Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

A Highly HDAC6–Selective Inhibitor Acts as a Fluorescent Probe

Yi-Hsun Ho,^{ab} Kuang-Jui Wang,^a Pei-Yun Hung,^b Yi-Sheng Cheng,^{cd} Jia-Rong Liu,^a Sheang-Tze Fung,^a Pi-Hui Liang,^a Ji-Wang Chern,^{*a} and Chao-Wu Yu^{*ab}

^aSchool of Pharmacy, College of Medicine, and Center for Innovative Therapeutics Discovery, National Taiwan University, Taipei 100, Taiwan. E-mail: jwchern@ntu.edu.tw
^bAnnJi Pharmaceutical Co., Ltd., 18, Siyuan St., Taipei 100, Taiwan. E-mail: stifenyu@ajpharm.com
^cInstitute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
^dDepartment of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan

Table of Contents

1.	Photophysical characterization	S2
2.	Fluorescence microscopy imaging	S4
3.	Spectroscopic titration	S5
4.	¹ H and ¹³ C NMR spectra	S6

1. Photophysical characterization

Figure S1. Absorption and fluorescence spectra of 19 in DMSO (5 μ M). The excitation wavelength was 362 nm for the fluorescence spectrum.

Figure S2. Absorption and fluorescence spectra of 20 in DMSO (15 μ M). The excitation wavelength was 430 nm for the fluorescence spectrum.

Figure S3. Absorption and fluorescence spectra of 21 in DMSO (15 μ M). The excitation wavelength was 412 nm for the fluorescence spectrum.

Figure S4. Absorption and fluorescence spectra of **22 (JW-1)** in DMSO (15 μ M). The excitation wavelength was 362 nm for fluorescence spectrum. $\lambda_{ex} = 364$ nm; $\lambda_{em} = 449$ nm; Stokes shift = 85

Figure S5. Absorption and fluorescence spectra of **22 (JW-1)** (10 μ M) in 10 mM phosphate buffer containing 0.1% DMSO (pH 7.4). The excitation wavelength was 376 nm for fluorescence spectrum. $\lambda_{ex} = 370$ nm; $\lambda_{em} = 463$ nm; Stokes shift = 93

Figure S6. Absorption and fluorescence spectra of 23 in DMSO (20 μ M). The excitation wavelength was 377 nm for fluorescence spectrum.

Figure S7. Absorption and fluorescence spectra of 28 in DMSO (12 μ M). The excitation wavelength was 337 nm for the fluorescence spectrum.

Figure S8. Absorption and fluorescence spectra of 29 in DMSO (20 μ M). The excitation wavelength was 338 nm for the fluorescence spectrum.

2. Fluorescence microscopy imaging

Figure S9. Fluorescence microscopy images of MDA-MB-231 cells incubated with (A) 20 µM **JW-1** for 4 h or (B) 4.0 µM **JW-1** for 16 h. Cells were co-stained with propidium iodide to visualize their nuclei (red). Scale bar: 200 µm.

3. Spectroscopic titration

Figure S10. Fluorescence spectra of **JW-1** (4 μ M) in the presence of increasing concentration of *ct*-DNA (0–100 μ M) in 10 mM phosphate buffer containing 0.05% DMSO (pH 7.4).

4. ¹H and ¹³C NMR spectra

200 MHz ¹H NMR Spectrum of Compound 13 in DMSO- d_6

200 MHz ¹H NMR Spectrum of Compound **14** in DMSO-*d*₆

200 MHz ¹H NMR Spectrum of Compound **15** in DMSO-*d*₆

200 MHz ¹H NMR Spectrum of Compound **16** in DMSO-*d*₆

400 MHz ¹H NMR Spectrum of Compound 17 in CDCl₃

200 MHz ¹H NMR Spectrum of Compound **18** in DMSO-*d*₆

400 MHz ¹H NMR Spectrum of Compound **19** in DMSO-*d*₆

400 MHz ¹H NMR Spectrum of Compound **20** in DMSO-*d*₆

400 MHz ¹H NMR Spectrum of Compound **21** in DMSO-*d*₆

400 MHz ¹H NMR Spectrum of Compound **22** (JW-1) in DMSO-*d*₆

400 MHz ¹H NMR Spectrum of Compound 23 in DMSO-*d*₆

200 MHz ¹H NMR Spectrum of Compound **26** in DMSO-*d*₆

200 MHz ¹H NMR Spectrum of Compound **27** in DMSO-*d*₆

400 MHz ¹H NMR Spectrum of Compound **28** in DMSO-*d*₆

400 MHz ¹H NMR Spectrum of Compound **29** in DMSO-*d*₆

