
16	0.72040494	-0.69512368	1.08456609
6	2.98170884	0.18359021	0.18196595
1	2.22452755	1.96184980	-0.87171966
6	2.45395541	-0.85985076	0.96589126
6	4.36122447	0.44090562	-0.02866227
7	5.47387886	0.68938289	-0.20112815
6	2.30016201	-2.82658358	2.38574650
6	4.26379742	-2.51429259	0.96062001
6	3.21496721	-3.53032218	3.37585174
1	1.80925739	-3.55828206	1.73104972
1	1.54310823	-2.28296886	2.95312129
6	5.07885475	-3.22298077	2.02640792
1	3.91694361	-3.23515867	0.21029751
1	4.88741264	-1.77139271	0.47298392
1	2.65038559	-4.29663380	3.90656656
1	3.60077921	-2.80199742	4.10062560
1	5.89882730	-3.76355930	1.55420551
1	5.49059132	-2.48991012	2.73216248
7	3.07826636	-1.88602418	1.57146035
8	4.29310678	-4.17296803	2.72374211
6	-0.46398972	1.52621226	-0.14068239
6	-1.70378989	1.24277466	0.41285412
6	-2.81745014	1.95820116	-0.02543616
1	-1.83979605	0.43489660	1.11633694
1	-3.80678603	1.65869065	0.30709896

8	-0.31150948	2.50811223	-0.99367603
5	-1.31544813	3.56731762	-1.17589508
7	-2.72536019	2.99722533	-0.83663997
6	-3.89690776	3.62647540	-1.34216136
6	-3.91140989	5.01223439	-1.49960604
6	-5.01388043	2.86598456	-1.69694291
6	-5.04708562	5.63993238	-1.99341425
1	-3.04508518	5.60025654	-1.22437976
6	-6.14974695	3.49554805	-2.18034798
1	-4.98827127	1.78588753	-1.61823771
6	-6.16268342	4.88084091	-2.32599430
1	-5.05829424	6.71644302	-2.10924860
1	-7.01711737	2.90656748	-2.45787331
6	-7.40012357	5.52811976	-2.86628228
9	-7.68893133	5.10704287	-4.11354676
9	-7.30776985	6.86337367	-2.92271945
9	-8.48604875	5.24530824	-2.12066446
9	-1.02139680	4.62997924	-0.30986603
9	-1.26882126	3.99947385	-2.49404626

*** molecule 1d rotamer B S_0 THF 46

6	0.72172644	0.75301730	0.11316230
6	1.98704769	1.07339817	-0.29064605
16	0.71597546	-0.70322893	1.07990664
6	2.97592792	0.17819634	0.18128112
1	2.21496119	1.94920717	-0.88378075
6	2.44998006	-0.86059901	0.96807428
6	4.35841357	0.43007064	-0.02072882
7	5.47533743	0.66413840	-0.18265830
6	2.31489517	-2.80194188	2.42543043
6	4.24570495	-2.52983856	0.94967906
6	3.24733405	-3.49890600	3.40462960
1	1.80400260	-3.54179466	1.79497104
1	1.57409910	-2.24234102	2.99892496
6	5.07970918	-3.23094498	2.00610783
1	3.87478532	-3.25891035	0.21861908
1	4.86325951	-1.79943207	0.43552171
1	2.69074741	-4.25227117	3.96197908
1	3.65558058	-2.76271814	4.10934068
1	5.88260242	-3.78808118	1.52383254
1	5.51750394	-2.49070255	2.68855998
7	3.08255218	-1.88074337	1.58153056
8	4.30218710	-4.16073307	2.73732134
6	-0.47196159	1.51251048	-0.15603882
6	-1.71548718	1.21919632	0.38515292
6	-2.82691170	1.93879425	-0.05293172
1	-1.85382169	0.40324219	1.07862040
1	-3.81877062	1.63531205	0.26903947
8	-0.31530792	2.50020067	-0.99740691
5	-1.31666374	3.56764168	-1.17158791
7	-2.73086824	2.98656605	-0.84990813
6	-3.89932413	3.62311036	-1.35226996
6	-3.91506267	5.01116588	-1.48473084
6	-5.01233220	2.86741893	-1.72745440
6	-5.05080500	5.64490315	-1.96976150

1	-3.04927796	5.59377978	-1.19667788
6	-6.14801400	3.50296375	-2.20294456
1	-4.98156222	1.78608488	-1.67243805
6	-6.16443367	4.89059815	-2.31925932
1	-5.06498949	6.72331036	-2.06544650
1	-7.01208230	2.91766633	-2.49733521
6	-7.39883883	5.54567346	-2.85790963
9	-7.62582502	5.21594642	-4.14444633
9	-7.34246746	6.88272901	-2.80692167
9	-8.50213398	5.17517019	-2.18049470
9	-1.03430620	4.60885126	-0.28144031
9	-1.26590720	4.01757018	-2.47926248

