Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Valdecoxib vs Borazavaldecoxib: Isoxazole BN/CC Isosterism as a Case Study in Designing and Stabilizing Boron Heterocycles

Michele Boghi, Dennis Hall*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada

Table of contents

1	Sy	nthe	tic chemistry	2			
	1.1	Ex	perimental details and general information	2			
	1.2	Sy	nthetic schemes	3			
	1.3	Ch	emical synthesis and analytical data	5			
	1.3	3.1	Synthesis of Amidoximes	5			
	1.3	3.2	Oxadiazaboroles synthesis	11			
	1.3	3.3	Synthesis of oxadiazaborate salts	19			
	1.3	3.4	Additional compounds	23			
2	Sp	ectro	oscopic comparison: Borazavaldecoxib vs Valdecoxib	24			
	2.1	U١	v absorption and fluorescence emission spectra	24			
	2.2	Inf	frared spectra	26			
3	St	ructu	ıral comparisons	27			
	3.1	Во	razavaldecoxib vs valdecoxib	27			
	3.2	Te	trahedral oxadiazaborate 6b vs orthoamide 7	29			
4	Hy	ydrol	lytic studies (NMR)	30			
	4.1	Во	prazavaldecoxib 2 in aqueous DMSO-d ₆ (0.02 M, 20 °C)	30			
	4.2	Te	trahedral borate 6a in aqueous DMSO-d ₆ (0.02 M, 20 °C)	31			
5	Ex	char	nge experiment of oxadiazaborate 6b in aqueous conditions	33			
6	HI	HPLC trace of oxadiazaborate 6a with ACN as mobile phase					
7	Bi	Biological assays					
8	NI	NMR spectra					
9	X-ray crystallographic reports						

1 Synthetic chemistry

1.1 Experimental details and general information

Unless otherwise stated, all reactions were performed under a nitrogen atmosphere using flamedried glassware. THF, DMF and PhMe were obtained from a MBraun MB SPS* solvent system prior to use. Most of the reagents were purchased from SigmaAldrich and used as received. Arylboronic acids were purchased either from SigmaAldrich or Combi-Blocks. Thin layer chromatography (TLC) was performed on Merck Silica Gel 60 F254 plates and was visualized with UV light and KMnO₄ stain. NMR spectra were recorded on Varian INOVA-400 or INOVA-500. The residual solvent protons (¹H) of CDCl₃ (7.26 ppm), CD₃CN-d₃ (1.94 ppm), DMSO-d₆ (2.50 ppm), and the solvent carbons (¹³C) of CDCl₃ (77.06 ppm), CD₃CN (1.32 and 118.26 ppm), DMSO-d₆ (39.52 ppm) were used as reference. ¹H NMR data is presented as follows: chemical shift in ppm (δ) downfield from tetramethylsilane (multiplicity, coupling constant, integration). The following abbreviations are used in reporting NMR data: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sext, sextet; sept, septet; dd, doublet of doublets; ddd, doublet of doublet of doublets; td, triplet of doublets; dt, doublet of triplets; app q, apparent quartet; m, multiplet. The error of coupling constants from ¹H NMR spectra is estimated to be 0.3 Hz. The quaternary carbon bound to the boron atom is often missing due to the quadrupolar relaxation of boron. This effect was observed in each boron-containing compound. High-resolution mass spectra were recorded by the University of Alberta mass spectrometry services laboratory using either electron impact (EI) or electrospray ionization (ESI) techniques. Melting points (m. p.) were measured on a melting point apparatus and uncorrected. Infrared (IR) spectra were obtained using cast-film or solid technique with frequencies expressed in cm⁻¹.

1.2 Synthetic schemes

General synthetic scheme:

Oxadiazaboroles and oxadiazaborates set:

6e

1.3 Chemical synthesis and analytical data

1.3.1 Synthesis of Amidoximes

General procedure A: A solution of imidoyl chloride **3** (1.00 equiv) in THF (1.0 M) was added dropwise to a stirred mixture of amine (1.10 equiv) and Et_3N (1.50 equiv) in THF (0.5 M) at 0 °C. The resulting mixture was stirred and allowed to warm to room temperature. After 4 h, saturated NaHCO₃ was added and the mixture was extracted twice with EtOAc. The combined organic phases were washed with brine, dried (MgSO₄), filtered and concentrated *in vacuo*. The crude residue was purified as indicated below to provide the title amidoxime.

(*Z*)-*N*'-Hydroxy-*N*-phenylisobutyrimidamide (4a): Prepared from (*Z*)-*N*-hydroxyisobutyrimidoyl chloride¹ (3a) (1.03 g, 8.44 mmol, 1.00 equiv), aniline (0.85 mL, 9.28 mmol, 1.10 equiv) and Et₃N (1.77 mL, 12.7 mmol, 1.50 equiv) in THF (17.0 mL) following the general procedure **A**. The crude residue was purified by flash column chromatography (6:1 to 2:1 hexane/EtOAc) to yield the desired amidoxime as a white solid (455 mg, 30% yield); $\mathbf{R}_f = 0.17$ (3:1, hexane/EtOAc); $\mathbf{mp} = 68$ °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.76 (br s, 1H), 7.37 – 7.29 (m, 2H), 7.20 – 7.13 (m, 1H), 7.13 – 7.06 (m, 2H), 7.03 (br s, 1H), 2.87 (sept, *J* = 6.8 Hz, 1H), 1.11 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 157.3, 139.1, 129.2, 124.9, 124.9, 27.2, 20.2; **IR** (cast film, cm⁻¹): 3363, 3218, 2972, 1651, 1596, 1498, 1394, 1286, 929, 700; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₀H₁₅N₂O⁺: 179.1179, found: 179.1190.

¹ Prepared according to the literature procedure: Dubrovskiy, A. V.; Larock, R. C. Org. Lett. 2010, 12, 1180-1183.

(*Z*)-*N*-(2-(1H-Indol-3-yl)ethyl)-*N*'-hydroxybenzimidamide (4e): Prepared from (*Z*)-*N*-hydroxy benz-imidoyl chloride¹ (**3b**) (0.40 g, 2.57 mmol, 1.00 equiv), tryptamine (0.45 g, 2.83 mmol, 1.10 equiv) and Et₃N (0.54 mL, 3.86 mmol, 1.50 equiv) in THF (5.0 mL) following the general procedure **A**. The crude residue was purified by flash column chromatography (2:1 hexane/EtOAc to pure EtOAc) to yield the desired amidoxime as a white solid (319 mg, 44% yield); $\mathbf{R}_f = 0.44$ (1:1 hexane/EtOAc); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.97 (br s, 1H), 7.46 – 7.29 (m, 7H), 7.22 – 7.14 (m, 1H), 7.09 – 6.98 (m, 2H), 5.42 (br s, 1H), 3.35 (app q, *J* = 6.8 Hz, 2H), 2.88 (t, *J* = 7.0 Hz, 2H).

(*Z*)-*N*-(2-Aminobenzyl)-*N*'-hydroxybenzimidamide (4f): Prepared from (*Z*)-*N*-hydroxybenzimidoyl chloride¹ (**3b**) (0.50 g, 3.21 mmol, 1.00 equiv), 2-(aminomethyl)aniline (0.43 g, 3.50 mmol, 1.10 equiv) and Et₃N (0.67 mL, 4.80 mmol, 1.50 equiv) in THF (6.5 mL) following the general procedure **A**. The crude residue was filtered through a short plug of silica gel (EtOAc 0.1% Et₃N). The volatiles were then evaporated to yield a crude solid, which was washed with Et₂O (trituration) to afford the desired amidoxime as a yellow solid (373 mg, 48% yield); **R**_{*f*} = 0.60 (EtOAc); **mp** = 112 °C; ¹**H NMR** (498 MHz, DMSO-*d*₆): δ (ppm) 9.79 (s, 1H), 7.43 – 7.34 (m, 5H), 6.90 (td, *J* = 7.6, 1.6 Hz, 1H), 6.77 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.56 (dd, *J* = 7.9, 1.2 Hz, 1H), 6.45 (td, *J* = 7.4, 1.2 Hz, 1H), 6.10 (t, *J* = 6.8 Hz, 1H), 4.86 (s, 2H), 3.98 (d, *J* = 6.8 Hz, 2H); ¹³**C NMR** (125 MHz, DMSO-*d*₆): δ (ppm) 155.0, 145.5, 132.5, 128.9, 128.11, 128.09, 127.3, 127.1, 123.7, 115.8, 114.5, 43.3; **IR** (solid, cm⁻¹): 3384, 3359, 3201, 3146, 2885, 1642, 1620, 1494, 1382, 1333, 1128, 964, 947, 923, 869, 778, 756, 704; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₄H₁₆N₃O⁺: 242.1288, found: 242.1292.

