Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Cs₂CO₃-promoted methylene insertion into disulfide bonds using acetone as a methylene source

Qian Chen,*^{a,b} Guodian Yu,^a Xiaofeng Wang,^a Yulin Huang,^a Yan Yan^a and Yanping

Huo^a

^a School of Chemical Engineering and Light Industry, Guangdong University of

Technology, Guangzhou 510006, China; ^b Key Laboratory of Functional Molecular

Engineering of Guangdong Province, South China University of Technology,

Guangzhou 510640, China

*E-mail: qianchen@gdut.edu.cn

SUPPORTING INFORMATION

Content:

1.	General Information	S2
2.	Overview of Substrates Numbering	S3
3.	General Procedure for the Methylene Insertion Reaction	S4
4.	Characterizations of Compounds 2, 3a and 4a	S5
5.	Copies of ¹ H and ¹³ C NMR Spectra for 2 , 3a and 4a	S13
6.	Copy of ¹ H NMR Spectra for 2a-d	S39

1. General Information

All reactions were carried out in an oven-dried Schlenk tube open to air using standard syringe/septa techniques. Petroleum ether refers to the petroleum fraction bp 40~60 °C. Acetone was dried over 4 Å molecular sieves. Commercial reagents were used without purification unless otherwise noted. Disulfides which were not commercially available were prepared according to the literature.¹ Flash chromatography was performed using the indicated solvent system on silica gel standard grade (200~300 mesh). ¹H NMR spectra were recorded on in CDCl₃ on Bruker 400/600 (400/600 MHz) spectrometers. ¹³C NMR spectra were recorded in CDCl₃ on Bruker 400/600 (101/151 MHz) spectrometers. ¹⁹F NMR spectra were recorded in CDCl₃ on Bruker 400 (376 MHz) spectrometer. Chemical shifts are reported relative to CDCl₃ (δ 7.26 ppm) for ¹H NMR and CDCl₃ (δ 77.16 ppm) for ¹³C NMR. Multiplicities were indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Mass spectra were taken on a Waters UPLC H-class LC-MS instrument in the electrospray ionization (ESI) mode. Only molecular ions (M + H) were given for the ESI-MS analysis. Melting points (mp) were uncorrected and measured on micro melting point apparatus.

2. Overview of Substrates Numbering

3. General Procedure for the Methylene Insertion Reaction

To a solution of diphenyl disulfide **1a** (87 mg, 0.4 mmol) in anhydrous acetone (6 mL) was added Cs_2CO_3 (260 mg, 0.8 mmol) and 18-crown-6 (210 mg, 0.8 mmol). The mixture was stirred at 40 °C in a Schlenk tube open to air for 24 h. The reactant was quenched with brine, extracted with EtOAc, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was then purified by flash column chromatography on silica gel with petroleum ether to give the desired **2a** (86 mg, 92%) as a white solid.

4. Characterizations of Compounds 2, 2a-d, 3a and 4a

The known compounds 2a, $^{2}2b$, $^{2}2e$, $^{2}2f$, $^{2}2g$, $^{2}2h$, $^{2}2i$, $^{3}2j$, $^{4}2o$, $^{4}2q$, $^{3}2w$, $^{5}2x$, $^{2}2y$, $^{2}3a$, 6 and $4a^{7}$ showed characterization data in full agreement with previously reported data.

Bis(phenylthio)methane (2a)²

PhS SPh

White solid (86 mg, 92%): mp 33–34 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.41 (m, 4H), 7.31–7.29 (m, 4H), 7.27–7.21 (m, 2H), 4.34 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 130.7, 129.0, 127.1, 40.7. **2a-d**: ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.41 (m, 4H), 7.31–7.29 (m, 4H), 7.27–7.21 (m, 2H), 4.35 (s, 1H).

Bis(*p*-tolylthio)methane (2b)²

Yellow oil (89 mg, 85%): ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.0 Hz, 4H), 7.13 (d, J = 8.0 Hz, 4H), 4.27 (s, 2H), 2.34 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 137.4, 131.5, 131.3, 129.8, 42.0, 21.2.

Bis((4-ethylphenyl)thio)methane (2c)

Colorless oil (68 mg, 59%): ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.2 Hz, 4H), 7.15 (d, J = 8.2 Hz, 4H), 4.28 (s, 2H), 2.64 (q, J = 7.6 Hz, 4H), 1.23 (t, J = 7.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 143.7, 131.6, 131.5, 128.6, 41.9, 28.5, 15.4; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₂₁S₂ 289.1079; found 289.1039.

Bis((4-(tert-butyl)phenyl)thio)methane (2d)

Yellow oil (114 mg, 83%): ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.6 Hz, 4H), 7.33 (d, J = 8.6 Hz, 4H), 4.30 (s, 2H), 1.32 (s, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 131.6, 130.8, 126.0, 41.4, 34.6, 31.3; HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₉S₂ 345.1705; found 345.1666.