*** molecule ${\bf 1d}$ rotamer B S_0 Toluene 46

6	0.72401168	0.76860999	0.13354537	
6	1.98821546	1.08944699	-0.27173359	
16	0.71920213	-0.68523123	1.10039738	
6	2.97714812	0.19420778	0.20273063	
1	2.21041900	1.96557645	-0.86624288	
6	2.45177474	-0.83937260	0.98832239	
6	4.36581626	0.42323732	0.00546725	
7	5.49098546	0.61824802	-0.14601087	
6	2.33603347	-2.74758282	2.48772947	
6	4.19442665	-2.55929610	0.91307511	
6	3.29071388	-3.47212851	3.42547585	
1	1.76910137	-3.47636472	1.89148874	
Ţ	1.64217077	-2.15483565	3.08665978	
6	5.05559975	-3.28606458	1.93005937	
1	3.75843963	-3.2/984/59	0.20898841	
1	4.80909699	-1.85385469	0.360/0245	
1	2.73936594	-4.20162121	4.01896581	
1	3.76131839	-2.74591820	4.10166877	
1	5.80925214	-3.88143036	1.4149/350	
1	5.55861523	-2.55/6//44	2.5/94/519	
/	3.0951/0/0	-1.86041164	1.603/7523	
8	4.28160129	-4.1/659/0/	2./1032348	
6	-0.4/1///30	1.52919068	-0.13964800	
6	-1./19540/8	1.22052695	0.38449854	
0 1	-2.82994951	1.9384/121	-0.06094741	
1	-1.85/38918	0.39581016	1.06/0/358	
⊥ o	-3.82539779	1.02040039	0.24260946	
8	-0.30897766	2.52399033	-0.96393237	
5	-1.31203000	3.39010904	-1.13033433	
6	-2.75157549 -2.00752012	2.99124057	-0.04049302 -1.25071700	
6	-3.09/33012	5.02304937	-1.350/1/09 -1.46259577	
6	-7.92917720	2 86047318	-1.40230377	
6	-4.99103713	5 62066022	-1.05261425	
0 1	-3.00020733	5 50645265	-1.95261455	
т б	-6.12873250	3 18076838	-1.14943490 -2.25208022	
1	-0.12073239 -1.91110927	1 77864037	-2.23200922 -1.74743158	
1	-6 16/02367	1 87870125	-2 33607200	
1	-5 09691785	-7.07079120	-2 02685490	
⊥ 1	-6 9795092705	2 90133036	-2 57662850	
- 6	-7 40121748	5 52794746	-2 87891815	
0	/ • I U I Z I / I U	J.JZ/JT/TU	2.0/0/10/10	
9	-7 60041478	5 22521759	-4 17482572	
--------	---------------------------	---------------------------	-------------	--
9	-7 36/81031	6 96303114	-2 70103880	
9	-7.50401051 0 E0E41011	E 100E7C04	-2.79193009	
9	-8.50541811	J.12UJ/084	-2.22647850	
9	-1.06185201	4.61132197	-0.21/92895	
9	-1.25205646	4.06207712	-2.43284742	
*** mo	lecule 1d rotame	er A S_{1r} acetone		
46				
6	0.88043612	0.97379571	0.14042650	
6	1.09516836	-0.20431574	0.87561137	
16	2.39152000	1.66273207	-0.41648644	
6	2.44665641	-0.54189132	0.99648959	
1	0.30079790	-0.80390831	1.29558841	
6	3.32189684	0.38330032	0.35987490	
6	2.83062717	-1.75623529	1.61979577	
7	3.08625076	-2.76367567	2.12223724	
6	5.39326837	1.29333797	-0.59760821	
6	5.55005325	-0.40564320	1.12082624	
6	6.33218823	0.44157270	-1.45107797	
1	5.96574734	2.00564321	0.00407138	
1	4.71521744	1.84500173	-1.24640116	
6	6.48161771	-1.19561489	0.20835545	
1	6.13512298	0.28014745	1.74254800	
1	4.99812932	-1.07082618	1.77566926	
1	6.95379970	1.09171726	-2.06648953	
1	5.73868601	-0.21121104	-2.10554336	
1	7.21374848	-1.73376216	0.80979846	
1	5.90144609	-1.91855863	-0.38064917	
7	4.65007207	0.41443841	0.30761360	
8	7.20000396	-0.32943327	-0.64735393	
6	-0.31499419	1.63026084	-0.18962660	
6	-1.58835337	1.14471718	0.17828611	
6	-2.73706232	1.80127586	-0.22196406	
1	-1.68208580	0.24407579	0.76771559	
1	-3.70885554	1.39979166	0.03478977	
8	-0.20740796	2.73442473	-0.93280109	
5	-1.29414895	3.70866292	-1.00280675	
7	-2.68328915	2.97817089	-0.88925608	
6	-3.84900264	3.55238400	-1.39083148	
6	-3.94629375	4.95120833	-1.51515023	
6	-4.94386752	2.76085378	-1.77508270	
6	-5.10494143	5.52845822	-1,99102989	
1	-3.11905231	5.57744520	-1,21219345	
6	-6.10268877	3,34862717	-2,25343735	
1	-4 87874656	1 68092159	-1 74257379	
÷ 6	-6 19121151	4 73181345	-2 35817134	
1	-5 16911617	6 60768450	-2 06590217	
1	-6.93197221	2.72175395	-2.55565252	
6	-7 42324548	5 38891843	-2 89814995	
Q	-7 21755739	5 92 <u>4</u> 7196	-4 12294672	
a	-7 84070401	6 <u>1</u> 0515266	-2 11523122	
a	-8 45680425	4 51023000 1 5102302	-3 01980668	
a	_1 18617603	T. 57005255 A 63306100	0 05781231	
Q	_1 19///000	4 36020100 1 36020037	-2 22695508	
Ŀ,	エ・エンママオリロロ		L.LLUJJJUU	

*** molecule $\mathbf{1d}$ rotamer A S_{1r} CHCl₃ 46

6	0.84811280	0.91348789	0.06803918
6	1.05509311	-0.26230916	0.80556158
16	2.36194375	1.57719357	-0.51443065
6	2.40476702	-0.61699682	0.91067438
1	0.25871677	-0.85032105	1.23808836
6	3.28128253	0.29165970	0.25852364
6	2.78885152	-1.83589522	1.52591687
7	3.05423870	-2.84504950	2.01937620
6	5.34378789	1.21930775	-0.68497418
6	5.49892697	-0.40670101	1.11890377
6	6.48838832	0.47720835	-1.36931131
1	5.73499659	2.04325591	-0.07747465
1	4.68017967	1.62591030	-1.44718064
6	6.63194309	-1.07815626	0.35568015
1	5.90804731	0.34291954	1.80678217
1	4.95344656	-1.14278499	1.69986491
1	7.09191257	1.18676166	-1.93519374
1	6.07781708	-0.27205555	-2.06000230
1	7.34195685	-1.50777087	1.06193125
1	6.23058911	-1.88016996	-0.27850695
7	4.61390151	0.29493518	0.18446877
8	7.33919153	-0.14096581	-0.42959485
6	-0.34076259	1.59273377	-0.24307757
6	-1.61444435	1.13946397	0.16852892
6	-2.75958479	1.81347592	-0.21137509
1	-1.70870997	0.25333431	0.77943972
1	-3.73170208	1.44151799	0.08555248
8	-0.22718621	2.68111237	-0.99890450
5	-1.29731860	3.67908361	-1.07168509
7	-2.69979347	2.97329415	-0.90612917
6	-3.86585102	3.56260926	-1.38515399
6	-3.93047768	4.95917400	-1.55045526
6	-4.99542745	2.78994219	-1.70556169
6	-5.09036886	5.55302934	-2.00245392
1	-3.07587608	5.57049245	-1.29746196
6	-6.15397005	3.39459103	-2.16047951
1	-4.95687810	1.70993143	-1.64382511
6	-6.21014494	4.77651714	-2.30412373
1	-5.12933867	6.63054315	-2.10924466
1	-7.01078561	2.78298455	-2.41377975
6	-7.44170614	5.44199790	-2.83696911
9	-7.30926895	5.78452994	-4.13811757
9	-7.72868602	6.58145187	-2.17809393
9	-8.52976406	4.65792175	-2.75780461
9	-1.15168389	4.61992780	-0.03620533
9	-1.21792526	4.29946185	-2.31343053

*** molecule $\mathbf{1d}$ rotamer A S_{1r} dioxane 46

6	0.84539426	0.92244594	0.07307348
6	1.04905924	-0.26576025	0.78780664
16	2.36039521	1.59022868	-0.50409369
6	2.39890447	-0.62959463	0.87760233

