Chelation-Assisted C–N Cross-Coupling of Phosphinamides and Aryl

Bronic Acids with Copper Powder at Room Temperature

Yao Peng,^{†,a} Jian Lei,^{†,a} Renhua Qiu,^{*a} Lingteng Peng,^a Chak-Tong Au,^b and Shuang-Feng Yin^{*a}

- ^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China. [renhuaqiu@hnu.edu.cn; sf_yin@hnu.edu.cn]
- ^b College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104,
 P. R. China
- [†] Y. Peng and J. Lei contribute equally to this work.

Table of Contents

1.	General information	2
2.	Synthesis and characterization of starting materials	3
3.	¹ H, ¹³ C, ³¹ P, ¹⁹ F NMR spectra data of the products	6
4.	References	.17
5.	Copies of ¹ H, ¹³ C, ³¹ P, ¹⁹ F NMR charts of the Compounds	.18

1. General information

The reactions were carried out in 25-mL Schlenk tubes under O2. Unless noted otherwise, the materials obtained from commercial suppliers were used without further purification, and solvents were purified according to standard operating procedures. Flash column chromatography was performed using Silica Gel 60 (300-400 mesh). Analytical thin layer chromatography (TLC) was performed on Haiyang TLC silica gel GF254 (0.25 mm) plates. The ¹H, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra were recorded on a Brucker ADVANCE III spectrometer operating at 400 MHz, 100 MHz, 162 MHz and 376 MHz, respectively; and chemicals shifts are reported in ppm (δ) relative to internal tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q= quartet, m = multiplet), and coupling constants (J) were reported in hertz. The NMR yields were determined by ³¹P NMR spectra with triphenylphosphine oxide (at 29.0 ppm) as internal standard. The reactions were monitored by GC and GC-MS; GC-MS results were recorded on a GC-MS QP2010 while GC analyses on a GC 2014 plus equipment. The electron ionization (EI) approach was used as ionization method for HRMS measurements, and TOF was the mass analyzer type for EI.

Starting phosphinamide, e.g., P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (1a), N-(quinolin-8-yl)-P,P-di-p-tolylphosphinamide (1b) , N-(quinolin-8-yl)-P,P-di-mtolylphosphinamide (1c), P,P-bis(4-fluorophenyl)-N-(quinolin-8-yl)phosphinamide (1d) , P,P-bis(3-fluorophenyl)-N-(quinolin-8-yl)phosphinamide (1e) , P,P-bis(4chlorophenyl)-N-(quinolin-8-yl)phosphinamide (1f) , P,P-bis(4-methoxyphenyl)-N-(quinolin-8-yl)phosphinamide (1g)N-(2-(1H-pyrazol-1-yl)phenyl)-P,Pdiphenylphosphinamide N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-(1h)diphenylphosphinamide (1i), N,P,P-triphenyl-phosphinamide, N-(naphthalen-1-yl)-P,P-diphenylphosphinamide, N-(perfluorophenyl)-P,P-diphenylphosphinamide, P,P-(pyridin-3-yl)phosphinamide P.P-diphenyl-N-(pyridin-2diphenyl-Nand yl)phosphinamide were prepared according to literature procedures. Spectral data obtained for the starting phosphinamides are in good agreement with the reported data.1-2

2. Synthesis and characterization of starting materials

General procedure for the synthesis of phosphinamides

To a solution of arylmagnesium bromide (0.1 mol) in THF (100 mL), diethyl phosphate (4.1 g, 0.03 mol) in THF (20 mL) was added dropwise with vigorous stirring under the cooling of ice-water bath. Then the mixture thus obtained was heated under reflux for 1 h. After the reflux, the resulting reaction mixture was cooled to 0 °C, and hydrochloric acid (6 N, 50 mL) was added slowly upon stirring. The solution was then evaporated under reduced pressure. The residue was extracted with EtOAc (150 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo to give crude product A1 which was used directly for the next step without further purification.

Hydrogen peroxide (30%, 16 mL) was added dropwise to a suspension of A1 in aqueous NaOH (5 N, 16 mL) at 95 °C, and the mixture was stirred for 1 h at 100 °C. After the solution was cooled to 0 °C, concentrated hydrochloric acid (12 N) was added dropwise until no white solid was precipitated out. The precipitate was collected by filtration and washed with Et_2O , then dried in vacuo to give crude phosphinic acid A2 which was used directly without purification.

A suspension of A2 and thionyl chloride (20 mL) in anhydrous toluene (60 mL) was heated to 80 $^{\circ}$ C for 3 hours. After thionyl chloride and toluene were removed

under reduced pressure, the residue was re-dissolved in anhydrous toluene (50 mL) and evaporated to give phosphinic chloride A3.

To a solution of 8-aminoquinoline (4.6 g, 32 mmol), triethylamine (5 mL, 35 mmol), and *N*,*N*-dimethyl-4-aminopyridine (120 mg, 0.98 mmol) in CH₂Cl₂ (40 mL), a suspension of **A3** was added dropwise under N₂ atmosphere with vigorous stirring at 0 °C. Then the resulting mixture was warm to room temperature. After strring overnight, the reaction system was quenched with water (30 mL) and extracted with CH₂Cl₂ (3×50 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to afford the corresponding *P*,*P*-diaryl-*N*-(quinolin-8-yl)phosphinamide.

Analytical data for new starting phosphinamides

P,*P*-di-*m*-tolyl-*N*-(quinolin-8-yl)phosphinamide (1c)

1c was synthesized in 45% yield in 4 steps as a brown soild. $R_f = 0.43$ (petroleum ether/ethyl acetate = 2:1), mp 165–166 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 3.7 Hz, 1H), 8.10 (d, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 12.8 Hz, 1H), 7.82 (d, *J* = 12.8 Hz, 2H), 7.72–7.67 (m, 2H), 7.43–7.25 (m, 8H), 2.38 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 138.7 (d, *J* = 12.9 Hz), 137.8, 136.3, 133.0 (d, *J* = 3.0 Hz), 132.6, 132.4 (d, *J* =

10.0 Hz), 131.3, 128.7 (d, J = 23.5 Hz), 128.7, 128.4, 127.1, 121.6, 119.2, 113.8 (d, J = 3.9 Hz), 21.4; ³¹P NMR (162 Hz, CDCl₃) δ 19.6. HRMS (ESI) calcd. for C₂₃H₂₂N₂OP [M]⁺: 372.1391; found: 372.1388.

P,P-bis(3-fluorophenyl)-N-(quinolin-8-yl)phosphinamide (1e)

1e was synthesized in 21% yield in 4 steps as a brown soild. $R_f = 0.52$ (petroleum ether/ethyl acetate = 2:1), mp 145–146 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 4.0 Hz, 1H), 8.12 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 13.5 Hz, 1H), 7.74 (dd, J = 12.1, 7.6 Hz, 2H), 7.66 (t, J = 10.9 Hz, 2H), 7.50–7.42 (m, 3H), 7.39–7.34 (m, 2H), 7.30–7.22 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (dd, J = 249.0, 18.4 Hz), 148.2, 138.6

(d, J = 7.2 Hz), 137.0, 136.3, 134.2 (dd, J = 128.7, 5.6 Hz), 130.9 (dd, J = 15.2, 7.4 Hz), 128.4, 127.5 (dd, J = 9.5, 3.2 Hz), 127.0, 121.8, 119.9, 119.6 (dd, J = 21.1, 2.6 Hz), 118.7 (q, J = 11.0 Hz), 113.8 (d, J = 3.8 Hz); ³¹P NMR (162 Hz, CDCl₃) δ 16.0 (t, J = 6.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -110.43–110.51 (m). HRMS (ESI) calcd. for C₂₁H₁₆F₂N₂OP [M]⁺: 381.0963; found: 381.0952.