(*Z*)-*N*-(2-Aminophenyl)-*N*'-hydroxybenzimidamide (4g): Prepared from (*Z*)-*N*-hydroxybenzimidoyl chloride¹ (**3b**) (0.50 g, 3.21 mmol, 1.00 equiv), *o*-phenylenediamine (0.38 g, 3.50 mmol, 1.10 equiv) and Et₃N (0.67 mL, 4.80 mmol, 1.50 equiv) in THF (6.5 mL) following the general procedure **A**. The crude residue was filtered through a short plug of silica gel (EtOAc + 0.1% Et₃N). The volatiles were then evaporated to yield a crude brown solid, which was washed with Et₂O (trituration) to afford the desired amidoxime as a white solid (420 mg, 58% yield); **R**_{*f*} = 0.72 (EtOAc); **mp** = 168 °C; ¹**H NMR** (498 MHz, DMSO-*d*₆): δ (ppm) 10.35 (s, 1H), 7.35 – 7.30 (m, 2H), 7.28 – 7.21 (m, 3H), 7.11 (s, 1H), 6.70 – 6.63 (m, 2H), 6.24 – 6.19 (m, 2H), 5.03 (s, 2H); ¹³**C NMR** (125 MHz, DMSO-*d*₆): δ (ppm) 151.4, 142.1, 132.9, 128.6, 127.9, 127.4, 126.6, 124.7, 124.0, 116.0, 115.0; **IR** (solid, cm⁻¹): 3416, 3330, 3192, 1646, 1612, 1505, 1390, 946, 907, 752, 696; **HRMS** (**ESI-TOF**): (M+H)⁺ calcd for C₁₃H₁₄N₃O⁺: 228.1131, found: 228.1132.

(*Z*)-*N*'-Hydroxy-*N*-(2-hydroxyphenyl)isobutyrimidamide (4h): A solution of TBAF (1.0 M in THF, 3.0 mL, 2.0 equiv) was slowly added to a stirring solution of (*Z*)-*N*-(2-((*tert*-butyldimethylsilyl)oxy)phenyl)-*N*-hydroxy-isobutyrimidamide (4m) (472 mg, 1.53 mmol, 1.00 equiv) in THF (7.0 mL, 0.2 M) at 0 °C. After 30 minutes the mixture was quenched with saturated NH₄Cl (20 mL) and extracted with DCM (3×25 mL). The combined organic phases were washed with water (25 mL) and brine (25 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude product was purified by flash column chromatography (1:1 to 1:2 hexane/EtOAc) to yield the desired amidoxime as yellow solid (200 mg, 69% yield); **R**_f = 0.23 (1:1 hexane/EtOAc); **mp** = 102 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.22 (ddd, *J* = 8.1, 7.4, 1.6 Hz, 1H), 7.11 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.02 (dd, *J* = 8.2, 1.4 Hz, 1H), 6.90 (td, *J* = 7.6, 1.4 Hz, 1H), 2.50 (sept, *J* = 6.9 Hz, 1H), 1.07 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 158.9, 153.0, 129.1, 128.8, 124.7, 120.5, 115.8, 27.6, 20.1; **IR** (solid, cm⁻¹): 3334, 3226, 2975, 1665, 1597, 1517, 1463, 1394, 1278, 1023, 912. 827, 744; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₀H₁₅N₂O₂⁺: 195.1128, found: 195.113.

(*Z*)-*N'*-Hydroxy-*N*-(pyridin-2-yl)benzimidamide (4i): NaH (60% wt, 1.00 g, 25.0 mmol, 2.40 equiv) was carefully added to a stirred mixture of 2-aminopyridine (1.00 g, 10.6 mmol, 1.00 equiv) in DMSO (5.0 mL) at 0 °C. After stirring for 30 minutes, benzonitrile (1.50 mL, 14.8 mmol, 1.40 equiv) was slowly added to the mixture. After stirring for 12 hours at room temperature, the reaction mixture was quenched carefully at 0 °C with saturated NH₄Cl (30 mL) and extracted with Et₂O (3×40 mL). The combined organic phases were washed with water (30 mL) and brine (30 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude product was added to a mixture of hydroxylamine hydrochloride (3.70 g, 53.0 mmol, 5.00 equiv) and aqueous ammonium hydroxide (28% wt, 9.00 mL, 63.6 mmol, 6.00 equiv) in water (10 mL). After refluxing the suspension for 2 hours, the resulting solid was isolated by filtration on a Buchner funnel to furnish the desired amidoxime as pale yellow crystals (1.45 g, 67% yield).²

tert-Butyl (*Z*)-((hydroxyimino)(phenyl)methyl)glycinate (4k): Prepared from (*Z*)-*N*-hydroxy benz-imidoyl chloride¹ (**3b**) (0.50 g, 3.21 mmol, 1.00 equiv), glycine *tert*-butyl ester hydrochloride (0.65 g, 3.86 mmol, 1.20 equiv) and Et₃N (1.30 mL, 9.60 mmol, 3.00 equiv) in THF (6.5 mL) following the general procedure **A**. The crude residue was purified by flash column chromatography (3:1 to 2:1 hexane/EtOAc) to yield the desired amidoxime as a yellow solid (460 mg, 57% yield); $\mathbf{R}_f = 0.50$ (1:1 hexane/EtOAc); $\mathbf{mp} = 92 \,^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.48 – 7.44 (m, 2H), 7.43 – 7.36 (m, 3H), 7.02 (br s, 1H), 5.75 (t, *J* = 5.5 Hz, 1H), 3.69 (d, *J* = 5.9 Hz, 2H), 1.42 (s, 9H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 169.9, 156.2, 131.3, 129.9, 128.7, 128.6, 82.2, 46.3, 28.1; **IR** (cast film, cm⁻¹): 3419, 3238, 2981, 1742, 1650, 1484, 1396, 1371, 1250, 1229, 1155, 911, 858, 776, 770, 705; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₃H₁₉N₂O₃⁺: 251.1390, found: 251.1391.

² Gaber, A. -A.; Taib, L. J. Chem. Sci. **2016**, 128, 745-752.

(*Z*)-*N*'-Hydroxy-*N*-(4-sulfamoylphenyl)benzimidamide (4l): Prepared from (*Z*)-*N*-hydroxy benzimidoyl chloride¹ (**3b**) (2.00 g, 12.9 mmol, 1.00 equiv), sulfanilamide (2.40 g, 14.1 mmol, 1.10 equiv) and Et₃N (2.67 mL, 19.3 mmol, 1.50 equiv) in THF (28.0 mL) following the general procedure **A**. The crude residue was purified by flash column chromatography (2:1 to 1:2 hexane/EtOAc) to yield the desired amidoxime as a yellow solid (0.70 g, 19% yield); $\mathbf{R}_f = 0.4$ (1:2 hexane/EtOAc); $\mathbf{mp} = 180 \,^{\circ}$ C; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 10.85 (s, 1H), 8.78 (s, 1H), 7.52 – 7.46 (m, 2H), 7.44 – 7.34 (m, 5H), 7.07 (s, 2H), 6.74 – 6.67 (m, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆): δ (ppm) 147.9, 144.8, 135.0, 132.5, 129.3, 128.5, 127.4, 126.3, 117.8; **IR** (solid, cm⁻¹): 3318, 1625, 1594, 1499, 1382, 1353, 1310, 1149 1097, 931, 894., 836, 768, 695; **HRMS** (**ESI-TOF**): (M+H)⁺ calcd for C₁₃H₁₄N₃O₃S⁺: 292.0750, found: 292.0754.