1	0.25215564	-0.85951031	1.21154127
6	3.27353734	0.28543512	0.23919052
6	2.79022445	-1.86411006	1.45723166
7	3.07330606	-2.88338583	1.91861791
6	5.33821237	1.18909049	-0.72296904
6	5.48873529	-0.38663661	1.12610988
6	6.50681257	0.44811369	-1.36718906
1	5.70705245	2.03870688	-0.13567039
1	4.67843092	1.56105511	-1.50656324
6	6.64485559	-1.05900004	0.40005959
1	5.87585271	0.38520421	1.80321321
1	4.94270950	-1.11677960	1.71489799
1	7.11117329	1.15064268	-1.94133442
1	6.11951808	-0.32525399	-2.04536375
1	7.35156930	-1.45880859	1.12702099
1	6.26603338	-1.88419408	-0.21870150
7	4.61037080	0.27615759	0.15796021
8	7.34960304	-0.13156430	-0.39795722
6	-0.34159588	1.61278138	-0.22567598
6	-1.61649854	1.15389935	0.18307105
6	-2.76145613	1.82632077	-0.19784141
1	-1.70811156	0.26586927	0.79162278
1	-3.73413518	1.45394894	0.09761365
8	-0.22485175	2.70726196	-0.96197315
5	-1.29968781	3.70682692	-1.04273450
7	-2.70192985	2.98626546	-0.89128989
6	-3.86653558	3.57006462	-1.37699245
6	-3.93502932	4.96640650	-1.54427735
6	-4.99205846	2.79261970	-1.70236183
6	-5.09579013	5.55487649	-2.00055289
1	-3.08257950	5.57973452	-1.28894339
6	-6.15058871	3.39244142	-2.16225628
1	-4.94756502	1.71258346	-1.64258308
6	-6.21153831	4.77426402	-2.30570318
1	-5.13959290	6.63200955	-2.10862258
1	-7.00479712	2.77890210	-2.41988984
6	-7.44503244	5.43280916	-2.84543448
9	-7.31943026	5.74254599	-4.15407686
9	-7.72215132	6.58662945	-2.21005282
9	-8.53379236	4.65264185	-2.73928908
9	-1.17216776	4.63395009	0.00014588
9	-1.21655360	4.32445021	-2.28005466

*** molecule ${\bf 1d}$ rotamer A $S_{\rm lr}$ DMF 46

6	0.87819824	0.96969241	0.13911374
6	1.09226423	-0.20635669	0.87819182
16	2.38959182	1.65443590	-0.42174289
6	2.44315692	-0.54547808	0.99880402
1	0.29746733	-0.80288860	1.30171735
6	3.31945096	0.37615313	0.35748453
6	2.82476098	-1.75700713	1.62886937
7	3.07697729	-2.76211362	2.13770159
6	5.38957620	1.29255429	-0.59540161
6	5.54759618	-0.41513743	1.11512940
6	6.34090664	0.45291809	-1.44668797

1	5.95208844	2.00703490	0.01314248
1	4.71159661	1.84119374	-1.24675787
6	6.49163889	-1.19168387	0.20411370
1	6.12242612	0.27018341	1.74682764
1	4.99630311	-1.09040194	1.75997575
1	6.96078669	1.11176220	-2.05450804
1	5.75747370	-0.20152420	-2.10837250
1	7.22309592	-1.72807527	0.80792030
1	5.92132902	-1.91514473	-0.39369283
7	4.64705009	0.40446656	0.30164316
8	7.20982368	-0.31500454	-0.64104133
6	-0.31676151	1.62641043	-0.19148110
6	-1.59025847	1.14428934	0.17965023
6	-2.73862360	1.80182543	-0.22012831
1	-1.68474538	0.24522483	0.77136216
1	-3.71053208	1.40240331	0.03921905
8	-0.20886920	2.72848247	-0.93912500
5	-1.29395143	3.70364317	-1.00932258
7	-2.68402362	2.97725023	-0.89035117
6	-3.84973440	3.55254171	-1.39098376
6	-3.94456384	4.95122693	-1.51897993
6	-4.94698418	2.76220873	-1.77081276
6	-5.10281372	5.52957595	-1.99459597
1	-3.11578741	5.57689406	-1.21906396
6	-6.10548415	3.35101818	-2.24879470
1	-4.88442891	1.68226100	-1.73484395
6	-6.19130962	4.73406195	-2.35764672
1	-5.16481020	6.60873523	-2.07233074
1	-6.93655472	2.72480384	-2.54741694
6	-7.42285452	5.39223420	-2.89717247
9	-7.21736393	5.92700328	-4.12253699
9	-7.83864455	6.40999731	-2.11473282
9	-8.45765406	4.54562586	-3.01773412
9	-1.18109056	4.63353000	0.04772000
9	-1.19527874	4.36175936	-2.23599629

*** molecule ${\color{black}1d}$ rotamer A S_{1r} DMSO 46

6	0.87768335	0.96876969	0.13857907
6	1.09165651	-0.20637214	0.87923446
16	2.38907012	1.65194767	-0.42410771
6	2.44239027	-0.54596623	0.99958821
1	0.29680440	-0.80179459	1.30421862
6	3.31887319	0.37429971	0.35631638
6	2.82346207	-1.75647511	1.63190119
7	3.07489160	-2.76073282	2.14280184
6	5.38851160	1.29171474	-0.59628759
6	5.54708647	-0.41701326	1.11344388
6	6.34349881	0.45493891	-1.44616507
1	5.94805352	2.00744316	0.01355489
1	4.71046920	1.83878007	-1.24888723
6	6.49478707	-1.19035536	0.20355872
1	6.11889503	0.26871746	1.74743996
1	4.99604041	-1.09467087	1.75595233
1	6.96280143	1.11580122	-2.05237006
1	5.76305128	-0.20059994	-2.10935031

1 7 8 6 6 1 1 8	7.22610217 5.92742006 4.64631437 7.21279517 -0.31718033 -1.59064600 -2.73897523 -1.68523763 -3.71087154 -0.20932788	-1.72564994 -1.91451699 0.40170409 -0.31129897 1.62552633 1.14462940 1.80236571 0.24627818 1.40373120 2.72666172	0.80850515 -0.39615851 0.29919651 -0.63928413 -0.19211375 0.18051275 -0.21907482 0.77328963 0.04148096 -0.94150444
5	-1.29388703	3.70216102	-1.01188888
7	-2.68424691	2.97707376	-0.89064746
6	-3.85006910	3.55255433	-1.39088410
6	-3.94415586	4.95115406	-1.52042651
6	-4.94815732	2.76248697	-1.76881803
6	-5.10241093	5.52969952	-1.99581636
1	-3.11482336	5.57672583	-1.22185798
6	-6.10668438	3.35147690	-2.24654788
I C	-4.8863/331	1.68254/69	-1./31490//
0 1	-0.19109094	4.73443605	-2.33700103 -2.07475041
1	-6.93839197	2.72539341	-2.54365760
6	-7.42326093	5.39280719	-2.89624107
9	-7.21807599	5.92739894	-4.12177924
9	-7.83853528	6.41085870	-2.11383609
9	-8.45835114	4.54652345	-3.01632507
9	-1.17927371	4.63377688	0.04368608
9	-1.19583222	4.35883356	-2.23959688
*** r 46	nolecule 1d rotamer	A S_{1r} EtOH	
~	0 0000000	0 000000	0 1000005
6	0.87973605	0.97242997	0.13993035
6 1 C	1.09427941	-0.20483888	0.8/668185
10	2.39009934	-0 54290269	-0.41052000
1	0.29977601	-0.80329924	1,29802381
- 6	3.32115027	0.38096185	0.35906063
6	2.82872269	-1.75615930	1.62336326
7	3.08314457	-2.76271041	2.12820458
6	5.39205613	1.29305340	-0.59705813
6	5.54933256	-0.40870488	1.11885445