N-(2-(1H-pyrazol-1-yl)phenyl)-P,P-diphenylphosphinamide (1h)^{1,4}

1h was synthesized in 90% yield as a white solid. $R_f = 0.34$ (petroleum ether/ethyl acetate = 5:1), mp 124–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 11.8 Hz, 1H), 7.85–7.80 (m, 5H), 7.66 (s, 1H), 7.48–7.43 (m, 3H), 7.40 (d, J = 7.0 Hz, 4H), 7.25 (d, J = 7.8 Hz, 1H), 7.04–7.01 (m, 1H), 6.91–6.87 (m, 1H), 6.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.3, 134.2, 132.8,

131.8 (d, J = 2.5 Hz), 131.4 (d, J = 10.1 Hz), 129.5, 128.5 (d, J = 12.9 Hz), 128.2 (d, J = 7.6 Hz), 127.7, 122.0, 121.4, 120.3 (d, J = 4.5 Hz), 106.8. ³¹P NMR (162 MHz, CDCl₃) δ 18.3. HRMS (ESI) calcd. for C₂₁H₁₈N₃OP [M]⁺: 359.1387; found: 359.1382.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-P,P-diphenylphosphinamide (1i)³

1i was synthesized in 40% yield as a yellow solid. $R_f = 0.55$ (petroleum ether/ethyl acetate = 2:1), mp 122–125 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.00 (d, J = 13.0 Hz, 1H), 7.93–7.88 (m, 4H), 7.78 (d, J = 7.7 Hz, 1H), 7.46–7.35 (m, 7H), 7.15–7.11 (m, 1H), 6.84–6.81 (m, 1H), 4.29 (t, J = 9.3 Hz, 2H), 3.98 (t, J = 9.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8 (d, J = 0.8 Hz),

142.8, 133.0, 131.9, 131.7 (d, J = 2.7 Hz), 131.4 (d, J = 10.1 Hz), 129.2, 128.4 (d, J = 12.9 Hz), 119.6, 117.9 (d, J = 5.0 Hz), 112.4 (d, J = 7.7 Hz), 65.8, 54.2. ³¹P NMR (162 MHz, CDCl₃) δ 18.3. HRMS (ESI) calcd. for C₂₁H₁₉N₂O₂P [M]⁺: 362.1184; found: 362.1180.

General experimental procedure for the synthesis of *N*-aryl phosphinamide

An oven-dried 25-mL Schlenk tube, equipped with a magnetic stir bar and charged with phosphinamide (0.1 mmol), copper powder (6.4 mg, 1.0 equiv), and boronic acids (0.2 mmol, 2.0 equiv), was evacuated and backfilled with O_2 three times. Then, acetonitrile (1.0 mL) was added under O_2 atmosphere and the reaction mixture was stirred at 25–100 °C for 12–24 h and monitored by TLC or GC-MS analysis. Upon completion, the mixture was made to pass through a short pad of celite with CH₂Cl₂ and the solution was concentrated in vacuo. The residue was purified by silica gel flash chromatography column to give the corresponding products.

3. ¹H, ¹³C, ³¹P, ¹⁹F NMR spectra data of the products

N,P,P-triphenyl-*N*-(quinolin-8-yl)phosphinamide (3a)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.37$ (petroleum ether/ethyl acetate = 1:1), mp 210–212 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, J = 1.4 Hz, 1H), 8.05–7.97 (m, 6H), 7.57 (d, J = 8.1 Hz, 1H), 7.38–7.34 (m, 4H), 7.22–7.18 (m, 2H), 7.13 (d, J = 7.4 Hz, 4H), 7.03 (t, J = 7.4 Hz, 2H), 6.85 (t, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 146.3 (d, J

= 3.1 Hz), 145.7 (d, J = 3.9 Hz), 140.7 (d, J = 2.6 Hz), 135.8, 132.9 (d, J = 9.6 Hz), 132.5 (d, J = 3.2 Hz), 131.5 (d, J = 130.5 Hz), 131.1 (d, J = 2.8 Hz), 129.0, 128.4, 128.0, 127.4 (d, J = 13.0 Hz), 126.5 (d, J = 1.2 Hz), 123.1 (d, J = 4.7 Hz), 122.9, 121.3. ³¹P NMR (162 MHz, CDCl₃) δ 25.0. HRMS (ESI) calcd. for C₂₇H₂₁N₂OP [M]⁺: 420.1391; found: 420.1386.

N-(4-ethylphenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3b)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.45$ (petroleum ether/ethyl acetate = 2:1), mp 130–132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 2.1 Hz, 1H), 7.96– 7.87 (m, 5H), 7.75 (d, J = 8.1 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 7.9 Hz, 2H), 7.17–7.13 (t, J = 8.2 Hz, 2H), 7.00– 6.95 (m, 6H), 6.73 (d, J = 8.1 Hz, 2H), 2.29–2.23 (m, 2H), 0.91–0.87 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 146.0 (d, J = 3.3 Hz), 143.0 (d, J = 3.6 Hz), 140.8 (d, J = 3.6 Hz)

2.5 Hz), 138.7, 135.6, 132.6 (d, J = 9.7 Hz), 132.1 (d, J = 4.4 Hz), 130.9 (d, J = 2.6 Hz), 130.8, 128.7, 127.7, 127.5, 127.2 (d, J = 13.0 Hz), 126.2, 123.5 (d, J = 4.7 Hz), 121.0, 27.6, 15.0; ³¹P NMR (162 MHz, CDCl₃) δ 24.7. HRMS (ESI) calcd. for C₂₉H₂₅N₂OP [M]⁺: 448.1704; found: 448.1699.

N-(4-isopropylphenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3c)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.33$ (petroleum ether /ethyl acetate = 2/1), mp 191–193 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, J = 1.8 Hz, 1H), 7.96–7.87 (m, 6H), 7.46 (d, J = 8.1 Hz, 1H), 7.28–7.19 (m, 4H), 7.13–7.04 (m, 6H), 6.81 (d, J = 8.0 Hz, 2H), 2.66–2.58 (m, 1H), 1.00 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 146.3 (d, J = 3.1 Hz), 143.5, 143.1 (d, J = 3.6 Hz), 140.9 (d, J = 2.4Hz), 135.8, 132.8 (d, J = 9.7 Hz), 132.4 (d, J = 3.3 Hz),

131.6 (d, J = 130.9 Hz), 131.1 (d, J = 2.6Hz), 129.0, 127.8, 127.4 (d, J = 13.0Hz), 126.5 (d, J = 1.1Hz), 126.3, 123.4 (d, J = 4.7 Hz), 121.2, 33.1, 23.7; ³¹P NMR (162 MHz, CDCl₃) δ 24.9. HRMS (ESI) calcd. for C₃₀H₂₇N₂OP [M]⁺: 462.1861; found: 462.1856.