(*Z*)-*N*-(2-((*tert*-Butyldimethylsilyl)oxy)phenyl)-*N*'-hydroxyisobutyrimidamide (4m): Prepared from (*Z*)-*N*-hydroxyisobutyrimidoyl chloride¹ (3a) (30.0 mg, 0.25 mmol, 1.00 equiv), 2-((*tert*butyldimethylsilyl)oxy)aniline³ (0.11 g, 0.50 mmol, 2.00 equiv) and Et₃N (52.0 µL, 0.38 mmol, 1.50 equiv) in THF (0.5 mL) following the general procedure **A**. The crude residue was purified by flash column chromatography (15:1 to 5:1 hexane/EtOAc) to yield the desired amidoxime as a yellow oil (35 mg, 46% yield); $\mathbf{R}_f = 0.29$ (5:1 hexane/EtOAc); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.21 – 7.86 (m, 1H), 7.11 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.08 (br s, 1H), 6.99 (ddd, *J* = 8.0, 7.5, 1.7 Hz, 1H), 6.91 (td, *J* = 7.6, 1.5 Hz, 1H), 6.86 (dd, *J* = 8.0, 1.5 Hz, 1H), 2.85 (sept, *J* = 6.8 Hz, 1H), 1.11 (d, *J* = 6.8 Hz, 6H), 1.01 (s, 9H), 0.23 (s, 6H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 157.2, 148.8, 130.9, 124.8, 124.6, 121.5, 119.6, 27.6, 25.8, 20.4, 18.3, -4.2; IR (neat, cm⁻¹): 3259,

³ Zhang, J. -W.; Cai, Q.; Gu, Q.; Shi, X. -X; You, S. -L. Chem. Comm. 2013, 49, 7750-7752.

2962, 2931, 2860, 1643, 1597, 1502, 1471, 1457, 1394, 1363, 1258, 953, 913, 881, 840, 783, 753; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₆H₂₉N₂O₂Si⁺: 309,1993, found: 309.1992.

(*Z*)-*N*-(2-((*tert*-Butyldimethylsilyl)oxy)phenyl)-*N*'-hydroxybenzimidamide (4n): Prepared from (*Z*)-*N*-hydroxybenzimidoyl chloride¹ (**3b**) (0.63 g, 4.07 mmol, 1.00 equiv), 2-((*tert*-butyldimethyl silyl)oxy)aniline³ (1.10 g, 4.48 mmol, 1.10 equiv) and Et₃N (1.08 mL, 7.72 mmol, 1.90 equiv) in THF (13.0 mL) following the general procedure **A**. The crude residue was purified by flash column chromatography (15:1 to 2:1 hexane/EtOAc) to yield the desired amidoxime (not completely pure: about 85 – 90% purity) as a yellow oil (648 mg, 46% yield); $\mathbf{R}_f = 0.2$ (5:1 hexane/EtOAc); ¹**H** NMR (500 MHz, CDCl₃): δ (ppm) 7.53 (br s, 1H), 7.47 – 7.43 (m, 2H), 7.43 – 7.38 (m, 1H), 7.38 – 7.32 (m, 2H), 7.03 (br s, 1H), 6.81 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.74 (ddd, *J* = 8.0, 7.4, 1.6 Hz, 1H), 6.54 (ddd, *J* = 8.0, 7.4, 1.5 Hz, 1H), 6.20 (dd, *J* = 8.1, 1.6 Hz, 1H), 1.07 (s, 9H), 0.31 (s, 6H); ¹³**C** NMR (126 MHz, CDCl₃): δ (ppm) 151.7, 145.2, 131.7, 131.4, 129.8, 128.6, 128.5, 121.8, 121.0, 120.1, 118.8, 25.9, 18.4, -4.0; **IR** (cast film, cm⁻¹): 3192, 2956, 2930, 2858, 1624, 1598, 1578, 1507, 1472, 1461, 1392, 1265, 1206, 1126, 1098, 954, 892, 839, 783, 758, 697, 677; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₉H₂₇N₂O₂Si⁺: 343.1836, found: 343.1837.

1.3.2 Oxadiazaboroles synthesis

General procedure B: A stirred mixture of amidoxime 4 (1.00 equiv), boronic acid (1.05 equiv) and molecular sieves 4Å (100 mg – 500 mg) in PhMe (0.25 M) was heated under reflux at 110 °C in a sealed vial for 1 h. The reaction mixture was allowed to cool down to room temperature and filtered through a short plug of silica gel (EtOAc). The volatiles were evaporated *in vacuo* to provide the title oxadiazaborole as a solid. When necessary the resulting solid was further purified by washing with Et₂O (trituration).

3-Isopropyl-4,5-diphenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (5a): Prepared from (*Z*)-*N*'-hydroxy-*N*-phenylisobutyrimidamide (**4a**) (50.0 mg, 0.28 mmol, 1.00 equiv) and phenylboronic acid (36.0 mg, 0.29 mmol, 1.05 equiv) in PhMe (1.1 mL) following the general procedure **B**. Isolated as a white solid (54 mg, 73% yield); **mp** = 81 °C; ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.52 – 7.43 (m, 4H), 7.40 – 7.34 (m, 1H), 7.29 – 7.21 (m, 5H), 2.73 (sept, *J* = 6.9 Hz, 1H), 1.22 (d, *J* = 6.9 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) δ 165.9, 137.3, 134.2, 130.9, 129.9, 128.4, 128.3, 128.0, 25.4, 20.7; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 31.9; **IR** (cast film, cm⁻¹): 2974, 1576, 1499, 1438, 1418, 1387, 1329, 1256, 1111, 772, 699; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₆H₁₈BN₂O⁺: 265.1507, found: 265.1509.

3-Isopropyl-4,5-diphenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (5b): Prepared from (*Z*)-*N*'-hydroxy-*N*-phenylisobutyrimidamide (**4a**) (50.0 mg, 0.28 mmol, 1.00 equiv) and methylboronic acid (18.0 mg, 0.29 mmol, 1.05 equiv) in PhMe (1.1 mL) following the general procedure **B**. Isolated as a white solid (47.0 mg, 83% yield); mp = 60 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm)

7.48 – 7.41 (m, 2H), 7.40 – 7.35 (m, 1H), 7.16 – 7.09 (m, 2H), 2.77 (sept, J = 6.9 Hz, 1H), 1.16 (d, J = 6.9 Hz, 6H), 0.52 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 164.9, 137.3, 129.7, 127.7, 127.2, 25.4, 20.4; ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 35.0; IR (solid, cm⁻¹): 2979, 2966, 1568, 1497, 1387, 1380, 1363, 1331, 1273, 1200, 903, 769, 707; HRMS (ESI-TOF): (M+H)⁺ calcd for C₁₁H₁₆BN₂O⁺: 203.1350, found: 203.1354.

5-(Furan-3-yl)-3-isopropyl-4-phenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (5c): Prepared from (*Z*)-*N*'-hydroxy-*N*-phenylisobutyrimidamide (**4a**) (50.0 mg, 0.28 mmol, 1.00 equiv) and furan-3-ylboronic acid (33.0 mg, 0.29 mmol, 1.05 equiv) in PhMe (1.1 mL) following the general procedure **B**. Isolated as a white solid (63.0 mg, 89% yield); **mp** = 73 °C; ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.52 – 7.42 (m, 3H), 7.39 – 7.36 (m, 1H), 7.32 – 7.30 (m, 1H), 7.26 – 7.23 (m, 2H), 6.33 – 6.27 (m, 1H), 2.75 (sept, J = 6.9 Hz, 1H), 1.21 (d, J = 6.9 Hz, 6H); ¹³C **NMR** (126 MHz, CDCl₃): δ (ppm) 165.3, 149.9, 143.0, 137.0, 129.9, 128.4, 128.0, 112.7, 25.4, 20.6; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 31.0; **IR** (solid, cm⁻¹): 2967, 1571, 1503, 1404, 1391, 1326, 1256, 1168, 1151, 1070, 1020, 892, 878, 813, 777, 703, 670; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₄H₁₆BN₂O₂⁺: 255.1299, found: 255.1299.

3-Isopropyl-5-(3-methoxyphenyl)-4-phenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (5d): Prepared from (*Z*)-*N*'-hydroxy-*N*-phenylisobutyrimidamide (**4a**) (50.0 mg, 0.28 mmol, 1.00 equiv) and (3-methoxyphenyl)boronic acid (45.0 mg, 0.29 mmol, 1.05 equiv) in PhMe (1.1 mL) following the general procedure **B**. Isolated as a white solid (79.0 mg, 95% yield); **mp** = 91 °C; ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) δ 7.51 – 7.44 (m, 1H), 7.43 – 7.29 (m, 4H), 7.20 – 7.12 (m, 2H), 6.93 – 6.84 (m, 1H), 6.72 (d, *J* = 8.3 Hz, 1H), 3.36 (s, 3H), 2.83 (sept, *J* = 6.9 Hz, 1H), 1.21 (d, *J* = 6.9 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 165.5, 162.8, 138.2, 136.0, 132.1, 129.2, 127.5, 127.4, 120.5, 110.1, 54.6, 25.5, 20.6; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 32.5; **IR** (solid, cm⁻¹): 2981, 1600, 1574, 1489, 1432, 1378, 1247, 1027, 773, 761, 699; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₇H₂₀BN₂O₂⁺: 295.1612, found: 295.1617.