0	2.00000001	I.00002001	0.11002000
6	2.44555960	-0.54290269	0.99749945
1	0.29977601	-0.80329924	1.29802381
6	3.32115027	0.38096185	0.35906063
6	2.82872269	-1.75615930	1.62336326
7	3.08314457	-2.76271041	2.12820458
6	5.39205613	1.29305340	-0.59705813
6	5.54933256	-0.40870488	1.11885445
6	6.33502764	0.44523865	-1.44983962
1	5.96128114	2.00609391	0.00685537
1	4.71400717	1.84370255	-1.24668688
6	6.48498979	-1.19430248	0.20684396
1	6.13103541	0.27701375	1.74379537
1	4.99765689	-1.07719125	1.77048698
1	6.95602759	1.09824288	-2.06282090
1	5.74480690	-0.20814823	-2.10661467
1	7.21693185	-1.73180858	0.80908144
1	5.90804837	-1.91747682	-0.38499618
7	4.64910409	0.41115242	0.30554272
8	7.20327718	-0.32470098	-0.64549224
6	-0.31555481	1.62889535	-0.19036832
6	-1.58894037	1.14458123	0.17876736
6	-2.73755435	1.80145001	-0.22130222

1	-1.68291430	0.24453099	0.76906078
1	-3.70937032	1.40069015	0.03642967
8	-0.20791973	2.73225400	-0.93527869
5	-1.29407154	3.70679450	-1.00531251
7	-2.68353106	2.97779991	-0.88968994
6	-3.84928003	3.55238180	-1.39087587
6	-3.94570313	4.95115396	-1.51653992
6	-4.94501761	2.76126498	-1.77345965
6	-5.10423611	5.52878425	-1.99227679
1	-3.11789817	5.57720151	-1.21473420
6	-6.10375438	3.34939365	-2.25163108
1	-4.88081962	1.68132671	-1.73967643
6	-6.19132079	4.73252761	-2.35787394
1	-5.16763530	6.60798645	-2.06819488
1	-6.93369124	2.72273894	-2.55249184
6	-7.42321166	5.39000002	-2.89762722
9	-7.21764370	5.92534426	-4.12260951
9	-7.84008773	6.40693459	-2.11482400
9	-8.45719669	4.54242559	-3.01890947
9	-1.18425519	4.63382785	0.05397036
9	-1.19480658	4.36682455	-2.23040768
** m	olecule 1d rotame	r A S _{1r} MeCN	
46			
-			
6	A 878/9281	0 97017868	A 13912559

*

6	0.8/849281	0.9/01/868	0.13912559
6	1.09269096	-0.20576588	0.87831741
16	2.38979393	1.65498469	-0.42192860
6	2.44363186	-0.54474912	0.99888471
1	0.29797005	-0.80235347	1.30190602
6	3.31978193	0.37690312	0.35746055
6	2.82548816	-1.75629139	1.62878075
7	3.07802388	-2.76141790	2.13741222
6	5.38990810	1.29232038	-0.59645955
6	5.54799364	-0.41384387	1.11551646
6	6.34012340	0.45126796	-1.44763125
1	5.95330555	2.00690154	0.01113674
1	4.71185927	1.84090173	-1.24779779
6	6.49092604	-1.19193859	0.20466220
1	6.12372229	0.27184280	1.74599710
1	4.99671193	-1.08795978	1.76158373
1	6.96008378	1.10910698	-2.05645913
1	5.75578504	-0.20335763	-2.10834235
1	7.22250345	-1.72816348	0.80847208
1	5.91975456	-1.91565942	-0.39201227
7	4.64740789	0.40540489	0.30174636
8	7.20904251	-0.31652697	-0.64186840
6	-0.31654065	1.62678712	-0.19145066
6	-1.58997543	1.14456765	0.17981071
6	-2.73841710	1.80196466	-0.21996684
1	-1.68433619	0.24555306	0.77161830
1	-3.71028069	1.40249237	0.03948076
8	-0.20878054	2.72878305	-0.93914991
5	-1.29395277	3.70389213	-1.00937261
7	-2.68396178	2.97732198	-0.89029445
6	-3.84975725	3.55246529	-1.39089152
6	-3.94473931	4.95113467	-1.51892714

6	-4.94694319	2.76199961	-1.77062550
6	-5.10309516	5.52933899	-1.99445507
1	-3.11599425	5.57688782	-1.21910369
6	-6.10554680	3.35066714	-2.24852744
1	-4.88424378	1.68205856	-1.73466134
6	-6.19153611	4.73369829	-2.35739029
1	-5.16522192	6.60848874	-2.07221768
1	-6.93657309	2.72436317	-2.54708554
6	-7.42321426	5.39172989	-2.89679804
9	-7.21787109	5.92661550	-4.12212403
9	-7.83910674	6.40935933	-2.11424597
9	-8.45788801	4.54496298	-3.01735554
9	-1.18116275	4.63376988	0.04763542
9	-1. ₁₉₅₄₂₅₆₉	4.36189810	-2.23607348

*** molecule **1d** rotamer A S1r THF 46

6	0.85003403	0.91591320	0.07776382
6	1.05778652	-0.25627983	0.82202008
16	2.36366040	1.57759067	-0.50638620
6	2.40700727	-0.60956906	0.93054990
1	0.26139162	-0.84150575	1.25825510
6	3.28472286	0.29621703	0.27309307
6	2.78669602	-1.82221591	1.56024434
7	3.04351485	-2.82691927	2.06729109
6	5.34575209	1.23517981	-0.66243287
6	5.50453985	-0.42616282	1.10807027
6	6.47482562	0.49545454	-1.37429685
1	5.75135610	2.04176149	-0.04174727
1	4.67912880	1.66459223	-1.40906216
6	6.62239366	-1.09384446	0.31913502
1	5.92796474	0.30670964	1.80476164
1	4.95958088	-1.16827369	1.68136074
1	7.07790367	1.21061692	-1.93339857
1	6.04930926	-0.23656361	-2.07409217
1	7.33510174	-1.54365095	1.00986969
1	6.20643255	-1.87944304	-0.32582911
7	4.61545263	0.30149682	0.19755174
8	7.33058108	-0.14870205	-0.45609262
6	-0.33938849	1.59109984	-0.23810738
6	-1.61297112	1.13886049	0.17245983
6	-2.75819882	1.81181683	-0.20967843
1	-1.70837984	0.25346357	0.78425901
1	-3.73024946	1.43894853	0.08597753
8	-0.22662714	2.67779597	-1.00045651
5	-1.29645839	3.67331472	-1.07365542
7	-2.69825606	2.97130146	-0.90573496
6	-3.86435373	3.56041906	-1.38608586
6	-3.92882524	4.95672913	-1.55338582
6	-4.99370319	2.78760362	-1.70630648
6	-5.08777099	5.55036980	-2.00835143
1	-3.07485751	5.56879305	-1.29998682
6	-6.15160918	3.39183641	-2.16386293
1	-4.95643671	1.70779254	-1.64151393
6	-6.20720795	4.77346488	-2.31055907
1	-5.12592972	6.62776814	-2.11682891