Bis((4-methoxyphenyl)thio)methane(2e)²

White solid (71 mg, 61%): mp 67–68 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.6 Hz, 4H), 6.85 (d, J = 8.6 Hz, 4H), 4.15 (s, 2H), 3.81 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 159.6, 134.5, 125.2, 114.6, 55.4, 44.5.

Bis((4-bromophenyl)thio)methane (2f)²

White solid (136 mg, 87%): mp 70–72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.5 Hz, 4H), 7.26 (d, J = 8.5 Hz, 4H), 4.27 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 133.7, 132.5, 132.2, 121.6, 40.8.

Bis((4-chlorophenyl)thio)methane (2g)²

White solid (108 mg, 90%): mp 40–42 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.5 Hz, 4H), 7.28 (d, J = 8.5 Hz, 4H), 4.28 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 133.6, 133.0, 132.4, 129.2, 41.2.

Bis((4-fluorophenyl)thio)methane (2h)²

Yellow oil (101 mg, 94%): ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.30 (m, 4H), 7.04–7.00 (m, 4H), 4.22 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.5 (d, *J* = 248 Hz), 134.1 (d, *J* = 8.2 Hz), 129.5 (d, *J* = 3.3 Hz), 116.2 (d, *J* = 22.0 Hz), 43.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.6.

Bis((4-nitrophenyl)thio)methane (2i)³

White solid (124 mg, 96%): mp 177–178 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 9.0 Hz, 4H), 7.46 (d, J = 9.0 Hz, 4H), 4.54 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 143.9, 128.2, 124.2, 36.4.

Bis(*m*-tolylthio)methane (2j)⁴

Colorless oil (57 mg, 55%): ¹H NMR (400 MHz, CDCl₃) δ 7.22–7.18 (m, 6H), 7.05 (d, *J* = 7.0 Hz, 2H), 4.34 (s, 2H), 2.33 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 137.4, 136.0, 132.6, 131.6, 130.2, 128.9, 41.9, 19.7.

Bis((3-methoxyphenyl)thio)methane (2k)

Yellow oil (62 mg, 53%): ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.21 (m, 2H), 7.02–6.97 (m, 4H), 6.79 (d, J = 8.2 Hz, 2H), 4.36 (s, 2H), 3.79 (s, 6H); ¹³C NMR (151

MHz, CDCl₃) δ 159.8, 136.3, 129.8, 122.6, 115.7, 112.9, 55.3, 40.1; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₅H₁₇O₂S₂ 293.0664; found 293.0539.

Bis((3-bromophenyl)thio)methane (2l)

Colorless oil (94 mg, 60%): ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.53 (m, 2H), 7.40–7.37 (m, 2H), 7.34–7.31 (m, 2H), 7.20–7.16 (m, 2H), 4.33 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 136.8, 133.2, 130.4, 130.3, 129.2, 122.8, 40.3; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₁₁Br₂S₂ 388.8663; found 388.8568.

Bis((3-chlorophenyl)thio)methane (2m)

Colorless oil (78 mg, 65%): ¹H NMR (600 MHz, CDCl₃) δ 7.38 (s, 2H), 7.30–7.21 (m, 6H), 4.34 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 136.6, 134.8, 130.3, 130.1, 128.7, 127.5, 40.1; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₁₁Cl₂S₂ 300.9674; found 300.9666.

Bis((3-fluorophenyl)thio)methane (2n)

Blue oil (72 mg, 67%): ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.24 (m, 2H), 7.17–7.09 (m, 4H), 6.96–6.91 (m, 2H), 4.34 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.7 (d, *J* = 249 Hz), 137.0 (d, *J* = 8.5 Hz), 130.3 (d, *J* = 7.8 Hz), 125.9 (d, *J* = 3.0 Hz), 117.1 (d, *J* = 22.9 Hz), 114.2 (d, *J* = 21.2 Hz), 39.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.8; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₁₁F₂S₂ 269.0265; found 269.0154.

Bis(o-tolylthio)methane (20)⁴

Colorless oil (73 mg, 70%): ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.3 Hz, 2H), 7.20–7.16 (m, 6H), 4.31 (s, 2H), 2.37 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 138.6, 134.5, 130.3, 130.0, 126.9, 126.5, 38.7, 20.5.

Bis((2-bromophenyl)thio)methane (2p)

Colorless oil (111 mg, 71%): ¹H NMR (600 MHz, CDCl₃) δ 7.58–7.57 (m, 2H), 7.48–7.46 (m, 2H), 7.32–7.29 (m, 2H), 7.12–7.09 (m, 2H), 4.41 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 135.9, 133.2, 130.8, 128.1, 127.9, 125.1, 37.9; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₃H₁₁Br₂S₂ 388.8663; found 388.8564.