4-(2-(1H-Indol-3-yl)ethyl)-3,5-diphenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (5e): Prepared from (*Z*)-*N*-(2-(1H-indol-3-yl)ethyl)-*N*'-hydroxybenzimidamide (**4e**) (319 mg, 1.14 mmol, 1.00 equiv) and phenylboronic acid (146 mg, 1.12 mmol, 1.05 equiv) in PhMe (4.6 mL) following the general procedure **B**. Isolated as a grey solid (258 mg, 62% yield); **mp** = 190 °C; ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.90 (br s, 1H), 7.82 – 7.78 (m, 2H), 7.54 – 7.39 (m, 8H), 7.28 (dt, *J* = 8.2, 0.9 Hz, 1H), 7.14 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 7.03 – 7.00 (m, 1H), 6.97 (ddd, *J* = 7.9, 6.8, 1.0 Hz, 1H), 6.75 (d, *J* = 2.4 Hz, 1H), 4.05 – 3.93 (m, 2H), 2.93 – 2.84 (m, 2H); ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 162.6, 136.3, 133.7, 130.8, 130.4, 129.3, 128.9, 128.3, 127.2, 126.7, 122.3, 122.1, 119.6, 118.3, 111.9, 111.3, 43.8, 27.9; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 33.0; **IR** (cast film, cm⁻¹): 3219, 1560, 1401, 1300, 1234, 1112, 756, 723, 703; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₂₃H₂₁BN₃O⁺: 366.1772, found: 366.1773.

4-(5-Methyl-3-phenyl-1,2,4,5-oxadiazaborol-4(5H)-yl)benzenesulfonamide (borazavaldecoxib) (2): A stirred mixture of (*Z*)-*N'*-hydroxy-*N*-(4-sulfamoylphenyl)benzimidamide (**4**I) (300 mg, 1.03 mmol, 1.00 equiv), methylboronic acid (62.0 mg, 1.04 mmol, 1.01 equiv) and molecular sieves 4Å (300 mg) in PhMe (4.0 mL) was heated under reflux at 110 °C in a sealed vial for 1 h. The reaction mixture was allowed to cool down to room temperature. The volatiles were evaporated *in vacuo* to provide the title oxadiazaborole as a white solid (320 mg, 99% yield);); **mp** = 112 °C; ¹**H NMR** (498 MHz, CDCl₃): δ (ppm) 7.88 (d, *J* = 8.6 Hz, 2H), 7.44 – 7.40 (m, 1H), 7.35 – 7.31 (m, 2H), 7.30 – 7.27 (m, 2H), 7.11 (d, *J* = 8.7 Hz, 2H), 4.80 (s, 2H), 0.74 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 159.3, 141.6, 140.4, 130.7, 129.0, 128.9, 128.0, 126.8, 125.6; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 35.6; **IR** (solid, cm⁻¹): 3321, 3251, 1597, 1587, 1547, 1502, 1398, 1376, 1334, 1286, 1267, 1188, 1176, 1098, 900, 889, 845, 773, 751, 700; **HRMS (EI)**: (M)⁺ calcd for $C_{14}H_{14}BN_3O_3S^+$: 315.0849, found: 315.0830.

2-((3,5-Diphenyl-1,2,4,5-oxadiazaborol-4(5H)-yl)methyl)aniline (5f): Prepared from (*Z*)-*N*-(2-aminobenzyl)-*N*'-hydroxybenzimidamide (**4f**) (50.0 mg, 0.22 mmol, 1.00 equiv) and phenylboronic acid (28.0 mg, 0.23 mmol, 1.05 equiv) in PhMe (0.9 mL) following the general procedure **B**. Isolated as a white solid (56.0 mg, 78% yield); **mp** = 168 °C; ¹**H NMR** (498 MHz, CDCl₃): δ (ppm) 7.75 – 7.69 (m, 2H), 7.49 – 7.42 (m, 4H), 7.41 – 7.34 (m, 4H), 7.16 – 7.11 (m, 1H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.81 – 6.75 (m, 1H), 6.72 (dd, *J* = 7.9, 1.2 Hz, 1H), 4.71 (s, 2H), 3.43 (br s, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ (ppm) 162.9, 142.9, 134.0, 131.1, 130.7, 129.1, 128.9, 128.51, 128.46, 126.3, 126.1, 122.7, 119.6, 116.3, 43.3; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 33.6; **IR** (cast film, cm⁻¹): 3361, 1639, 1494, 1461, 1397, 1291, 980, 772, 756, 700; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₂₀H₁₉BN₃O⁺: 328.1616, found: 328.1625.

2-(3,5-Diphenyl-1,2,4,5-oxadiazaborol-4(5H)-yl)aniline (5g): Prepared from (*Z*)-*N*-(2-amino-phenyl)-*N*'-hydroxybenzimidamide (**4g**) (50.0 mg, 0.22 mmol, 1.00 equiv) and phenylboronic acid (28.0 mg, 0.23 mmol, 1.05 equiv) in PhMe (0.9 mL) following the general procedure **B**. Isolated as a white solid (57.0 mg, 83% yield); **mp** = 177 °C; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.62 (dd, *J* = 8.0, 1.4 Hz, 2H), 7.51 – 7.46 (m, 2H), 7.45 – 7.40 (m, 1H), 7.40 – 7.35 (m, 1H), 7.34 – 7.26 (m, 4H), 7.19 (ddd, *J* = 8.1, 7.3, 1.5 Hz, 1H), 6.96 (dd, *J* = 7.8, 1.5 Hz, 1H), 6.81 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.72 (td, *J* = 7.6, 1.4 Hz, 1H), 3.76 (s, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ (ppm) 161.4, 143.0, 134.1, 131.4, 130.5, 129.7, 129.4, 128.6, 128.6, 128.3, 126.0, 123.1, 119.2, 116.4; ¹¹**B NMR** (128 MHz, CDCl₃): δ (ppm) 32.4; **IR** (cast film, cm⁻¹): 3440, 3368, 3344, 3056, 1625, 1602, 1502,

1442, 1394, 1372, 1312, 1263, 1129, 1072, 1029, 969, 862, 757, 693; **HRMS (ESI-TOF)**: $(M+H)^+$ calcd for $C_{19}H_{17}BN_3O^+$: 314.1459, found: 314.1469.

2-(3-Phenyl-5-(o-tolyl)-1,2,4,5-oxadiazaborol-4(5H)-yl)aniline (Me-5g): Prepared from (*Z*)-*N*-(2-amino- phenyl)-*N*'-hydroxybenzimidamide (**4g**) (50.0 mg, 0.22 mmol, 1.00 equiv) and phenylboronic acid (28.0 mg, 0.23 mmol, 1.05 equiv) in PhMe (0.9 mL) following the general procedure **B**. Isolated as a white solid (65.0 mg, 68% yield); **mp** = 140 °C; ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.48 – 7.44 (m, Hz, 2H), 7.42 – 7.35 (m, 1H), 7.33 – 7.27 (m, 3H), 7.23 – 7.20 (m, 2H), 7.16 – 7.10 (m, 1H), 7.00 (t, J = 7.4 Hz, 1H), 6.91 (dd, J = 7.9, 1.4 Hz, 1H), 6.73 (dd, J = 8.1, 1.3 Hz, 1H), 6.68 (td, J = 7.6, 1.3 Hz, 1H), 3.66 (br s, 2H), 2.61 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 160.7, 144.2, 142.6, 134.1, 130.6, 130.3, 130.1, 129.3, 128.5, 128.4, 126.0, 124.9, 123.2, 119.1, 116.3, 22.9; ¹¹**B NMR** (128 MHz, CDCl₃): δ (ppm) 32.8; **IR** (cast film, cm⁻¹): 3381, 1621, 1504, 1363, 1316, 1130, 871, 754, 727, 695; **HRMS (EI)**: (M)⁺ calcd for C₂₀H₁₈BN₃O⁺: 327.15429, found: 327.15457.