1	-7.00800034	2.77946103	-2.41666791
6	-7.43724613	5.43867525	-2.84628160
Q	-7 20001067	5 78680102	_1 11596231
0	7.200007		2 10405140
9	-7.72930346	6.5/585884	-2.18495149
9	-8.52488944	4.65341506	-2.77530016
9	-1.14789280	4.62073591	-0.04172137
9	-1.21623359	4.29376738	-2.31759525
*** m	ologulo 1dz S.	Toluopo	
	DIECUIE IUN Dir	IOIUelle	
46			
6	0.84566026	0.92104557	0.07168099
6	1.04975086	-0.26565993	0.78919254
16	2.36050689	1.58841704	-0.50608981
6	2.39962197	-0.62828417	0.88098310
1	0.25292679	-0.85884266	1.21385621
6	3 27444850	0 28608933	0 24103905
6	2 70015066		1 16167201
0	2.79013000	-1.88108/9/	1 00001504
1	3.0/121966	-2.8/930884	1.92961599
6	5.33902/31	1.192480/7	-0./18813/8
6	5.48983550	-0.38824046	1.12588941
6	6.50507179	0.45102224	-1.36707441
1	5.71029397	2.03946112	-0.12943297
1	4.67894022	1.56808421	-1.50033089
6	6.64350460	-1.06088905	0.39611734
1	5 87933877	0.38145404	1.80393472
1	4 94377811	-1 11874285	1 71410422
1	7 100/3103	1 15/11570	-1 91017575
1	7.10945105 C 11505000		-1.94047373
1	0.11525837	-0.31992484	-2.04647757
Ţ	/.35049/93	-1.463/8980	1.1210/23/
1	6.26224442	-1.88376169	-0.22416451
7	4.61082069	0.27857030	0.16106363
8	7.34864364	-0.13265485	-0.40072969
6	-0.34156318	1.61008191	-0.22856196
6	-1.61626777	1.15202075	0.18079331
6	-2.76125419	1.82476147	-0.19980792
1	-1.70817555	0.26428426	0.78972777
1	-3.73385285	1,45257895	0.09604529
8	-0 22519961	2 70371440	-0 96733829
5	-1 20033623	3 70326794	-1 04693624
ך ר	-2 70170220	2 00462022	
Ċ	-2.70170220	2.90402033	-0.09343103
6	-3.80652952	3.56920133	-1.3/812/40
6	-3.93449191	4.9655/366	-1.5450//83
6	-4.99264982	2.79241827	-1.70272795
6	-5.09522079	5.55479812	-2.00051902
1	-3.08167597	5.57858060	-1.29019787
6	-6.15125362	3.39292437	-2.16170356
1	-4.94889151	1.71237267	-1.64284846
6	-6.21158229	4.77477799	-2.30502580
1	-5 13838873	6 63198680	-2 10836440
- 1	-7 00586828	2 77969170	-2 11860/07
E T	-7 AAAQQQ1C	5 13105265	-2 8136003407
0	-/.44433310 7 31005540	J.43423203	-2.0430U920
9	-/.31895549	J. /4 /68488	-4.151496/8
9	-/./2285242	6.58651858	-2.20548520
9	-8.53370267	4.65374008	-2.74016926
9	-1.16931537	4.63198193	-0.00494058
9	-1.21687244	4.32117045	-2.28478587

* * *	molecule	1d	rotamer	В	S_{1r}	acetone
4	6					

6	0.68916757	0.61690586	-0.02017289
6	1.99820812	0.92981858	-0.41695903
16	0.65609083	-0.87118722	0.91373224
6	2.95120352	0.00669366	0.02140014
1	2.23455253	1.81732248	-0.98509301
6	2.39642597	-1.07441509	0.76484321
6	4.33234256	0.23653837	-0.20405190
7	5.44322972	0.48087860	-0.40022538
6	2.29375665	-3.04825544	2.22293764
6	4.34175579	-2.59731218	1.00388189
6	3.14360226	-3.20414200	3.48286878
1	2.15945656	-4.01645713	1.73077354
1	1.31698268	-2.65330639	2.49694620
6	5.11185533	-2.76531865	2.30790358
1	4.26039974	-3.56270270	0.49328214
1	4.85481888	-1.90589804	0.34465705
1	2.68722113	-3.94614828	4.13762336
1	3.19296532	-2.24237831	4.01090275
1	6.09318740	-3.19046862	2.09983628
1	5.23995594	-1.78859527	2.79350785
7	2.97849801	-2.14625829	1.29428303
8	4.44346098	-3.66010641	3.17459192
6	-0.47052666	1.36164391	-0.30366311
6	-1.76524582	0.99384917	0.11805268
6	-2.86914955	1.74703195	-0.23318671
1	-1.91671953	0.10823778	0.72037224
1	-3.85872185	1.43135987	0.06928775
8	-0.29998783	2.45272481	-1.05279041
5	-1.29666336	3.51779304	-1.07890965
7	-2.74158217	2.91711114	-0.90613299
6	-3.87238922	3.59405545	-1.35019700
6	-3.84572767	4.99307772	-1.49613795
6	-5.06169574	2.90534331	-1.65487091
6	-4.97175631	5.67418659	-1.91586354
1	-2.94794226	5.54315395	-1.25281522
6	-6.18354532	3.59515845	-2.07299804
1	-5.09874851	1.82480829	-1.60523799
6	-6.14783133	4.98201856	-2.19884472
1	-4.93664682	6.75252099	-2.00804341
1	-7.08702541	3.04684584	-2.31168477
6	-7.35806939	5.70774699	-2.69849584
9	-7.46834189	5.64506603	-4.04617588
9	-7.34785511	7.01314029	-2.38015866
9	-8.50187410	5.19233551	-2.20751079
9	-1.06518034	4.43048672	-0.02608844
9	-1.18873298	4.17034298	-2.30817176