N-(4-butylphenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3d)

The phosphinamide compound was obtained as a white solid. $R_f = 0.28$ (petroleum ether /ethyl acetate = 2/1), mp 143–145 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.03 (d, J = 4.0 Hz, 1H), 8.05–8.00 (m, 5H), 7.94 (d, J = 8.2 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.34–7.3 (m, 4H), 7.19–7.11 (m, 6H), 6.84 (d, J = 8.0 Hz, 2H), 2.39 (t, J = 7.7 Hz, 2H), 1.45–1.38 (m,2H), 1.25–1.16 (m,2H), 0.82 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 146.2 (d, J = 3.4 Hz), 143.1 (d, J = 3.6 Hz), 140.9 (d, J = 2.6

Hz), 137.8, 135.8, 132.87 (d, J = 9.7 Hz), 132.3 (d, J = 3.3 Hz), 131.4 (d, J = 131.0 Hz), 131.1 (d, J = 2.7 Hz), 129.0, 128.3, 127.8 (d, J = 0.7 Hz), 127.4 (d, J = 13.1 Hz), 126.4 (d, J = 1.3 Hz), 123.8 (d, J = 4.7 Hz), 121.1, 34.7, 33.2, 22.1, 13.7; ³¹P NMR (162 MHz, CDCl₃) δ 25.0. HRMS (ESI) calcd. for C₃₁H₂₉N₂OP [M]⁺: 476.2018; found: 476.2033.

N-(4-(tert-butyl)phenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3e)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.35$ (petroleum ether /ethyl acetate = 2/1), mp 200–202 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97–8.96 (m, 1H), 7.96–7.87 (m, 6H), 7.46 (d, J = 8.1 Hz, 1H), 7.27–7.23 (m, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.12–7.08 (m, 2H), 7.05–7.02 (m, 4H), 6.96 (d, J = 7.6 Hz, 2H), 1.07 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.16 (s), 145.6, 142.8 (d, J = 3.3 Hz), 140.8 (d, J = 1.6 Hz), 135.9, 132.8 (d, J = 9.6 Hz), 132.5 (d, J = 1.3 Hz), 132.2–132.1

(m), 131.1 (d, J = 2.2 Hz), 130.9, 129.0, 127.9, 127.4 (d, J = 12.9 Hz), 126.5, 125.2, 122.8 (d, J = 4.5 Hz), 121.2, 33.9, 31.1. ³¹P NMR (162 MHz, CDCl₃) δ 24.94. HRMS (ESI) calcd. for C₃₁H₂₉N₂OP [M]⁺: 476.2018; found: 476.2025.

P,P-diphenyl-N-(quinolin-8-yl)-N-(p-tolyl)phosphinamide (3f)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.40$ (petroleum ether/ethyl acetate = 1/1). mp 195–197 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.92–8.91 (m, 1H), 7.96–7.89 (m, 5H), 7.79 (d, J = 8.2 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.25 (d, J = 7.9 Hz, 2H), 7.21–7.14 (m, 2H), 7.06–6.98 (m, 6H), 6.71 (d, J = 8.0 Hz, 2H), 1.97 (s, 3H). ¹³C NMR (100 Hz, CDCl₃) δ 150.0, 146.1 (d, J = 3.2 Hz), 143.0 (d, J = 3.7 Hz), 140.9 (d, J =

2.5 Hz), 135.7, 132.7 (d, J = 9.7 Hz), 132.6, 132.2 132.1 (d, J = 1.6 Hz), 130.9 (d, J = 2.6 Hz), 130.8, 128.9, 127.7, 127.3 (d, J = 12.9 Hz), 126.3 (d, J = 1.0 Hz), 123.8 (d, J = 4.6 Hz), 121.1, 20.4. ³¹P NMR (162 MHz, CDCl₃) δ 24.8. HRMS (ESI) calcd. for C₂₈H₂₃N₂OP [M]⁺: 434.1548; found: 434.1545.

P,P-diphenyl-N-(quinolin-8-yl)-N-(m-tolyl)phosphinamide (3g)

The phosphinamide compound was obtained as a white solid. $R_f = 0.4$ (petroleum ether /ethyl acetate = 1/1), mp 177–179 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95–8.94 (m, 1H), 7.95–7.86 (m, 6H), 7.46 (d, J = 8.1 Hz, 1H), 7.28–7.23 (m, 2H), 7.12–7.08 (m, 4H), 7.05–7.03 (m, 4H), 6.82 (t, J = 7.6 Hz, 1H), 6.5 (d, J = 7.4 Hz, 1H), 2.0 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.1,

146.3 (d, J = 3.2 Hz), 145.6 (d, J = 3.7 Hz), 140.8 (d, J = 2.7 Hz), 138.1, 135.8, 132.8 (d, J = 9.7 Hz), 132.5 (d, J = 3.3 Hz), 132.1, 131.1 (d, J = 2.7 Hz), 130.8, 129.0, 128.1, 127.9, 127.4 (d, J = 13.1 Hz), 126.4 (d, J = 1.4 Hz), 124.0 (d, J = 6.4 Hz), 121.2, 120.6 (d, J = 4.8 Hz), 21.3. ³¹P NMR (162 MHz, CDCl₃) δ 25.0. HRMS (ESI) calcd. for C₂₈H₂₃N₂OP [M]⁺: 434.1548; found: 434.1543.

P,*P*-diphenyl-*N*-(quinolin-8-yl)-*N*-(*o*-tolyl)phosphinamide (3h)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.42$ (petroleum ether /ethyl acetate = 1/1), mp 207–208 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72–8.70 (m, 1H), 8.33 (d, J =7.5 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.83–7.81 (m, 1H), 7.77– 7.72 (m, 4H), 7.43 (d, J = 8.1 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.23–7.14 (m, 3H), 7.12–7.08 (m, 4H), 6.87–6.84 (m, 3H), 2.30

(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 144.7 (d, J = 5.3 Hz), 141.9, 141.5 (d, J = 2.8 Hz), 139.0 (d, J = 3.4 Hz), 135.7, 133.8 (d, J = 2.8 Hz), 132.7 (d, J = 9.5 Hz), 132.2, 131.2 (d, J = 2.7 Hz), 130.9, 130.7, 130.0 (d, J = 4.0 Hz), 129.2, 127.6 (d, J = 12.9 Hz), 126.5, 126.1 (d, J = 14.9 Hz), 125.2, 120.8, 19.4. ³¹P NMR (162 MHz, CDCl₃) δ 27.8.HRMS (ESI) calcd. for C₂₈H₂₃N₂OP [M]⁺: 434.1548; found: 434.1560.

N-(4-fluorophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3i)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.35$ (petroleum ether /ethyl acetate = 1/1), mp 211–213 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, J = 1.8 Hz, 1H), 7.95– 7.89 (m, 6H), 7.48 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 4.2 Hz 2H), 7.29–7.26 (m, 2H), 7.18–7.12 (m, 2H), 7.06 (s, 4H), 6.65 (t, J =8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 158.1, 150.2, 146.0 (d, J = 3.6 Hz), 141.4 (t, J = 3.2 Hz), 141.0 (d, J = 2.3 Hz),

135.9, 132.8 (d, J = 9.7 Hz), 132.0 (d, J = 3.3 Hz), 131.0 (d, J = 131.1 Hz), 131.3 (d, J = 2.7 Hz), 129.1, 128.0, 127.5 (d, J = 13.1 Hz), 126.4–126.23 (m), 121.3, 115.0 (d, J = 22.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.6. ¹⁹F NMR (376 MHz, CDCl₃) δ - 119.1. HRMS (ESI) calcd. for C₂₇H₂₀FN₂OP [M]⁺: 438.1297; found: 438.1295.