2-(3-Isopropyl-5-phenyl-1,2,4,5-oxadiazaborol-4(5H)-yl)phenol (5h) Prepared from (*Z*)-*N*-hydroxy-*N*-(2-hydroxyphenyl)isobutyrimidamide (**4h**) (50.0 mg, 0.26 mmol, 1.00 equiv) and phenylboronic acid (35.0 mg, 0.29 mmol, 1.10 equiv) in PhMe (1.0 mL) following the general procedure **B**. Isolated as a white solid (49.0 mg, 67% yield); **mp** = 165 °C; ¹**H NMR** (498 MHz, CDCl₃): δ (ppm) 7.52 – 7.46 (m, 2H), 7.42 – 7.34 (m, 2H), 7.28 – 7.23 (m, 2H), 7.17 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.12 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.03 (td, *J* = 7.6, 1.4 Hz, 1H), 5.54 (s, 1H), 2.65 (sept, *J* = 6.9 Hz, 1H), 1.22 (dd, *J* = 6.9, 5.4 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃): δ (ppm) 166.4, 151.9, 134.0, 131.3, 130.3, 129.5, 128.2, 123.8, 121.6, 117.2, 25.6, 20.7, 20.3; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 32.2; **IR** (solid, cm⁻¹): 3116, 2975, 1603, 1563, 1520, 1406, 1390, 1329, 1296, 15

1264, 1112, 900, 756, 686; **HRMS (ESI-TOF)**: $(M+H)^+$ calcd for $C_{16}H_{18}BN_2O_2^+$: 281,1456, found: 281.1460, $(M-H)^-$ calcd for $C_{16}H_{16}BN_2O_2^-$: 279,1310, found: 279,1310.

3,5-Diphenyl-4-(pyridin-2-ylmethyl)-4,5-dihydro-1,2,4,5-oxadiazaborole (5i): Prepared from (*Z*)-*N*'-hydroxy-*N*-(pyridin-2-ylmethyl)benzimidamide⁴ (**4i**) (50.0 mg, 0.22 mmol, 1.00 equiv) and phenylboronic acid (28.0 mg, 0.23 mmol, 1.05 equiv) in PhMe (0.9 mL) following the general procedure **B**. Isolated as a white solid (54.0 mg, 78% yield); **mp** = 123 °C; ¹**H NMR** (498 MHz, CDCl₃): δ (ppm) 8.57 (ddd, *J* = 4.9, 1.8, 0.9 Hz, 1H), 7.78 – 7.74 (m, 2H), 7.63 (td, *J* = 7.7, 1.8 Hz, 1H), 7.48 – 7.41 (m, 4H), 7.40 – 7.34 (m, 4H), 7.21 – 7.17 (m, 1H), 7.09 (dt, *J* = 7.8, 1.0 Hz, 1H), 5.02 (s, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ (ppm) 162.8, 157.9, 149.9, 137.2, 134.0, 131.0, 130.7, 129.3, 128.9, 128.4, 126.2, 122.6, 120.4, 48.8; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 33.3; **IR** (cast film, cm⁻¹): 1600, 1434, 1399, 1363, 1253, 977, 758, 700; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₉H₁₇BN₃O⁺: 314.1459, found: 314.1465.

3,5-Diphenyl-4-(pyridin-2-yl)-4,5-dihydro-1,2,4,5-oxadiazaborole (5j): Prepared from (*Z*)-*N'*-hydroxy-*N*-(pyridin-2-yl)benzimidamide (**4j**) (500 mg, 2.34 mmol, 1.00 equiv) and phenylboronic acid (300 mg, 2.46 mmol, 1.05 equiv) in PhMe (10.0 mL) following the general procedure **B**. Isolated as a white solid (480 mg, 69% yield); **mp** = 178 °C; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) δ 8.60 – 8.51 (m, 1H), 7.68 (td, *J* = 7.7, 2.0 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.45 – 7.27 (m, 9H), 7.03 (d, *J* = 7.9, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ (ppm) 160.4, 151.1, 149.7, 138.6, 134.4, 131.2, 130.3, 129.0, 128.6, 128.1, 126.3, 123.2, 122.4; ¹¹**B NMR** (128 MHz, CDCl₃): δ (ppm) 33.0; **IR** (cast film, cm⁻¹): 3057, 3009, 1595, 1472, 1443, 1387, 1324, 1250, 1199, 972, 921, 765, 700; **HRMS (EI)**: (M)⁺ calcd for C₁₈H₁₄BN₃O⁺: 299.12299, found: 299.12108.

⁴ Prepared according to the literature procedure: Zhang, F. –L.; Wang, Y. –F.; Chiba, S. *Org. Biomol. Chem.* **2013**, *11*, 6003-6007.

1-(3,5-Diphenyl-1,2,4,5-oxadiazaborol-4(5H)-yl)-3,3-dimethylbutan-2-one (5k): Prepared from *tert*-butyl (*Z*)-((hydroxyimino)(phenyl)methyl)glycinate (**4k**) (50.0 mg, 0.20 mmol, 1.00 equiv) and phenylboronic acid (26.0 mg, 0.21 mmol, 1.05 equiv) in PhMe (0.9 mL) following the general procedure **B**. Isolated as a yellow solid (57.0 mg, 85% yield); **mp** = 95 °C; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.81 – 7.76 (m, 2H), 7.58 – 7.42 (m, 8H), 4.24 (s, 2H), 1.39 (s, 9H); ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 168.4, 162.2, 133.8, 131.0, 130.8, 129.4, 129.0, 128.4, 126.1, 82.9, 46.1, 28.0; ¹¹**B NMR** (128 MHz, CDCl₃): δ (ppm) 33.3; **IR** (solid, cm⁻¹): 3002, 2935, 1741, 1603, 1554, 1499, 1422, 1404, 1394, 1373, 1298, 1236, 1155, 1122, 974, 848, 746, 701; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₉H₂₂BN₂O₃⁺: 337.1718, found: 337.1717.

4-(2-((*tert***-Butyldimethylsilyl)oxy)phenyl)-3-isopropyl-5-phenyl-4,5-dihydro-1,2,4,5-oxadiaza borole (5m):** Prepared from (*Z*)-*N*-(2-((*tert*-butyldimethylsilyl)oxy)phenyl)-*N*⁻hydroxyiso-butyrimidamide (**4m**) (35.0 mg, 0.11 mmol, 1.00 equiv) and phenylboronic acid (14.0 mg, 0.12 mmol, 1.05 equiv) in PhMe (0.4 mL) following the general procedure **B**. Isolated as a yellow oil (34.0 mg, 76% yield); **R**_f = 0.50 (hexane/EtOAc 5:1); ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.47 (dd, *J* = 7.9, 1.4 Hz, 2H), 7.38 – 7.31 (m, 2H), 7.27 – 7.21 (m, 3H), 7.05 (td, *J* = 7.6, 1.3 Hz, 1H), 6.99 (dd, *J* = 8.2, 1.3 Hz, 1H), 2.67 (sept, *J* = 6.9 Hz, 1H), 1.27 (d, *J* = 6.9 Hz, 3H), 1.15 (d, *J* = 6.9 Hz, 3H), 0.77 (s, 9H), 0.17 (s, 3H), -0.11 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 166.2, 151.8, 134.0, 130.8, 130.2, 129.6, 128.4, 127.9, 121.8, 120.0, 25.6, 25.4, 21.2, 19.8, 18.0, -3.9, -4.8; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 32.3; **HRMS** (**ESI-TOF**): (M+H)⁺ calcd for C₂₂H₃₂BN₂O₂Si⁺: 395.4045, found: 395.2327.

4-(2-((tert-Butyldimethylsilyl)oxy)phenyl)-3,5-diphenyl-4,5-dihydro-1,2,4,5-oxadiazaborole

(5n): Prepared from (*Z*)-*N*-(2-((*tert*-butyldimethylsilyl)oxy)phenyl)-*N*⁻hydroxybenzimidamide (4n) (648 mg, 1.89 mmol, 1.00 equiv) and phenylboronic acid (254 mg, 2.08 mmol, 1.10 equiv) in PhMe (4.0 mL) following the general procedure **B**. Isolated as a yellow oil (805 mg, 99% yield); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.56 (dd, *J* = 8.1, 1.5 Hz, 2H), 7.43 – 7.37 (m, 3H), 7.37 – 7.32 (m, 1H), 7.30 – 7.22 (m, 6H), 6.98 (td, *J* = 7.6, 1.3 Hz, 1H), 6.90 – 6.84 (m, 1H), 0.75 (s, 9H), 0.06 (s, 3H), -0.07 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 161.1, 151.8, 134.1, 131.0, 130.1, 130.0, 129.5, 128.8, 128.6, 128.3, 128.0, 126.7, 121.7, 119.7, 25.5, 18.0, -4.1, -4.5; ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 32.8; **IR** (cast film, cm⁻¹): 3057, 2954, 2930, 2858, 1601, 1506, 1456, 1371, 1288, 1254, 1115 1029, 914, 840, 823, 783, 697; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₂₅H₃₀BN₂O₂Si⁺: 429.2164, found: 429.2169.