*** molecule ${\bf 1d}$ rotamer B S_{1r} Chloroform 46

6	0.67328172	0.62924992	0.01475027
6	1.97915740	0.93178321	-0.39353851

16	0.63763344	-0.85413777	0.95872099
6	2.92934643	0.00448880	0.04552958
1	2.21517765	1.81711717	-0.96529147
6	2 37466212	-1 06738935	0 79535648
6	1 21500045	0 22191995	-0 16209010
0	4.31380943	0.22101995	-0.16306910
/	5.43535/52	0.44124579	-0.33624886
6	2.30843405	-2.99891041	2.31275161
6	4.28251404	-2.64996437	0.94524289
6	3.23973883	-3.16430205	3.51320492
1	2.10042484	-3.97229871	1.85652343
1	1.37063154	-2.55539111	2.64434198
6	5.13628448	-2.82491544	2.19469005
1	4 13104997	-3 62177390	0 46214832
1	1 77050858	-1 98967/18	0.23625356
1	2 20526047	2,97562241	4 21505330
1	2.00300047	-3.07363341	4.21595420
Ţ	3.361/9805	-2.19466328	4.0152/3/6
T	6.08351230	-3.29405914	1.93044816
1	5.33712428	-1.84500904	2.64863224
7	2.96092287	-2.14346633	1.32161107
8	4.49531230	-3.67553780	3.12404324
6	-0.48451167	1.38076534	-0.26592712
6	-1.78011203	1.01465190	0.15919163
6	-2.88385185	1.76162997	-0.20522427
1	-1.92996515	0.13565072	0.77155924
1	-3 87491832	1 44938862	0 09687302
2 Q	-0 31070884	2 46565038	-1 01322305
5		2 52520712	-1 05162400
5	-1.30828440	3.33328712	-1.03102409
	-2.75516951	2.92413363	-0.88893921
6	-3.8835/181	3.59015552	-1.35186950
6	-3.86162444	4.99041051	-1.50366855
6	-5.06319194	2.89398579	-1.67029409
6	-4.98448416	5.66021002	-1.94148301
1	-2.96894779	5.54442709	-1.25064871
6	-6.18395628	3.57490923	-2.11172942
1	-5.09286873	1.81314589	-1.61862923
6	-6.15326190	4.95866860	-2.24318156
1	-4 95620623	6 73905782	-2 03811302
1	-7 07944791	3 021107/3	-2 36440839
т б		5 70012042	-2 75100155
0	-7.34329313	5.70913042	-2.75190155
9	-7.18308321	6.10854417	-4.03298216
9	-7.58271201	6.82811858	-2.03918448
9	-8.47161618	4.97776800	-2.71901872
9	-1.09326487	4.44097744	0.00398704
9	-1.19631161	4.17880413	-2.27966533
*** mo 46	olecule 1d rotame	er B S_{1r} dioxane	

0.72724301	0.77536357	0.13641494
1.99219939	1.09467611	-0.26744871
0.71899970	-0.67939546	1.10128161
2.97884923	0.19739974	0.20753118
2.21641978	1.97090537	-0.86091047
2.45097518	-0.83539010	0.99104899
4.36877416	0.42201606	0.01427521
5.49504541	0.61326134	-0.13320856
2.33653026	-2.73879570	2.49573543
	0.72724301 1.99219939 0.71899970 2.97884923 2.21641978 2.45097518 4.36877416 5.49504541 2.33653026	0.727243010.775363571.992199391.094676110.71899970-0.679395462.978849230.197399742.216419781.970905372.45097518-0.835390104.368774160.422016065.495045410.613261342.33653026-2.73879570

6	4.18178966	-2.56495776	0.90512961
6	3.29435216	-3.46883142	3.42568997
1	1.75903291	-3.46432192	1.90550955
1	1.65164355	-2.14064564	3.09974511
6	5.04698000	-3.29661594	1.91479469
1	3.73426884	-3.28274991	0.20535390
1	4.79617347	-1.86437740	0.34596756
1	2.74361422	-4.19358270	4.02550841
1	3.77562959	-2.74494219	4.09685125
1	5.79206986	-3.89778132	1.39404887
1	5.56089487	-2.57079127	2.55855162
7	3.09457224	-1.85751981	1.60570877
8	4.27425938	-4.18119020	2.70327285
6	-0.46779077	1.53782952	-0.13581192
6	-1.71357556	1.23295931	0.39519097
6	-2.82603805	1.94486009	-0.05488970
1	-1.84896115	0.41289234	1.08380389
1	-3.82095099	1.63232716	0.25026869
8	-0.30700200	2.52707107	-0.96679763
5	-1.31122994	3.60219140	-1.13880403
7	-2.72950123	2.99261793	-0.84662377
6	-3.89600908	3.62072288	-1.36115163
6	-3.93053645	5.01030956	-1.46415160
6	-4.98834514	2.85600400	-1.77438037
6	-5.06906300	5.63508903	-1.95257074
1	-3.07550417	5.59549744	-1.15016573
6	-6.12684840	3.48346809	-2.25330922
1	-4.93548850	1.77418297	-1.75104947
6	-6.16543805	4.87216232	-2.33589430
1	-5.10202280	6.71473410	-2.02538074
1	-6.97655003	2.89350049	-2.57746943
6	-7.40117044	5.51999753	-2.88351837
9	-7.56585117	5.26076182	-4.19361271
9	-7.38804367	6.85163743	-2.74905230
9	-8.51215241	5.07226236	-2.27140097
9	-1.06168549	4.61219220	-0.21526276
9	-1.25338005	4.06824249	-2.43161367

*** molecule $\boldsymbol{1d}$ rotamer B S_{lr} DMF

46

6	0.69091064	0.61291539	-0.02769315
6	2.00004252	0.92648650	-0.42465501
16	0.65890135	-0.87416202	0.90733626
6	2.95383652	0.00488262	0.01463705
1	2.23595960	1.81317463	-0.99423469
6	2.39966355	-1.07595428	0.76002770
6	4.33392772	0.23600805	-0.21524709
7	5.44326290	0.48325230	-0.41680539
6	2.29307384	-3.05319719	2.21300676
6	4.35025024	-2.58913617	1.01490960
6	3.13112026	-3.20667888	3.48098047
1	2.16929285	-4.02086977	1.71718516
1	1.31134968	-2.66484996	2.47831269
6	5.10829673	-2.75510462	2.32631118
1	4.27890003	-3.55394572	0.50193641
1	4.86647200	-1.89406525	0.36215160

1 1 1 7 8 6 6 6 1 8 5 7 6 6 6 6 1 6 1 6 1 6	2.67193358 3.17018935 6.09393317 5.22607502 2.98176781 4.43660260 -0.46915967 -1.76339776 -2.86741153 -1.91474811 -3.85650227 -0.29953808 -1.29570408 -2.74034331 -3.87169871 -3.84340227 -5.06323593 -4.96974343 -2.94415556 -6.18547412 -5.10230492 -6.14795965	-3.95222436 -2.24566883 -3.17431674 -1.77862934 -2.14562355 -3.65522132 1.35658176 0.98968119 1.74375906 0.10400108 1.42849797 2.44750519 3.51222643 2.91408838 3.59274219 4.99163768 2.90587614 5.67444414 5.54075122 3.59732014 1.82550589 4.98404766	$\begin{array}{c} 4.12965909\\ 4.01107429\\ 2.12671336\\ 2.81492677\\ 1.29233463\\ 3.18492549\\ -0.31143920\\ 0.11178504\\ -0.23716382\\ 0.71403069\\ 0.06713891\\ -1.06253669\\ -1.08719671\\ -0.91020334\\ -1.35072371\\ -1.49766462\\ -1.65076820\\ -1.91395539\\ -1.25762706\\ -2.06526795\\ -1.59986689\\ -2.19227624\end{array}$
1 1	-4.93302994 -7.09066885	6.75266408 3.05014151	-2.00687750 -2.30003718
6	-7.35882188	5.71139545	-2.68774329
9	-7.47556113	5.64641972	-4.03494166
9	-8.50162052	7.01749044 5.19963536	-2.37220394 -2.19064709
9	-1.06010067	4.42757259	-0.03655767
9	-1.18958604	4.16419013	-2.31784544
*** m 46	olecule 1d rotamer	B S _{1r} DMSO	
6	0.69131005	0.61201104	-0.02937972
6	2.00045618	0.92550122	-0.42663001
10 10	2 95438586	-0.8/459483	0.90627461
1	2.23630511	1.81183570	-0.99678713
6	2.40032058	-1.07628944	0.75914190
6	4.33422893	0.23548142	-0.21813986
7	5.44320019	0.48324587	-0.42113356
6	2.29276162	-3.05399871	2.21133266
6	4.3518/792	-2.58/498/4	1.01/58093
ю	3.12033313	-3.20/119/4	5.40094/39