N-(4-chlorophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3j)

The phosphinamide compound was obtained as a white solid. $R_f = 0.55$ (petroleum ether/ethyl acetate = 1:1), mp 184–186 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 4.0 Hz, 1H), 7.94–7.87 (m, 6H), 7.50 (d, J = 8.1 Hz, 1H), 7.30–7.26 (m, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.18–7.12 (m, 2H), 7.08–7.04 (m, 4H), 6.90 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 146.1 (d, J = 3.1 Hz), 144.3 (d, J = 4.1 Hz), 140.5 (d, J = 2.4 Hz), 136.0, 132.8 (d, J = 9.8 Hz), 132.4 (d, J = 3.1 Hz), 131.7, 131.3 (d, J = 5.4 Hz)

2.8 Hz), 130.4, 129.0, 128.3 (d, J = 7.3 Hz), 128.2 (d, J = 1.1 Hz), 127.5 (d, J = 13.1 Hz), 126.5 (d, J = 1.4 Hz), 124.5 (d, J = 4.8 Hz), 121.4. ³¹P NMR (162 MHz, CDCl₃) δ 25.5. HRMS (ESI) calcd. for C₂₇H₂₀ClN₂OP [M]⁺: 454.1002; found: 454.0996.

N-(4-bromophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3k)

The phosphinamide compound was obtained as a white solid. $R_f = 0.41$ (petroleum ether /ethyl acetate = 1/1), mp 201–203 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96–8.95 (m, 1H), 7.94–7.85 (m, 6H), 7.51 (d, J = 8.1 Hz, 1H), 7.30–7.26 (m, 2H), 7.18–7.13 (m, 4H), 7.08–7.03 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 146.1 (d, J = 2.9 Hz), 144.9 (d, J = 4.1 Hz), 140.3 (d, J = 2.4 Hz), 136.0, 132.8 (d, J = 9.8 Hz), 132.4 (d, J = 3.1 Hz), 131.7, 131.47–131.27 (m), 130.4, 129.0, 128.3 (d, J = 1.0 Hz), 127.5

(d, J = 13.1 Hz), 126.5 (d, J = 1.4 Hz), 124.6 (d, J = 4.8 Hz), 121.4, 115.9. ³¹P NMR (162 MHz, CDCl₃) δ 25.5. HRMS (ESI) calcd. for C₂₇H₂₀BrN₂OP [M]⁺: 498.0497; found: 498.0491.

N-(4-iodophenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (31)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.50$ (petroleum ether /ethyl acetate = 1/1). mp 306–308 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95–8.93 (m, 1H), 7.94–7.87 (m, 5H), 7.86–7.82 (m, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.28–7.25 (m, 2H), 7.21 (d, J = 8.6 Hz, 2H), 7.13 (t, J = 7.3 Hz, 2H), 7.06– 7.04 (m, 4H), 6.98 (d, J = 8.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 146.0 (d, J = 2.9 Hz), 145.5 (d, J = 4.2 Hz), 140.0 (d, J = 2.3 Hz), 137.2, 135.9, 132.7 (d, J = 9.8 Hz), 132.4

(d, J = 3.1 Hz),131.4–131.3 (m), 130.0, 128.9, 128.3 (d, J = 0.9 Hz), 127.5 (d, J = 13.1 Hz), 126.51 (d, J = 1.3 Hz), 124.6 (d, J = 4.8 Hz), 121.4, 86.5. ³¹P NMR (162 MHz, CDCl₃) δ 25.8. HRMS (ESI) calcd. for C₂₇H₂₀IN₂OP [M]⁺: 546.0358; found: 546.0352.

N-(3-fluorophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3m)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.37$ (petroleum ether /ethyl acetate = 1/1). mp 104–105 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04–9.03 (m, 1H), 8.03–7.98 (m, 4H), 7.96–7.92 (m, 2H), 7.57 (d, J = 8.1 Hz, 1H), 7.37–7.33 (m, 2H), 7.21–7.18 (m, 3H), 7.14–7.10 (m, 4H), 6.98–6.92 (m, 2H), 6.55–6.51 (t, J = 8.2 Hz 1H). ¹³C NMR (100 MHz, CDCl₃) δ

163.7, 161.3, 150.4, 147.3 (dd, J = 10.0, 4.5 Hz), 146.1 (d, J = 2.7 Hz), 140.0 (d, J = 1.9 Hz), 135.9, 132.7 (d, J = 9.8 Hz), 132.5 (d, J = 3.0 Hz), 131.6, 131.3 (d, J = 2.7 Hz), 129.6 (d, J = 139.4 Hz), 129.2 (d, J = 9.4 Hz), 128.4, 127.5 (d, J = 13.1 Hz), 126.4 (d, J = 1.3 Hz), 121.4, 118.0–117.9 (m), 109.7–109.2 (m). ³¹P NMR (162 MHz, CDCl₃) δ 26.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.2. HRMS (ESI) calcd. for C₂₇H₂₀FN₂OP [M]⁺: 438.1297; found: 438.1292.

N-(4-methoxyphenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3n)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.27$ (petroleum ether /ethyl acetate = 1/1), mp 173–174 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, J = 2.1 Hz, 1H), 8.09– 8.02 (m, 5H), 7.91 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 7.8 Hz, 1H), 7.31–7.26 (m, 2H), 7.18–7.14 (m, 6H), 6.58 (d, J = 8.6 Hz, 2H), 3.56–3.54 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 149.9, 145.9 (d, J = 3.8 Hz), 141.5 (d, J = 3.0 Hz), 138.3 (d, J = 3.2 Hz), 135.7, 132.7 (d, J = 9.5 Hz),

131.7 (d, J = 3.5 Hz), 132.5 (d, J = 131.0 Hz), 131.0 (d, J = 2.6 Hz), 128.2(d, J = 153.2 Hz) 127.3 (d, J = 12.9 Hz), 127.1 (d, J = 4.4 Hz), 127.1 (d, J = 4.4 Hz), 126.3, 121.0, 113.5, 54.9. ³¹P NMR (162 MHz, CDCl₃) δ 24.8. HRMS (ESI) calcd. for C₂₈H₂₃N₂O₂P [M]⁺: 450.1497; found: 450.1492.

P,P-diphenyl-N-(quinolin-8-yl)-N-(4-vinylphenyl)phosphinamide (30)

The phosphinamide compound was obtained as a yellow solid. Rf = 0.42 (petroleum ether /ethyl acetate = 1/1), mp 114–116 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95–8.89 (m, 1H), 7.96–7.89 (m,5H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 7.9 Hz, 2H), 6.71 (d, *J* = 7.9 Hz, 2H). 7.21–7.14 (m, 2H), 7.05–6.98 (m, 6H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 146.1 (d, *J* = 3.2 Hz), 143.0 (d, *J* = 3.6 Hz), 140.9 (d, *J* = 2.5 Hz), 135.7, 132.7 (d, *J* = 9.7 Hz), 132.6, 132.1, 132.1 (d, *J* =

1.6 Hz), 130.9 (d, J = 2.6 Hz), 130.8, 127.7, 127.3 (d, J = 13.0 Hz), 126.2 (d, J = 1 Hz), 123.8 (d, J = 4.6 Hz), 121.1, 20.4. ³¹P NMR (162 MHz, CDCl₃) δ 24.8. HRMS (ESI) calcd. for C₂₉H₂₃N₂OP [M]⁺: 446.1548; found: 446.1543.