Bis((2-chlorophenyl)thio)methane (2q)³

White solid (92 mg, 76%): mp 68–69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.47 (m, 2H), 7.41–7.38 (m, 2H), 7.27–7.17 (m, 4H), 4.41 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 133.7, 131.2, 129.9, 128.1, 127.2, 37.2.

Bis((2-fluorophenyl)thio)methane (2r)

Colorless oil (96 mg, 89%): ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.37 (m, 2H), 7.24–7.21 (m, 2H), 7.07–6.99 (m, 4H), 4.29 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 162.0 (d, *J* = 246 Hz), 134.0 (d, *J* = 1.1 Hz), 129.8 (d, *J* = 8.0 Hz), 124.5 (d, *J* = 3.7

Hz), 121.0 (d, J = 17.7 Hz), 115.8 (d, J = 22.5 Hz), 38.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -108.5; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₁₁F₂S₂ 269.0265; found 269.0423.

Bis((3,4-dimethylphenyl)thio)methane (2s)

Colorless oil (58 mg, 50%): ¹H NMR (400 MHz, CDCl₃) δ 7.20–7.17 (m, 4H), 7.08–7.06 (m, 2H), 4.27 (s, 2H), 2.24 (s, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 137.4, 136.0, 132.6, 131.6, 130.2, 128.9, 41.9, 19.7, 19.4; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₇H₂₁S₂ 289.1079; found 289.1043.

Bis((2,3-dichlorophenyl)thio)methane (2u)

Yellow oil (83 mg, 56%): ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.36 (m, 4H), 7.22 (dd, J = 8.4, 2.2 Hz, 2H), 4.35 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 135.10, 135.08, 132.3, 130.5, 127.63, 127.62, 49.2; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₉Cl₄S₂ 368.8894; found 368.8817.

Bis((2,4-dichlorophenyl)thio)methane (2v)

Colorless oil (93 mg, 63%): ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 5.4, 1.2 Hz, 2H), 7.22 (dd, J = 3.6, 1.2 Hz, 2H), 7.02 (dd, J = 5.4, 3.6 Hz, 2H), 4.06 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 133.9, 132.7, 131.8, 129.8, 127.5, 37.8; HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₃H₉Cl₄S₂ 368.8894; found 368.8819.

Bis(naphthalen-2-ylthio)methane (2w)⁵

Colorless oil (76 mg, 57%): ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 2H), 7.82–7.70 (m, 6H), 7.52–7.44 (m, 6H), 4.54 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 133.6, 132.30, 132.27, 129.4, 128.6, 128.2, 127.7, 127.4, 126.6, 126.2, 40.6.

Bis(thiophen-2-ylthio)methane (2x)²

Colorless oil (59 mg, 60%): ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.33 (m, 4H), 7.21–7.17 (m, 2H), 4.42 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 128.8, 128.5, 127.5, 37.1.

Bis(benzylthio)methane (2y)²

Bn_s Bn

White solid (37 mg, 36%): mp 54–55 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.42 (m, 8H), 7.41–7.36 (m, 2H), 3.98 (s, 4H), 3.52 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 129.2, 128.6, 127.1, 34.6, 33.6.

1-(Phenylthio)propan-2-one (3a)⁶

Colorless oil (5 mg, 7%): ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.19 (m, 4H), 7.15–7.12 (m, 1H), 3.59 (s, 2H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.5, 134.7, 129.6, 129.2, 126.9, 44.7, 28.0.

1,1-Bis(phenylthio)propan-2-one (4a)⁷

Colorless oil (19 mg, 17%): ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.44 (m, 4H), 7.33–7.32 (m, 6H), 4.88 (s, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 200.0, 132.9, 132.5, 129.2, 128.6, 65.1, 25.9.

References:

- W.-L. Dong, G.-Y. Huang, Z.-M. Li and W.-G. Zhao, Phosphorus, Sulfur Silicon Relat. Elem., 2009, 184, 2058.
- 2. V. Pace, A. Pelosi and W. Holzer, Chem. Commun., 2016, 52, 2639.
- 3. R. F. Brookes, J. Sci. Food Agr., 1957, 8, 31.
- 4. T. Shigeo, Bull. Inst. Chem. Res., Kyoto Univ., 1978, 56, 297.
- 5. H. Hauptmann, J. Am. Chem. Soc., 1950, 72, 707.
- 6. X.-P. Gu, N. Nishida, I. Ikeda and M. Okahara, J. Org. Chem., 1987, 52, 3192.
- 7. F. A. Davis and P. A. Mancinelli, J. Org. Chem., 1980, 45, 2597.

5. Copies of ¹H and ¹³C NMR Spectra for 2, 3a and 4a

140 130 120 110 100 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

S23

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

6. Copy of ¹H NMR Spectra for 2a-d