6	2.00045618	0.92550122	-0.42663001
16	0.65950332	-0.87459483	0.90627461
6	2.95438586	0.00425375	0.01297114
1	2.23630511	1.81183570	-0.99678713
6	2.40032058	-1.07628944	0.75914190
6	4.33422893	0.23548142	-0.21813986
7	5.44320019	0.48324587	-0.42113356
6	2.29276162	-3.05399871	2.21133266
6	4.35187792	-2.58749874	1.01758093
6	3.12833315	-3.20711974	3.48094739
1	2.17100633	-4.02152573	1.71475675
1	1.31009663	-2.66686497	2.47484827
6	5.10738159	-2.75318863	2.33049895
1	4.28247498	-3.55214732	0.50408618
1	4.86885485	-1.89171364	0.36621288
1	2.66844597	-3.95332611	4.12835208
1	3.16543590	-2.24628542	4.01145593
1	6.09383342	-3.17130201	2.13263107
1	5.22315338	-1.77680461	2.81975111
7	2.98238227	-2.14537695	1.29228741
8	4.43489650	-3.65433612	3.18742248
6	-0.46880960	1.35546074	-0.31322592

6 1 1 8 5 7 6	-1.76290766 -2.86692608 -1.91422978 -3.85588345 -0.29941265 -1.29537766 -2.73996695 -3.87145707	0.98902246 1.74331419 0.10351613 1.42832437 2.44613343 3.51083055 2.91349738 3.59253059	0.11064370 -0.23781761 0.71315060 0.06715573 -1.06512982 -1.08961890 -0.91124357 -1.35095811
6 6 1 6 1 6	-3.84267026 -5.06362960 -4.96908400 -2.94300090 -6.18596139 -5.10327411 -6.14791335 -4.93190526	4.99134775 2.90612146 5.67453013 5.54023516 3.59792518 1.82581253 4.98457527 6.75269059	-1.49858147 -1.64950286 -1.91410094 -1.25962472 -2.06318451 -1.59793944 -2.19091449 -2.00754233
1	-7.09164661	3.05102227	-2.29669995
6	-7.35891274	5.71228198	-2.68544331
9	-7.47719528	5.64665187	-4.03251997
9	-7.34348046	7.01857446	-2.37069390
9	-8.50147341	5.20146587	-2.18684774
9	-1.05855582	4.42713314	-0.03982180
9	-1.18979240	4.16229339	-2.32081587
*** m 46	olecule 1d rotame	r B S_{1r} EtOH	
6	0.68983418	0.61529240	-0.02316295
6	1.99889241	0.92835853	-0.42014777
16	0.65717938	-0.87231095	0.91133272
6	2.95219202	0.00582410	0.01859164
1	2.23506779	1.81547379	-0.98895689
6	2.39765963	-1.07507851	0.76294735
6	4.33291088	0.23608732	-0.20875512
7	5.44318310	0.48150827	-0.40717034
6	2.29342493	-3.05014417	2.21919340
6	4.34504963	-2.59418925	1.00828211
6	3.13866845	-3.20499790	3.48229240
1	2.16321885	-4.01818402	1.72566260
1	1.31470561	-2.65774794	2.48978470
6	5.11044254	-2.76130073	2.31521664
1	4.26760337	-3.55939479	0.49680907
1	4.85936828	-1.90139587	0.35153626
1	2.68117154	-3.94833326	4.13473118
1	3.18401769	-2.24348375	4.01107553
1	6.09346744	-3.18415304	2.11048650
1	5.23452077	-1.78463167	2.80193861
7	2.97972991	-2.14604935	1.29357942
8	4.44073776	-3.65809950	3.17881955
6	-0.46999297	1.35964321	-0.30673432
6	-1.76451439	0.99228211	0.11567672
6	-2.86845107	1.74583370	-0.23466295
1	-1.91594089	0.10669335	0.71803982
1	-3.85783333	1.43038576	0.06860075
8	-0.29981084	2.45059524	-1.05672300
5	-1.29623682	3.51557828	-1.08227117
7	-2.74106636	2.91595550	-0.90773623

6	-3.87208455	3.59357312	-1.35041590
6	-3.84475596	4.99253904	-1.49680607
6	-5.06228698	2.90559310	-1.65322054
6	-4.97090447	5.67431655	-1.91518941
1	-2.94637959	5.54222894	-1.25481091
6	-6.18428543	3.59605010	-2.06993360
1	-5.10014570	1.82512397	-1.60304747
6	-6.14784011	4.98285259	-2.19629263
1	-4.93514805	6.75260206	-2.00770503
1	-7.08845477	3.04819024	-2.30704809
6	-7.35831848	5.70921932	-2.69431467
9	-7.47112811	5.64561568	-4.04180808
9	-7.34644475	7.01489425	-2.37709294
9	-8.50173816	5.19525796	-2.20092205
9	-1.06305033	4.42934282	-0.03035454
9	-1.18905577	4.16783032	-2.31210998

*** molecule ${\bf 1d}$ rotamer B S_{1r} MeCN $_{46}$

6	0.69078978	0.61312165	-0.02724340
6	1.99989887	0.92644898	-0.42442160
16	0.65869030	-0.87383339	0.90800791
6	2.95360892	0.00474149	0.01486297
1	2.23585950	1.81305380	-0.99411288
6	2.39938557	-1.07592036	0.76041071
6	4.33375442	0.23561901	-0.21497905
7	5.44317781	0.48255803	-0.41640943
6	2.29298316	-3.05270847	2.21402807
6	4.34953101	-2.58984761	1.01435040
6	3.13188422	-3.20630447	3.48142865
1	2.16836493	-4.02045503	1.71855437
1	1.31164526	-2.66379196	2.47994654
6	5.10844354	-2.75590119	2.32523432
1	4.27739322	-3.55473413	0.50161829
1	4.86557801	-1.89512678	0.36107411
1	2.67283998	-3.95149842	4.13061559
1	3.17177862	-2.24519451	4.01128911
1	6.09374081	-3.17562640	2.12504208
1	5.22703995	-1.77937465	2.81355411
7	2.98144572	-2.14567616	1.29267248
8	4.43693167	-3.65551303	3.18451803
6	-0.46922472	1.35690312	-0.31096957
6	-1.76347047	0.99014332	0.11239401
6	-2.86745801	1.74418720	-0.23671095
1	-1.91483060	0.10460004	0.71483834
1	-3.85656636	1.42904018	0.06766219
8	-0.29954799	2.44767967	-1.06218547
5	-1.29566439	3.51249115	-1.08702146
7	-2.74034490	2.91435511	-0.90999815
6	-3.87166743	3.59289769	-1.35074880
6	-3.84339480	4.99177093	-1.49790117
6	-5.06314430	2.90593910	-1.65081941
6	-4.96971432	5.67446615	-1.91442146
1	-2.94418170	5.54093574	-1.25785327
6	-6.18535744	3.59727606	-2.06556123
1	-5.10215684	1.82557135	-1.59977561