N-(4-formylphenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3p)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.34$ (petroleum ether /ethyl acetate = 2/1), mp 134–136 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 8.94–8.93 (m, 1H), 7.94–7.87 (m, 5H), 7.77 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.44 (d, J = 8.0 Hz, 2H), 7.32–7.28 (m, 2H), 7.16–7.11 (m, 3H), 7.09–7.05 (m, 5H).¹³C NMR (100 MHz, CDCl₃) δ 190.8, 151.3 (d, J = 4.6 Hz), 150.5, 145.9 (d, J = 2.3 Hz), 139.0 (d, J = 3.1 Hz)

2.2 Hz), 136.0, 132.6 (d, J = 10.1 Hz), 132.5 (d, J = 2.8 Hz), 131.6 (d, J = 2.7 Hz), 131.1, 130.4, 130.1, 129.8, 128.9 (d, J = 7.3 Hz), 127.6 (d, J = 13.3 Hz), 126.5 (d, J = 1.5 Hz), 121.6, 120.4 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.9. HRMS (ESI) calcd. for C₂₈H₂₁N₂O₂P [M]⁺: 448.1341; found: 448.1335.

N-(3-formylphenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3q)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.28$ (petroleum ether /ethyl acetate = 1/1), mp 128–130 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 9.04 (d, J =1.4 Hz, 1H), 8.03–7.95 (m, 6H), 7.68 (d, J = 8.0 Hz, 1H), 7.64 (s, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.39–7.35 (m, 3H), 7.23– 7.20 (m, 2H), 7.18–7.12 (m, 5H). ¹³C NMR (100 MHz, CDCl₃)

δ 192.1, 150.4, 146.5 (d, J = 4.2 Hz), 146.0 (d, J = 2.8 Hz), 139.8 (d, J = 2.2 Hz), 136.6, 136.0, 132.7 (d, J = 9.8 Hz), 132.3 (d, J = 3.0 Hz), 131.4 (d, J = 2.7 Hz), 130.1, 129.0, 128.9, 128.5, 128.4 (d, J = 4.7 Hz), 127.5 (d, J = 13.1 Hz), 126.4 (d, J = 0.9Hz), 123.9 (d, J = 4.9 Hz), 123.3, 121.5. ³¹P NMR (162 MHz, CDCl₃) δ 26.0. HRMS (ESI) calcd. for C₂₈H₂₁N₂O₂P [M]⁺: 448.1341; found: 448.1332.

N-(4-acetylphenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3r)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.23$ (petroleum ether/ethyl acette = 1/1). mp 205–207 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 8.02–7.97 (m, 5H), 7.86 (d, J = 6.9 Hz, 1H), 7.64–7.60 (m, 3H), 7.40–7.35 (m, 2H), 7.24–7.20 (m, 2H), 7.15 (d, J = 8.0 Hz, 6H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 150.4, 150.1 (d, J = 4.5 Hz), 145.9 (d, J = 2.2 Hz), 139.1 (d, J = 1.7 Hz), 136.0, 132.6 (d, J =10.0 Hz), 132.4 (d, J = 2.8 Hz), 131.4–131.3 (m), 130.5, 130.0,

128.9, 128.8 128.7, 127.5 (d, J = 13.2 Hz), 126.4 (d, J = 0.5 Hz), 121.5, 119.9 (d, J = 4.8 Hz), 26.0. ³¹P NMR (162 MHz, CDCl₃) δ 26.3. HRMS (ESI) calcd. for C₂₉H₂₃N₂O₂P [M]⁺: 462.1497; found: 462.1492.

N-(3-acetylphenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3s)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.26$ (petroleum ether /ethyl acetate = 1/1), mp 156–158 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 3.9 Hz, 1H), 7.96– 7.90 (m, 6H), 7.83 (s, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.30–7.26 (m, 2H), 7.18– 7.11 (m, 2H), 7.07–6.99 (m, 5H), 2.25 (s, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 197.8, 150.3, 145.9 (d, J = 2.8 Hz), 145.7 (d, J = 4.0 Hz), 139.8 (d, J = 1.8 Hz), 137.0, 135.9, 132.6 (d, J = 9.8 Hz), 132.2 (d, J = 3.0 Hz), 131.4–131.3 (m), 130.0, 128.9, 128.5, 128.3, 127.5 (d, J = 13.1 Hz), 127.3 (d, J = 4.4 Hz), 126.4, 122.9 (d, J = 4.6 Hz), 122.4, 121.4, 26.3. ³¹P NMR (162 MHz, CDCl₃) δ 25.8. HRMS (ESI) calcd. for C₂₉H₂₃N₂O₂P [M]⁺: 462.1497; found: 462.1495.

N-(4-(methylsulfonyl)phenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3t)

The phosphinamide compound was obtained as a white solid. $R_f = 0.08$ (petroleum ether /ethyl acetate = 1/1), mp 250–251 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, J = 3.8 Hz, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.94–7.86 (m, 4H), 7.77 (d, J = 7.2 Hz, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.37–7.30 (m, 2H), 7.19–7.16 (m, 2H), 7.13–7.08 (m, 6H), 2.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.7 (d, J = 1.2 Hz), 150.6 (d, J =4.6 Hz), 146.0 (d, J = 2.6 Hz), 139.0–138.9 (m), 136.1 (d, J =

0.9 Hz), 132.7 (d, J = 10.0 Hz), 132.5 (d, J = 3.2 Hz), 131.7, 131.1 (d, J = 3.3 Hz), 129.8 (d, J = 3.3 Hz), 129.0, 128.0 (d, J = 0.8 Hz), 127.7 (d, J = 13.2 Hz), 126.6, 121.8 (d, J = 1.0 Hz), 120.5, 120.4 (d, J = 5.0 Hz), 44.6. ³¹P NMR (162 MHz, CDCl₃) δ 27.0. HRMS (ESI) calcd. for C₂₈H₂₃N₂O₃PS [M]⁺: 498.1167; found: 498.1162.

N-(3-((diphenylphosphoryl)(quinolin-8-yl)amino)phenyl)acetamide (3u)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.51$ (petroleum ether/ethyl acetate = 1/1), mp 123–125 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.46 (d, *J* = 56.0 Hz, 1H), 7.90 (s, 4H), 7.79 (d, *J* = 17.0 Hz, 2H), 7.42 (d, *J* = 23.4 Hz, 2H), 7.29 (s, 1H), 7.14 (d, *J* = 37.8 Hz, 4H), 7.01 (s, 5H) , 6.83 (s, 1H), 1.78 (s, 3H). ¹³C NMR

(100 MHz, DMSO) δ 168.5, 151.2, 146.6 (d, J = 4.1 Hz), 146.2 (d, J = 2.7 Hz), 140.52 (d, J = 2.1 Hz), 140.1, 136.8, 132.9, 132.8 (d, J = 9.4 Hz), 132.5 (d, J = 2.8 Hz), 131.95 (d, J = 1.2 Hz), 131.6, 129.4, 128.9 (d, J = 14.6 Hz), 128.2 (d, J = 12.5 Hz), 126.9, 122.3, 117.91 (d, J = 4.4 Hz), 114.2, 113.7 (d, J = 5.0 Hz), 24.3. ³¹P NMR (162 MHz, CDCl₃) δ 26.2. HRMS (ESI) calcd. for C₂₉H₂₄N₃O₂P [M]⁺: 477.1606; found: 477.1600.