1.3.3 Synthesis of oxadiazaborate salts

Stepwise protocol:

General procedure C: a solution of TBAF (1.00 M in THF, 1.50 equiv) was slowly added to a stirred mixture of oxadiazaborole **5** (1.00 equiv) in THF (0.2 M) at 0 °C. After stirring for one hour at that temperature, the reaction mixture was quenched with a 2.0 M solution of K_2CO_3 (20 mL) and extracted with DCM (3 × 25 mL). The combined organic phases were washed with saturated NaHCO₃ (30 mL), water (25 mL) and brine (25 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude product was washed (triturated) with Et₂O three times to provide the title borate as a solid.

Tetrabutylammonium 3-isopropyl-10-phenyl-10H-benzo[4,5][1,3,2]oxazaborolo[3,2-d][1,2,4,5] oxadiazaborol-10-uide (6a): Prepared from 4-(2-((*tert*-butyldimethylsilyl)oxy)phenyl)-3isopropyl-5-phenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (5m) (428 mg, 1.39 mmol, 1.00 equiv) and TBAF (1.00 M in THF, 2.09 mL, 2.09 mmol, 1.50 equiv) in THF (7.0 mL) following the general procedure C. Isolated as a gray solid (427 mg, 59% yield); mp = 162 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.58 – 7.52 (m, 2H), 7.14 – 7.08 (m, 2H), 7.06 – 7.00 (m, 1H), 6.99 – 6.92 (m, 1H), 6.84 – 6.76 (m, 1H), 6.70 – 6.64 (m, 1H), 6.56 – 6.48 (m, 1H), 3.02 – 2.94 (m, 8H), 2.67 (sept, J = 6.5 Hz, 1H), 1.44 – 1.35 (m, 11H), 1.27 (sext, J = 7.3 Hz, 8H), 1.16 (d, J = 6.8 Hz, 3H), 0.90 (t, J = 7.2 Hz, 12H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 165.1, 157.4, 139.1, 132.7, 126.8, 125.6, 123.0, 118.4, 116.0, 110.0, 58.6, 27.5, 24.1, 22.4, 19.7, 19.3, 13.8; ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 14.8; **IR** (solid, cm⁻¹): 2962, 2873, 1575, 1474, 1431, 1383, 1356, 1256, 1188, 1152, 1020, 1000, 907, 877, 855, 748, 737, 707, 659; **HRMS (ESI-TOF)**: (M*)⁻ calcd for C₁₆H₁₆BN₂O₂⁻: 279.1310, found: 279.1309.

Tetrabutylammonium 3,10-diphenyl-10H-benzo[4,5][1,3,2]oxazaborolo[3,2-d][1,2,4,5] oxa diaza- borol-10-uide (6b): Prepared from 4-(2-((*tert*-butyldimethylsilyl)oxy)phenyl)-3,5-diphenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (5n) (805 mg, 1.88 mmol, 1.00 equiv) and TBAF (1.00 M in THF, 2.82 mL, 2.82 mmol, 1.50 equiv) in THF (9.4 mL) following the general procedure C. Isolated as a white solid (481 mg, 46% yield); mp = 145 °C; ¹H NMR (500 MHz, CD₃CN): δ (ppm) 7.77 (d, J = 6.9 Hz, 2H), 7.50 – 7.35 (m, 5H), 7.16 (t, J = 7.4 Hz, 2H), 7.11 – 7.04 (m, 1H), 6.68 (t, J = 7.3 Hz, 2H), 6.62 (dd, J = 8.0, 1.4 Hz, 1H), 6.29 (td, J = 7.5, 1.4 Hz, 1H), 3.10 – 3.01 (m, 8H), 1.62 – 1.52 (m, 8H), 1.33 (sext, J = 7.4 Hz, 8H), 0.95 (t, J = 7.3 Hz, 12H); ¹³C NMR (126 MHz, CD₃CN): δ (ppm) 161.8, 158.1, 133.8, 132.8, 129.5, 129.2, 129.0, 127.5, 126.3, 123.5, 116.7, 110.8, 59.3, 24.3, 20.3, 13.8; ¹¹B NMR (160 MHz, CD₃CN): δ (ppm) 14.9; IR (cast film, cm⁻¹): 3000, 2962, 2875, 1475, 1381, 1353, 1246, 1219, 1193, 1022, 961, 921, 876., 750, 703; HRMS (ESI-TOF): (M*)⁻ calcd for C₁₉H₁₄BN₂O₂⁻: 313.1154, found: 313.1155.

Two-step protocol:

General procedure D: A stirred mixture of amidoxime 4 (1.00 equiv), boronic acid (1.05 equiv) and molecular sieves 4Å (100 mg – 500 mg) in PhMe (0.5 M) was heated under reflux at 110 °C in a sealed vial for 1 h. The reaction mixture was allowed to cool down to room temperature and filtered through a short plug of silica gel (EtOAc). The volatiles were evaporated *in vacuo* to provide the corresponding oxadiazaborole that was used directly for the next step without further purification.

A solution of TBAF (1.0 M in THF, 1.5 equiv) was slowly added to a stirred mixture of the oxadiazaborole (1.0 equiv as theoretical amount) in THF (0.2 M) at 0 °C. After stirring for one hour

at that temperature, the reaction mixture was quenched with a 2.0 M solution of K_2CO_3 (20 mL) and extracted with DCM (3 × 25 mL). The combined organic phases were washed with saturated NaHCO₃ (30 mL), water (25 mL) and brine (25 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The crude product was washed (triturated) with Et₂O three times to provide the title borate as a solid.

Tetrabutylammonium 10-(4-bromophenyl)-3-phenyl-10H-benzo[4,5][1,3,2]oxazaborolo[3,2-d][1,2,4,5]oxadiazaborol-10-uide (6c): Prepared from (*Z*)-*N*-(2-((*tert*-butyldimethylsilyl)oxy) phenyl)-*N*-hydroxybenzimidamide (4n) (300 mg, 0.88 mmol, 1.00 equiv), (4-bromophenyl)boronic acid (193 mg, 0.96 mmol, 1.10 equiv) in PhMe (1.8 mL) and TBAF (1.00 M in THF, 1.31 mL, 1.31 mmol, 1.50 equiv as theoretical amount) in THF (4.4 mL) following the general procedure **D**. Isolated as a grey solid (350 mg, 63% yield); **mp** = 151 °C; ¹H **NMR** (498 MHz, CD₃CN): δ (ppm) 7.77 (br s, 2H), 7.45 – 7.37 (m, 5H), 7.34 – 7.29 (m, 2H), 6.69 (td, *J* = 7.7, 1.3 Hz, 2H), 6.63 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.30 (td, *J* = 7.5, 1.4 Hz, 1H), 3.08 – 3.03 (m, 8H), 1.60 – 1.53 (m, 8H), 1.33 (sext, *J* = 7.4 Hz, 8H), 0.95 (t, *J* = 7.3 Hz, 12H); ¹³C **NMR** (126 MHz, CD₃CN): δ (ppm) 161.9, 157.9, 140.6, 134.9, 133.6, 130.5, 129.7, 129.3, 129.0, 123.6, 120.1, 117.0, 110.8, 59.3, 24.3, 20.3, 13.8; ¹¹B **NMR** (160 MHz, CD₃CN): δ (ppm) 14.8; **IR** (cast film, cm⁻¹): 2962, 2875, 1475, 1353, 1246, 1217, 1187, 1067, 960, 810, 751, 700; **HRMS (ESI-TOF)**: (M*)⁻ calcd for C₁₉H₁₃BBrN₂O₂⁻: 391.0259, found: 391.0258.