6	-6.14787461	4.98398360	-2.19277347
1	-4.93303755	6.75267318	-2.00750981
1	-7 09050713	3 05004017	-2 30036827
E E	-7 25960122	5 71122427	-2 60050027
0	-7.33009133	5.71122427	-2.00032409
9	-/.4/506461	5.64629340	-4.035/4836
9	-7.34449711	7.01730274	-2.37291523
9	-8.50155638	5.19931306	-2.19174091
9	-1.06011091	4.42787228	-0.03645782
9	-1.18952299	4.16425106	-2.31772637
*** m	ploquio 1d rotom		
1.0		er b Sir IIIr	
40			
_			
6	0.68195737	0.63210991	0.01081297
6	1.99139920	0.94372373	-0.38257667
16	0.64330167	-0.86161176	0.93737829
6	2.94065149	0.01425966	0.05216027
1	2,23014719	1.83560815	-0.94282018
÷	2 38235418	-1 06952447	0 78481576
6	1 22625590	0 22041920	
0	4.32033369	0.23941820	-0.13132044
/	5.443/4/84	0.4/169100	-0.32246528
6	2.29820484	-3.02977178	2.26316057
6	4.30427763	-2.63173515	0.95816962
6	3.19597771	-3.19145576	3.48926952
1	2.12386399	-4.00061206	1.78859412
1	1.34190305	-2.60962366	2,57098802
6	5 12419414	-2 80391205	2 23066166
1	1 18232700	-3 60088781	0 46222809
1	4.10232799	-3.000000701	0.40222009
Ţ	4.80152610	-1.95742031	0.20932424
T	2.75369372	-3.91836539	4.1/035114
1	3.28544557	-2.22573593	4.00521735
1	6.08724146	-3.25250622	1.98899471
1	5.29287619	-1.82535970	2.70018003
7	2.96399338	-2.15070222	1.30090192
8	4.47227174	-3.67582479	3.13255513
6	-0 47604065	1 38092552	-0 27243887
6	-1 77285796	1 00969701	0 14259117
6	-2 97600290	1 75025716	
0	-2.87009389	1.75955710	-0.21002001
L	-1.92513876	0.12451637	0./4535430
Ţ	-3.86/51688	1.44202399	0.0//1/225
8	-0.30157169	2.47304817	-1.01356349
5	-1.30078385	3.53871969	-1.04715662
7	-2.74646110	2.92837601	-0.89089590
6	-3.87502132	3.59883715	-1.34876086
6	-3.85401959	4.99812840	-1.49312879
6	-5.05623802	2,90340222	-1.66926700
6	-4 97863663	5 67273738	-1 92622100
1	-2 96161213	5 55193543	-1 23864823
L G	2.90101213	2 59700624	1.23004023
0	-0.1/04023U	3.30/00034	-2.10142319
Ţ	-5.08634078	1.82241392	-1.62258013
6	-6.14702089	4.97408927	-2.22500633
1	-4.94913290	6.75134695	-2.01721624
1	-7.07375624	3.03448583	-2.35327113
6	-7.35424852	5.69413873	-2.74105092
9	-7.43540761	5.64667811	-4.09079961
9	-7.36298725	6.99526474	-2.40624081
G	-8 50213694	5 16114281	-2 279611/6
	0.00210001	~ • <i>×</i> • <i>×</i> • <i>×</i> • <i>×</i> • <i>×</i>	

9	-1.08591637	4.44292034	0.01275989
9	-1.18513157	4.19229372	-2.27195279

*** molecule ${\bf 1d}$ rotamer B S_{1r} Toluene 46

6	0.68738609	0.70729758	0.07411820
6	1.99062229	1.01036053	-0.33558968
16	0.65764265	-0.76523544	1.03843703
6	2.94328571	0.09272077	0.11995401
1	2.22181172	1.88911752	-0.91954170
6	2.39373943	-0.96855822	0.88172658
6	4.33353075	0.30257848	-0.07538833
7	5.45954874	0.50137092	-0.22828862
6	2.31942907	-2.88795492	2.40267229
6	4.23225176	-2.62917405	0.91679605
6	3.30452699	-3.29686154	3.49510493
1	1.93394273	-3.77783936	1.88977608
1	1.48674711	-2.35180160	2.85830549
6	5.13010026	-3.04265778	2.07314186
1	3.94892763	-3.51398044	0.33293019
1	4.75713008	-1.94007872	0.26266595
1	2.83236768	-4.02110787	4.15921861
1	3.58963250	-2.41080653	4.07931234
1	5.99485811	-3.58470502	1.69130120
1	5.47857387	-2.15070764	2.61158900
7	2.99891042	-2.02843206	1.43524518
8	4.45007828	-3.91316393	2.95396652
6	-0.47394286	1.44934270	-0.22050172
6	-1.76815874	1.08229715	0.21623438
6	-2.87808267	1.81014186	-0.16702355
1	-1.90848580	0.21935562	0.85327892
1	-3.86664524	1.49972454	0.14567980
8	-0.30686438	2.51647629	-0.98515312
5	-1.31356299	3.58146352	-1.05591955
7	-2.75829036	2.95438300	-0.88136515
6	-3.89034705	3.59769920	-1.36263808
6	-3.87673959	4.99279735	-1.55959168
6	-5.06722274	2.88434944	-1.65554191
6	-5.00557447	5.64097073	-2.01362645
1	-2.98582352	5.55885362	-1.32812224
6	-6.19290789	3.54402855	-2.11455950
1	-5.08847137	1,80520187	-1.57195211
6	-6.17122047	4,92357608	-2.28810884
1	-4.98529966	6.71633205	-2.14453009
1	-7.08635134	2,97866798	-2.34800383
6	-7.36919788	5,64826586	-2.82258910
9	-7.22306618	5.97161682	-4.12566091
9	-7.59278373	6.80511435	-2.17075271
9	-8 49521298	4 92106438	-2 73168281
9	-1,11529393	4,50572235	-0.02007278
g	-1 20831971	4 18742095	-2 29804585
	I.20001/1	1.10/12000	2.27007303