N-(4-cyanophenyl)-P,P-diphenyl-N-(quinolin-8-yl)phosphinamide (3v)

The phosphinamide compound was obtained as a white solid. $R_f = 0.39$ (petroleum ether/ethyl acetate = 1/1), mp 158–160 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 4.0 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.91–7.86 (m, 3H), 7.75 (d, J = 7.1 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.34–7.27 (m, 2H), 7.20–7.18 (m, 3H), 7.15 (d, J = 7.2 Hz, 2H) 7.05 (d, J = 8.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 149.6 (d, J = 4.8 Hz), 145.8 (d, J = 2.3 Hz), 138.7 (d, J = 2.2 Hz), 136.1, 132.6 (d, J = 10.1 Hz), 132.4,

132.4, 131.7 (d, J = 2.8 Hz), 130.9, 129.6, 129.0–128.8 (m), 127.6 (d, J = 13.3 Hz), 126.5 (d, J = 1.5 Hz), 121.7, 120.6 (d, J = 5.0 Hz), 119.1, 104.4. ³¹P NMR (162 MHz, CDCl₃) δ 27.0. HRMS (ESI) calcd. for C₂₈H₂₀N₃OP [M]⁺: 445.1344; found: 445.1339.

P,P-diphenyl-N-(quinolin-8-yl)-N-(4-(trifluoromethyl)phenyl)phosphinamide (3w)

The phosphinamide compound was obtained as a white solid. R_f = 0.53 (petroleum ether/ethyl acetate = 1/1), mp 98–100 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, *J* = 4.0 Hz, 1H), 7.94–7.87 (m, 6H), 7.50 (d, *J* = 8.1 Hz, 1H), 7.30–7.26 (m, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.18–7.12 (m, 2H), 7.08–7.04 (m, 4H), 6.90 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 148.7 (d, *J* = 5.2 Hz), 146.0 (d, *J* = 2.4 Hz), 139.4, 136.0, 132.6 (d, *J* = 9.9 Hz), 132.4 (d, *J* = 2.7 Hz), 131.5–131.4 (m), 130.1, 128.8 (d, *J*

= 25.5 Hz), 127.5 (d, J = 13.2 Hz), 126.4, 125.5–125.4 (m), 123.7, 123.4, 122.8, 121.5, 120.8 (d, J = 4.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.2. 19F NMR (376 MHz, CDCl₃) δ -61.7 (d, J = 3.4 Hz). HRMS (ESI) calcd. for C₂₈H₂₀F₃N₂OP [M]⁺: 488.1265; found: 488.1260.

P,P-diphenyl-N-(quinolin-8-yl)-N-(3-(trifluoromethyl)phenyl)phosphinamide (3x)

The phosphinamide compound was obtained as a white solid. $R_f = 0.59$ (petroleum ether/ethyl acetate = 1/1), mp 162–164 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 2.4 Hz, 1H), 7.95–7.90 (m, 6H), 7.52–7.47 (m, 2H), 7.39 (s, 1H), 7.31–7.27 (m, 2H), 7.18–7.12 (m, 2H), 7.08–7.00 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 146.1–146.0 (m), 139.9 (d, J = 2.3 Hz), 136.0,

132.8 (d, J = 9.8 Hz), 132.3 (d, J = 3.1 Hz), 131.5–131.4 (m), 130.7, 130.4, 129.6 (d, J = 115.0 Hz), 128.7, 128.5, 127.6 (d, J = 13.1 Hz), 126.5 (d, J = 1.2 Hz), 126.0 (d, J = 3.7 Hz), 125.1, 122.4, 121.5–121.4 (m), 119.8–119.6 (m), 119.4–119.3 (m). ³¹P NMR (162 MHz, CDCl₃) δ 25.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7. HRMS (ESI) calcd. for C₂₈H₂₀F₃N₂OP [M]⁺: 488.1265; found: 488.1268.

N-(3,5-bis(trifluoromethyl)phenyl)-P,P-diphenyl-N-(quinolin-8yl)phosphinamide (3y)

The phosphinamide compound was obtained as a yellow solid. $R_f 0.71$ (petroleum ether/ethyl acetate = 1/1), mp 118–120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, *J* = 1.9 Hz, 1H), 7.97–7.89 (m, 6H) , 7.57 (s, 3H), 7.35–7.31 (m, 2H), 7.26 (s, 1H), 7.17 (d, *J* = 7.5 Hz, 2H), 7.09 (s, 4H). ¹³C NMR (100 MHz, CDCl₃; list of

signals, C–P and C–F coupling not resolved) δ 168.7, 150.6, 148.1, 146.9, 146.9, 145.8, 145.8, 139.1, 139.1, 138.3, 138.2, 134.5, 132.8, 132.7, 132.2, 132.2, 131.8, 131.8, 131.5, 131.2, 130.9, 129.6, 129.2, 129.0, 127.9, 127.9, 127.7, 127.4, 126.6, 126.6, 124.4, 122.5, 122.4, 122.4, 121.8, 121.6, 121.4, 116.4, 116.1, 116.1, 116.0, 116.0, 116.0. ³¹P NMR (162 MHz, CDCl₃) δ 26.8. ¹⁹F NMR (376 MHz, CDCl₃) δ - 63.0. HRMS (ESI) calcd. for C₂₉H₁₉F₆N₂O₁P [M]⁺: 556.1139; found: 556.1134.

N-(4-nitrophenyl)-*P*,*P*-diphenyl-*N*-(quinolin-8-yl)phosphinamide (3z)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.31$ (petroleum ether/ethyl acetate = 1/1), mp 143–145 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.98 (s, 3H), 7.89 (d, *J* = 8.2 Hz, 2H), 7.84 (d, *J* = 7.2 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.45–7.39 (m, 2H), 7.26 (d, *J* = 5.8 Hz, 3H), 7.16–7.10 (m, 6H). ¹³C NMR (100MHz, CDCl₃) δ 151.6 (d, *J* = 4.8 Hz), 150.7, 145.7 (d, *J* = 2.2 Hz), 141.7, 138.7 (d, *J* = 2.1

Hz), 136.2, 132.6 (d, J = 10.1Hz), 132.5(d, J = 2.7Hz), 131.9(d, J = 2.7 Hz), 130.7 (d, J = 4.9Hz), 129.3(d, J = 45.0 Hz), 129.1 (d, J = 1.2 Hz), 127. 8 (d, J = 13.3Hz), 126.6 (d, J = 1.3Hz), 124.3, 121.8, 119.9–119.8 (m). ³¹P NMR (162 MHz, CDCl₃) δ 27.6. HRMS (ESI) calcd. for C₂₇H₂₀N₃O₃P [M]⁺: 465.1242; found: 465.1237.