Tetrabutylammonium 10-(5-fluoro-2-(trifluoromethyl)phenyl)-3-phenyl-10H-benzo[4,5][1,3,2] oxazaborolo[3,2-d][1,2,4,5]oxadiazaborol-10-uide (6d): Prepared from (*Z*)-*N*-(2-((*tert*butyldimethylsilyl)oxy) phenyl)-*N'*-hydroxybenzimidamide (**4n**) (100 mg, 0.29 mmol, 1.00 equiv), (5-fluoro-2-(trifluoromethyl)phenyl)boronic acid (67.0 mg, 0.32 mmol, 1.10 equiv) in PhMe (0.9 mL) and TBAF (1.00 M in THF, 0.44 mL, 0.44 mmol, 1.50 equiv as theoretical amount) in THF (1.5 mL) following the general procedure **D**. Isolated as a grey solid (91.0 mg, 49% yield); **mp** = 127 °C; ¹**H NMR** (400 MHz, CD₃CN): δ (ppm) 7.90 – 7.85 (m, 2H), 7.64 – 7.58 (m, 1H), 7.52 – 7.39 (m, 4H), 6.98 – 6.87 (m, 1H), 6.76 (dd, J = 7.6, 1.4 Hz, 1H), 6.66 (td, J = 7.6, 1.4 Hz, 1H), 6.51 (ddd, J = 7.7, 1.3, 0.4 Hz, 1H), 6.32 (td, J = 7.6, 1.3 Hz, 1H), 3.10 – 3.02 (m, 8H), 1.58 (ddd, J = 11.8, 10.0, 6.2 Hz, 8H), 1.41 – 1.27 (m, 8H), 0.95 (t, J = 7.3 Hz, 12H); ¹³C **NMR** (126 MHz, CD₃CN): δ (ppm) 165.2 (d, J = 248.1 Hz), 161.7, 157.1, 140.3, 133.5, 129.8, 129.4, 129.1, 129.0, 128.4 (d, J = 30.5 Hz), 126.6 (d, J = 273.0 Hz), 123.5, 120.9 (d, J = 19.1 Hz), 117.8, 117.2, 112.9 (d, J = 22.7 Hz), 111.0, 59.3, 24.3, 20.3, 13.8; ¹⁹F **NMR** (376 MHz, CD₃CN): δ (ppm) -58.3, -113.2; ¹¹B **NMR** (128 MHz, CD₃CN): δ (ppm) 15.2; **IR** (cast film, cm⁻¹): 2964, 2877, 1575, 1477, 1359, 1313, 1256, 1246, 1211, 1140, 1115, 1049, 1022, 1002, 888, 806, 751, 700; **HRMS (ESI-TOF)**: (M*)⁻ calcd for C₂₀H₁₂BF₄N₂O₂⁻: 399.0933, found: 399.0931.

Tetrabutylammonium 10-(4-nitrophenyl)-3-phenyl-10H-benzo[4,5][1,3,2]oxazaborolo[3,2-d] [1,2,4,5]oxadiazaborol-10-uide (6e): Prepared from (*Z*)-*N*-(2-((*tert*-butyldimethylsilyl)oxy) phenyl)-*N*-hydroxybenzimidamide (4n) (120 mg, 0.35 mmol, 1.00 equiv), (4-nitrophenyl)boronic acid (65.0 mg, 0.39 mmol, 1.10 equiv) in PhMe (1.4 mL) and TBAF (1.00 M in THF, 0.53 mL, 0.53 mmol, 1.50 equiv as theoretical amount) in THF (1.8 mL) following the general procedure **D**. Isolated as a yellow solid (135 mg, 64% yield); **mp** = 156 °C; ¹**H NMR** (498 MHz, CD₃CN): δ (ppm) 8.08 – 7.97 (m, 2H), 7.79 (d, *J* = 6.3 Hz, 2H), 7.71 – 7.65 (m, 2H), 7.46 – 7.36 (m, 3H), 6.74 – 6.69 (m, 2H), 6.65 (dd, *J* = 8.0, 1.4 Hz, 1H), 6.33 (td, *J* = 7.6, 1.4 Hz, 1H), 3.11 – 3.02 (m, 8H), 1.58 (ddd, *J* = 11.8, 10.0, 6.2 Hz, 8H), 1.33 (sext, *J* = 7.4 Hz, 8H), 0.95 (t, *J* = 7.3 Hz, 12H); ¹³C **NMR** (126 MHz, CD₃CN): δ (ppm) 162.0, 157.7, 147.5, 140.4, 133.4, 133.3, 129.8, 129.3, 129.1, 123.7, 122.6, 117.3, 111.0, 59.3, 24.3, 20.3, 13.8; ¹¹B **NMR** (160 MHz, CD₃CN): δ (ppm) 14.5; **IR** (cast film, cm⁻¹): 2963, 2876, 1584, 1507, 1381, 1245, 1185, 1024, 961, 924, 847, 748, 701; **HRMS** (**ESI-TOF**): (M*)⁻ calcd for C₁₉H₁₃BN₃O₄⁻: 358.1005, found: 358.1003.

1.3.4 Additional compounds

3,7a-Diphenyl-5,6-dihydro-7aH-oxazolo[3,2-d][1,2,4]oxadiazole (7): Prepared from (*Z*)-*N*-hydroxybenz-imidoyl chloride¹ (**3b**) (0.49 g, 3.15 mmol, 1.00 equiv), 2-phenyl-2-oxazoline (0.50 mL, 3.78 mmol, 1.20 equiv) and Et₃N (0.66 mL, 4.73 mmol, 1.50 equiv) in THF (5.0 mL) following the general procedure **A**. The crude residue was purified by flash column chromatography (hexane/EtOAc). The resulting solid was washed with Et₂O (trituration) to yield the pure compound as a white crystalline solid which spectral data were in agreement with those previously reported in the literature; ⁵ **mp** = 94 °C; ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.80 – 7.75 (m, 2H), 7.71 – 7.65 (m, 2H), 7.54 – 7.45 (m, 3H), 7.44 – 7.38 (m, 3H), 4.12 – 4.04 (m, 1H), 3.81 – 3.69 (m, 2H), 3.45 – 3.36 (m, 1H); ¹³**C NMR** (126 MHz, CDCl₃): δ (ppm) 158.2, 137.6, 131.3, 129.6, 129.2, 128.4, 128.0, 126.6, 125.6, 124.4, 64.6, 49.6; **IR** solid, cm⁻¹): 3060, 3007, 2968, 2895, 1597, 1570, 1454, 1377, 1315, 1285, 1216, 1073, 1023, 1009, 972, 862, 771, 701; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₆H₁₅N₂O₂⁺: 267.1128, found: 267.1131.

2,5-Diphenyl-1,3,4,2-dioxazaborole (8): Prepared from *N*-hydroxybenzamide (200 mg, 1.46 mmol, 1.00 equiv) and phenylboronic acid (187 mg, 1.53 mmol, 1.05 equiv) in PhMe (3.0 mL) following the general procedure **B**. Isolated as a white solid (126 mg, 39% yield); **mp** = 95 °C; ¹**H NMR** (498 MHz, CDCl₃): δ (ppm) 8.07 – 8.01 (m, 4H), 7.63 – 7.47 (m, 6H); ¹³**C NMR** (101 MHz, CDCl₃): δ (ppm) 165.1, 135.2, 132.8, 132.1, 129.1, 128.5, 127.0, 124.3; ¹¹**B NMR** (160 MHz, CDCl₃): δ (ppm) 33.2; **IR** (solid, cm⁻¹): 1603, 1410, 1383, 1364, 1353, 1088, 1028, 781, 699; **HRMS (ESI-TOF)**: (M+H)⁺ calcd for C₁₃H₁₁BNO₂⁺: 224.0877, found: 224.0883.

⁵ (a) Kennewell, P. D.; Miller, D. J.; Scrowston, R. M.; Westwood, R. *J. Chem. Soc., Perkin Trans. 1*, **1994**, 3563-3566; (b) Miller, D. J.; Scrowston, R. M.; Kennewell, P. D.; Westwood, R. *Tetrahedron*, **1992**, *48*, 7703-7712; (c) Magosch, K. H.; Feinauer, R. *Angew. Chem. Int. Ed.* **1971**, *10*, 810.

