Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Synthesis and biochemical evaluation of two novel N-hydroxyalkylated cyclosporin A analogs

Viktoria Kahlert, Erik Prell, Oliver Ohlenschläger, Jelena Melesina, Michael Schumann, Christian Lücke, Gunter Fischer and Miroslav Malešević

Figure S1: One-dimensional ¹H-NMR spectra of compounds **6** (upper panel) and **5** (lower panel) in CD_3CN . (Figure produced with NMRViewJ from One Moon Scientific.)

residue	NH/NCH ₃	CO	СаН	СβН	СүН	СбН	СєН	СζН	СηН
MeBmt1	2.93(35.3)	171.8	5.34(59.1)	4.04(76.9)	1.44(36.8)	2.33/2.07(36.7)	5.48(129.7)	5.48(127.7)	1.65(18.2)
					0.83(15.8)				
Abu2	6.78(-)	175.5	4.76(53.1)	1.80/1.63(24.6)	1.03(10.8)				
Sar3	3.15(37.4)	169.2	4.73/3.38(51.1)						
MeLeu4	2.82(29.5)	172.0	5.72(51.2)	1.65/1.47(38.9)	1.38(25.3)	0.92(23.3)			
						0.89(23.1)			
Val5	3.38/3.24(61.8)								
	3.70/3.01(45.0)	173.9	5.13(58.6)	2.43(27.9)	0.85(20.4)				
					0.68(18.1)				
MeLeu6	2.86(30.9)	170.6	4.79(55.4)	1.81/1.41(36.4)	1.41(25.5)	0.91(23.2)			
						0.91(22.8)			
Ala7	6.55(-)	172.3	4.42(48.3)	1.11(17.4)					
D-Ala8	6.90(-)	173.4	4.74(45.8)	1.23(16.9)					
MeLeu9	2.88(30.5)	172.2	5.48(52.6)	1.54(38.5)	1.35(25.2)	0.89(23.4)			
						0.89(22.7)			
MeLeu10	3.04(32.4)	173.6	5.46(52.6)	2.17/1.26(38.6)	1.62(25.6)	1.01(24.2)			
						0.92(21.2)			
MeVal11	2.88(30.5)	171.7	4.94(59.2)	2.27(27.1)	0.85(20.3)				
					0.70(18.3)				

Table S1: ¹H- and ¹³C resonance assignments of compound **6** at 25 °C in CD₃CN:

Figure S2: Segments from the ${}^{1}\text{H}/{}^{13}\text{C}$ -HMBC spectrum of compound **6**, showing the scalar through-bond connectivities i) of the methylene protons in the ethoxy moiety attached to the Val5 nitrogen atom (upper panel) and ii) of the Val5 C α proton (lower panel). (Figure produced with NMRViewJ from One Moon Scientific.)

Figure S3: Segments from the ${}^{1}\text{H}/{}^{1}\text{H}$ -ROESY spectrum of compound **6**, showing the dipolar through-space connectivities of the MeLeu4 C α proton with the protons of the ethoxy moiety attached to the Val5 nitrogen atom. (Figure produced with NMRViewJ from One Moon Scientific.)

Figure S4: Sections from the two-dimensional ${}^{1}\text{H}/{}^{13}\text{C}$ -HSQC spectra of compounds **6** (upper panels) and **5** (lower panels). The panels on the left show the C α H region, characterized by 11 peaks in case of compound **6** (the Sar3 H α resonance at 3.38 ppm is not shown in this plot), whereas the same region in the spectrum of compound **5** displays a considerably larger number of signals. The panels on the right show another example of this heterogeneity of ${}^{1}\text{H}$ resonances in case of the two olefinic protons (C ϵ H and C ζ H) of the MeBmt1 residue. (Figure produced with NMRViewJ from One Moon Scientific.)

Figure S5: Segment from the ${}^{1}\text{H}/{}^{1}\text{H}$ -ROESY spectrum of compound **6** showing among others the very strong sequential ROE signal between MeLeu9 H α and MeLeu10 NCH₃. (Figure produced with NMRViewJ from One Moon Scientific.)

Figure S6: HPLC chromatogram of purified compound **5** Rt = 4.6 min (solvent A H₂O, solvent B acetonitrile, RP C8, 50.00 x 4.60 mm. Method: 40 °C, 50 - 100 % B in 10 min, flow 1 mL/min).

Figure S7: HPLC chromatogram of purified compound 6 Rt = 4.8 min (solvent A H₂O, solvent B acetonitrile, RP C8, 50.00 x 4.60 mm. Method: 40 °C, 50 – 100 % B in 10 min, flow 1 mL/min).