N-phenyl-N-(quinolin-8-yl)-P,P-di-p-tolylphosphinamide (3ba)

The phosphinamide compound was obtained as a white solid. $R_f = 0.33$ (petroleum ether/ethyl acetate = 1/1), mp 97–99 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, J = 2.0 Hz, 1H), 7.89–7.86 (m, 2H), 7.82–7.77 (m,4H), 7.46–7.42 (m, 1H), 7.28–7.23 (m, 4H), 6.92 (t, J = 7.5 Hz, 2H), 6.83 (d, J = 5.7 Hz, 4H), 6.76–6.72 (m, 1H), 2.06 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 146.3 (d, J = 2.9 Hz), 145.8 (d, J = 3.7 Hz), 141.3 (d, J = 2.8 Hz), 140.9 (d, J = 5.8

1.8 Hz), 135.8, 132.7 (d, J = 10.0 Hz), 132.4 (d, J = 3.2 Hz), 131.9 (d, J = 10.1 Hz), 129.1 (d, J = 6.4 Hz), 128.9, 128.2 (d, J = 13.6 Hz), 127.8, 126.4 (d, J = 1.0 Hz), 123.2 (d, J = 4.7 Hz), 122.7, 121.1, 21.3. ³¹P NMR (162 MHz, CDCl₃) δ 26.2. HRMS (ESI) calcd. for C₂₉H₂₅N₂OP [M]⁺: 448.1704; found: 448.1697.

N-phenyl-*N*-(quinolin-8-yl)-*P*,*P*-di-*m*-tolylphosphinamide (3ca)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.51$ (petroleum ether /ethyl acetate = 1/1), mp 145–147 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 2.2 Hz, 1H), 7.89–7.86 (m, 2H), 7.80–7.76 (m, J = 11.7, 2H), 7.71 (d, J = 12.6 Hz, 2H), 7.50–7.43 (m, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 3.6 Hz, 2H), 6.94–6.88 (m, 6H), 6.76–6.72 (m, 1H), 2.03 (s, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ 149.9, 146.3 (d, J = 3.2 Hz), 145.7 (d, J = 3.7 Hz), 140.8 (d, J = 2.5 Hz), 137.0 (d, J = 12.9 Hz), 135.8, 133.3 (d, J = 9.8 Hz), 132.6–132.2 (m), 131.9 (d, J = 2.9 Hz), 131.3 (d, J = 129.8 Hz) 129.8 (d, J = 9.7 Hz), 129.1–128.9 (m), 128.2, 128.1 (d, J = 12.8 Hz), 127.9 , 127.2 (d, J = 13.7 Hz), 126.3 (d, J = 1.3 Hz), 123.2 (d, J = 4.7 Hz), 121.9 (d, J = 170.0 Hz), 21.0. ³¹P NMR (162 MHz, CDCl₃) δ 26.0. HRMS (ESI) calcd. for C₂₉H₂₅N₂OP [M]⁺: 448.1704; found: 448.1699.

P,P-bis(4-fluorophenyl)-N-phenyl-N-(quinolin-8-yl)phosphinamide (3da)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.62$ (petroleum ether/ethyl acetate = 1/1). mp 97–99 °C ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, J = 1.6 Hz, 1H), 8.06–7.96 (m, 6H), 7.67–7.60 (m, 1H), 7.41–7.35 (m, 4H), 7.04 (t, J = 7.4 Hz, 2H), 6.89–6.87 (m, 1H), 6.82 (t, J = 8.5 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5 (dd, J = 251.2 Hz, 3.4 Hz), 150.3, 146.2 (d, J = 3.1 Hz), 145.5 (d, J = 4.0 Hz), 140.6 (d, J = 2.5 Hz), 136.2,

135.4 (dd, J = 11.1 Hz, 8.8 Hz), 132.6 (d, J = 3.1 Hz), 129.1, 128.6, 128.3, 127.2 (dd, J = 135.2 Hz, 3.3 Hz), 126.6 (d, J = 1.5 Hz), 123.4, 123.3 (d, J = 4.9 Hz), 121.5, 114.9 (dd, J = 21.1, 14.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 23.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -107.4. HRMS (ESI) calcd. for C₂₇H₁₉F₂N₂OP [M]⁺: 456.1203; found: 456.1200.

P,P-bis(3-fluorophenyl)-N-phenyl-N-(quinolin-8-yl)phosphinamide (3ea)

The phosphinamide compound was obtained as a yellow solid. $R_f = 0.56$ (petroleum ether /ethyl acetate = 1/1), mp 125–127 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, J = 2.2 Hz, 1H), 7.90 (t, J = 8.9 Hz, 2H), 7.76–7.69 (m, 4H), 7.50 (d, J = 8.1 Hz, 1H), 7.36–7.25 (m, 4H), 7.02–6.93 (m, 4H), 6.79 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (dd, J = 247.1 Hz, 18.6 Hz), 150.4, 145.6 (dd, J = 89.3 Hz, 3.1 Hz), 140.2 (d, J = 2.5 Hz), 136.1,

133.6 (dd, J = 131.5Hz, 6.0 Hz), 132.4 (d, J = 3.2 Hz), 129.4 (q, J = 7.3 Hz), 129.0, 128.7 (d, J = 3.1 Hz), 128.6, 128.6, 126.4, 126.5 (d, J = 1.1 Hz), 123.7, 123.5 (d, J = 4.9 Hz), 121.5, 119.6 (q, J = 10.7 Hz), 118.6 (dd, J = 21.1, 2.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.0 (t, J = 6.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -112.3 (d, J = 6.8 Hz). HRMS (ESI) calcd. for C₂₇H₁₉ F₂N₂OP [M]⁺: 456.1203; found: 456.1198.

P,P-bis(4-chlorophenyl)-N-phenyl-N-(quinolin-8-yl)phosphinamide (3fa)

The phosphinamide compound was obtained as a white solid. $R_f = 0.77$ (petroleum ether/ethyl acetate = 1/1), mp 225–227 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.97 (d, J = 8.2 Hz, 1H), 7.92–7.85 (m, 5H), 7.56 (d, J = 8.1 Hz, 1H), 7.34–7.29 (m, 4H), 7.04 (d, J = 8.1 Hz, 4H), 6.98 (t, J = 7.4 Hz, 2H), 6.83 (t, J = 7.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 146.1 (d, J = 3.2 Hz), 145.2 (d, J = 4.0 Hz), 140.3 (d, J = 2.6 Hz), 138.0 (d, J = 5.2 Hz)

3.5 Hz), 136.2, 134.3 (d, J = 10.6 Hz), 132.5 (d, J = 3.2 Hz), 129.6 (d, J = 133.7 Hz),129.1, 128.6, 128.4, 127.9 (d, J = 13.7 Hz), 126.6 (d, J = 1.2 Hz), 123.6, 123.5 (d, J = 4.9 Hz), 121.5. ³¹P NMR (162 MHz, CDCl₃) δ 23.2. HRMS (ESI) calcd. for C₂₇H₁₉Cl₂N₂OP [M]⁺: 488.0612; found: 488.0607.

P,P-bis(4-methoxyphenyl)-N-phenyl-N-(quinolin-8-yl)phosphinamide (3ga)

The phosphinamide compound was obtained as a white solid. $R_f = 0.19$ (petroleum ether /ethyl acetate = 1/1), mp 284–286 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, J = 1.4 Hz, 1H), 7.87–7.82 (m, 6H), 7.47 (d, J = 8.1 Hz, 1H), 7.26 (t, J = 8.1 Hz, 4H), 6.93 (t, J = 7.4 Hz, 2H), 6.74 (t, J = 7.2 Hz, 1H), 6.54 (d, J = 8.0 Hz, 4H), 3.54 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.6 (d, J = 2.8 Hz), 150.1, 146.33 (d, J = 2.8 Hz), 145.8 (d, J = 3.8

Hz), 140.9 (d, J = 2.2 Hz), 135.9, 134.5 (d, J = 11.1 Hz), 132.4 (d, J = 2.9 Hz), 128.9, 128.2, 127.1 (d, J = 141.4 Hz), 123.8, 123.0 (d, J = 4.5 Hz), 122.6, 122.4, 121.2, 112.9 (d, J = 14.0 Hz), 54.9. ³¹P NMR (162 MHz, CDCl₃) δ 25.5. HRMS (ESI) calcd. for C₂₉H₂₅N₂O₃P [M]⁺: 480.1603; found: 480.1597.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-*N*,*P*,*P*-triphenylphosphinamide (4)

The phosphinamide compound was obtained as a white solid. $R_f = 0.25$ (petroleum ether /ethyl acetate = 2/1), mp 92–95 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.68 (m, 4H), 7.54 (d, J =7.8 Hz, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.22 (d, J = 7.7 Hz, 4H), 7.18–7.14 (m, 4H), 7.03–6.99 (m, 1H), 6.95–6.91 (m, 2H), 6.78–6.75 (m, 1H), 4.15 (t, J = 9.5 Hz, 2H), 3.87 (t, J = 9.5 Hz,

2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6, 145.3 (d, J = 2.5 Hz), 142.5 (d, J = 1.3 Hz), 132.8 (d, J = 2.9 Hz), 132.5 (d, J = 9.7 Hz), 131.7, 131.3 (d, J = 2.7 Hz), 131.2, 130.5 (d, J = 12.4 Hz), 128.3 (d, J = 4.1 Hz), 128.1, 127.6 (d, J = 12.9 Hz), 126.69, 124.6 (d, J = 5.2 Hz), 123.4, 66.6, 54.8. ³¹P NMR (162 MHz, CDCl₃) δ 25.4. HRMS (ESI) calcd. for C₂₇H₂₃N₂O₂P [M]⁺: 438.1497; found: 438.1495.

4. References

- 1) T. T. Nguyen, L. Grigorjeva and O. Daugulis, Acs Catal., 2016, 6, 551.
- 2) R. Nallagonda, N. Thrimurtulu, C. M. Volla, Adv. Synth. Catal., 2018, 360, 255.
- 3) M. Shang, S. Z. Sun, H. X. Dai and J.-Q. Yu, J. Am. Chem. Soc., 2014, 136, 3354.
- 4) B. J. Liddle, R. M. Silva, T. J. Morin, F. P. Macedo, R. Shukla, S. V. Lindeman, and J. R. Gardinier, *J. Org. Chem.*, 2007, **72**, 5637.

Copies of ¹H, ¹³C, ³¹P, ¹⁹F NMR charts of the Compounds

 ^{13}C NMR (100MHz, CDCl₃) spectra of compound 1c

³¹P NMR (162MHz, CDCl₃) spectra of compound **1e**

 ^{31}P NMR (162MHz, CDCl₃) spectra of compound 1h

 ^{13}C NMR (100MHz, CDCl_3) spectra of compound 1i

¹³⁰ ¹¹⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻³⁰ ⁻⁵⁰ ⁻⁷⁰ ⁻⁹⁰ ⁻¹¹⁰ ⁻¹³⁰ ⁻¹⁵⁰ ⁻¹⁷⁰ ⁻¹⁹⁰ ⁻²¹⁰ ⁻²³⁰ ³¹P NMR (162MHz, CDCl₃) spectrum of compound **3a**

¹³C NMR (100MHz, CDCl3) spectra of compound **3b**

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound 3c

¹³C NMR (100MHz, CDCl₃) spectra of compound **3d**

11.5

10.5

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound 3e

 ^{13}C NMR (100MHz, CDCl₃) spectra of compound 3f

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound 3g

¹³C NMR (100MHz, CDCl₃) spectra of compound **3h**

¹H NMR (400MHz, CDCl₃) spectra of compound **3i**

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound **3i**

¹H NMR (400MHz, CDCl₃) spectra of compound **3**j

A89645 A89645 B89593 B89593 B89593 B89535 A89555 A89555 A89555 A89555 A895455 A89545

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (100MHz, CDCl₃) spectra of compound **3k**

 ^1H NMR (400MHz, CDCl₃) spectra of compound **3**l

³¹P NMR (162MHz, CDCl₃) spectrum of compound **3**I

C90416 -90382 -90382 -90382 -90385 -800171 -80056 -800171 -779861 -779803 -775529 -771480 -771480 -771480 -771480 -771486 -771

¹³C NMR (100MHz, CDCl₃) spectra of compound **3m**

¹⁹F NMR (376MHz, CDCl₃) spectrum of compound **3m**

 ^{13}C NMR (100MHz, CDCl₃) spectra of compound 3n

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound $\boldsymbol{3o}$

9,6544 9,942 8,93942 8,93942 8,93942 8,93942 8,93942 8,93942 1,73908 1,73908 1,75560 1,75569 1,7556

 ^{13}C NMR (100MHz, CDCl₃) spectra of compound $\boldsymbol{3p}$

 ^1H NMR (400MHz, CDCl_3) spectra of compound 3q

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound $\boldsymbol{3q}$

 ^{13}C NMR (100MHz, CDCl₃) spectra of compound 3r

¹H NMR (400MHz, CDCl₃) spectra of compound **3s**

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound 3s

¹³C NMR (100MHz, CDCl₃) spectra of compound **3t**

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound 3u

 ^{13}C NMR (100MHz, CDCl₃) spectra of compound 3v

³¹P NMR (162MHz, CDCl₃) spectrum of compound **3**w

¹H NMR (400MHz, CDCl₃) spectra of compound 3x

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound 3x

³¹P NMR (162MHz, CDCl₃) spectrum of compound **3**y

 ^1H NMR (400MHz, CDCl₃) spectra of compound 3z

 ^{31}P NMR (162MHz, CDCl₃) spectrum of compound 3z

¹³C NMR (100MHz, CDCl₃) spectra of compound **3ba**

9.0442 9.0442 9.0442 9.0402 9.0402 9.0403 9.0403 9.0404

¹³C NMR (100MHz, CDCl₃) spectra of compound **3da**

¹⁹F NMR (376MHz, CDCl₃) spectrum of compound **3da**

¹³C NMR (100MHz, CDCl₃) spectra of compound **3ea**

¹⁹F NMR (376MHz, CDCl₃) spectrum of compound **3ea**

-8.9685 -7.9989 -7.9989 -7.9998 -7.9998 -7.9920 -7.7992 -7.7373 -7.7373 -7.7373 -7.7345 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.7775 -7.77755 -7.7775 -7.77

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

³¹P NMR (162MHz, CDCl₃) spectrum of compound **3fa**

¹H NMR (400MHz, CDCl₃) spectra of compound **3ga**

 $^{130} \text{ }^{110} \text{ }^{90} \text{ }^{80} \text{ }^{70} \text{ }^{60} \text{ }^{50} \text{ }^{40} \text{ }^{30} \text{ }^{20} \text{ }^{10} \text{ }^{-10} \text{ }^{-30} \text{ }^{-50} \text{ }^{-70} \text{ }^{-90} \text{ }^{-110} \text{ }^{-130} \text{ }^{-150} \text{ }^{-170} \text{ }^{-190} \text{ }^{-210} \text{ }^{-230}$ $^{31}\text{P NMR} (162\text{MHz, CDCl}_3) \text{ spectrum of compound 3ga}$

³¹P NMR (162MHz, CDCl₃) spectrum of compound 4