2 Spectroscopic comparison: Borazavaldecoxib vs Valdecoxib

Physical properties	Valdecoxib 1	Borazavaldecoxib 2	Amidoxime 41
$\lambda_{max(abs)}$ (nm)	234	239	285
$\lambda_{\max(em)}(nm)$	385	338	406
Stokes shift	$151 \text{ nm}, 66225 \text{ cm}^{-1}$	99 nm, 101010 cm ⁻¹	121 nm, 82644 cm ⁻¹
$\epsilon (\times 10^4 \mathrm{M}^{-1} \mathrm{cm}^{-1})$	1.95	1.93	1.85

2.1 UV absorption and fluorescence emission spectra

 $\lambda_{max(am)}(UV)$ of tetrahedral borate 6a = 290 nm

2.2 Infrared spectra

26

3 Structural comparisons

3.1 Borazavaldecoxib vs valdecoxib

Borovaldecoxib (2)

Valdecoxib (1)

Selected Interatomic Distances (Å):

N

Bo	orazavaldeo	coxib (2)						
Atom 1	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)	Δ (Å)		
01	N2	1.443	01	N2	1.404	0.039		
01	В	1.384	01	C5	1.348	0.036		
N1	C1	1.389	C3	C4	1.441	0.052		
N1	C3	1.423	C4	C6	1.482	0.059		
N1	В	1.433	C4	C5	1.347	0.086		
N2	C1	1.292	N2	C3	1.317	0.025		
C1	C9	1.480	C3	C16	1.479	0.001		
C2	В	1.555	C5	C22	1.486	0.069		
Mean difference in bond lengths:								

Selected Interatomic Angles (deg):

	Borazava	ldecoxib	(2)	Valdecoxib (1)				
Atom 1	Atom 2	Atom 3	Angle (dec)	Atom 1	Atom 2	Atom 3	Angle (dec)	Δ (dec)
N2	01	В	109,2	C5	01	N2	108,7	0,5
C1	N1	C3	124,5	C3	C4	C6	130,2	5,7
C1	N1	В	105,6	C5	C4	C3	104,0	1,6

C3	N1	В	129,9	C5	C4	C6	125,8	4,1
01	N2	C1	105,7	C3	N2	01	106,0	0,3
N1	C1	N2	113,8	N2	C3	C4	110,8	3,0
N1	C1	C9	125,0	C4	C3	C16	131,6	6,6
N2	C1	C9	121,1	N2	C3	C16	117,5	3,6
N1	C3	C4	118,9	C11	C6	C4	120,9	2,0
N1	C3	C8	120,4	C7	C6	C4	120,6	0,2
C1	C9	C10	121,0	C21	C16	C3	119,7	1,3
C1	C9	C14	119,3	C17	C16	C3	121,3	2,0
01	В	N1	105,7	C4	C5	01	110,5	4,8
01	В	C2	124,6	01	C5	C22	115,5	9,1
N1	В	C2	129,7	C4	C5	C22	133,9	4,2
Mean diff	ference in	bond ang	les:					3,3

Torsional Angles (deg):

Borazavaldecoxib (2)									
Atom 1	Atom 2	Atom 3	Atom 4	Angle					
В	01	N2	C1	-1.0(3)					
N2	01	В	N1	1.4(3)					
C1	N1	В	01	-1.2(3)					

Overlaid picture of valdecoxib (1) and borazavaldecoxib (2) X-ray crystal structures:

3.2 Tetrahedral oxadiazaborate 6b vs orthoamide 7

Selected Interatomic Distances (Å):

O	xadiazabor	ate (6b)	(
Atom 1	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)	Δ (Å)	
01	В	1.514	O2	C4	1.4135	0.1005	
02	В	1.484	01	C4	1.4226	0.0614	
N1	В	1.559	N2	C4	1.4714	0.0876	
Mean difference in bond lengths:							

Selected Interatomic Angles (deg):

	Oxadiaza	aborate (6	b)	Carbon bicycle (7)				
Atom 1	Atom 2	Atom 3	Angle (dec)	Atom 1	Atom 2	Atom 3	Angle (dec)	Δ (dec)
01	В	02	114.5	01	C4	02	112.1	2.4
01	В	N1	103.0	02	C4	N2	106.7	3.7
01	В	C14	110.0	02	C4	C11	109.9	0.1
02	В	N1	101.5	01	C4	N2	103.8	2.3
O2	В	C14	108.4	01	C4	C11	109.7	1.3
N1	В	C14	119.5	N2	C4	C11	114.6	4.9
Mean difference in bond angles:								

4 Hydrolytic studies (NMR)

4.1 Borazavaldecoxib 2 in aqueous DMSO-d₆ (0.02 M, 20 °C)

4.2 Tetrahedral borate 6a in aqueous DMSO-d₆ (0.02 M, 20 °C)⁶

⁶ When a higher content of water was present in the mixture, the oxadiazaborate **6a** was too insoluble for a proper analysis. In such conditions, a more complex mixture of products was observed by ¹H-NMR, suggesting the presence of different aggregates in equilibrium. However, even with a high content of water, the hydrolyzed product **4h** was clearly not observed in the mixture

2018.01.04.15_MBH-47-200_st_5_1_15m_H1_1D — 498.120 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm) — temp 26.9 C -> actual temp = 27.0 C, autoxdb probe —

2018.01.04.15_MBH-47-200_st_5_1_15m_H1_1D — 498.120 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm) — temp 26.9 C -> actual temp = 27.0 C, autoxdb probe —

7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 f1 (ppm)

5 Exchange experiment of oxadiazaborate 6b in aqueous conditions

A mixture of **6b** (5.0 mg, 0.009 mmol, 1.0 equiv) and 4-bromophenylboronic acid (1.8 mg, 0.009 mmol, 1.0 equiv) in CD₃CN/D₂O 10:1 (0.04M, 2.2 mL) was stirred at room temperature for 5 minutes before it was analyzed by ¹H-NMR and HRMS (-ESI). **6b** was found to have exchanged parts to give a mixture of **6b** and **6c**.

¹H-NMR (500 MHz, CD₃CN):

33

Mass Spectrometry Facility +1-780-492-5577

Qualitative Compound Report

Comment M. Boghi, Hall Data File 18031925.d Position -1 Acq Method Sample Name Instrument Name Operator DA Method mbh-v 88 oaTOF6220 ami da ami low mass.m

Compound Table

Formula	Mass	Abund		
C19H13[11B]BrN2O2	391.0249	168775		

MS Spectrum

MS Zoomed Spectrum

C19 H13 [11B] Br N2 O2	M*-	391.0255	391.0259	-1.12	1	168775
End Of Banast						

--- End Of Report ----

6 HPLC trace of oxadiazaborate 6a with ACN as mobile phase

Sample Name: MBH_IV_172_ACN

HILIC column ACN. Flowin.m Positive mode Sample dissolved in ACN

7 Biological assays

Assays were performed in the laboratory of the non-for-profit public organization Community for Antimicrobial Drug Discovery (CO-ADD), University of Queensland, Australia.

Antibacterial data collection

Inhibition of bacterial growth was determined measuring absorbance at 600 nm (OD600), using a Tecan M1000 Pro monochromator plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (bacteria without inhibitors) on the same plate as references.

Antifungal data collection

Growth inhibition of C. albicans was determined measuring absorbance at 530 nm (OD530), while the growth inhibition of C. neoformans was determined measuring the difference in absorbance between 600 and 570 nm (OD600-570), after the addition of resazurin (0.001% final concentration) and incubation at 35 °C for additional 2 h. The absorbance was measured using a Biotek Synergy HTX plate reader. The percentage of growth inhibition was calculated for each well, using the negative control (media only) and positive control (bacteria without inhibitors) on the same plate as references.

Inhibition

Percentage growth inhibition of an individual sample is calculated based on Negative controls (media only) and Positive Controls (bacterial/fungal media without inhibitors). Please note negative inhibition values indicate that the growth rate (or OD600) is higher compared to the Negative Control (Bacteria/fungi only, set to 0% inhibition). The growth rates for all bacteria and fungi has a variation of -/+ 10%, which is within the reported normal distribution of bacterial/fungal growth. Any significant variation (or outliers/hits) is identified by the modified Z-Score, and actives are selected by a combination of inhibition value and Z-Score.

Z-Score

Z-Score analysis is done to investigate outliers or hits among the samples. The Z-Score is calculated based on the sample population using a modified Z-Score method which accounts for possible skewed sample population. The modified method uses median and MAD (median average derviation) instead of average and sd, and a scaling factor [Iglewicz, B. & Hoaglin, D. C. Volume 16: How to Detect and Handle Outliers. The ASQC Basic Reference in Quality Control: Statistical Techniques, 1993]: M(i) = 0.6745 * (x(i) - median(x))/MAD). M(i) values of > |2.5| (absolute) label outliers or hits.

Quality Control

All screening is performed as two replica (n=2), with both replicas on different assay plates, but from single plating and performed in a single screening experiment (microbial incubation). Each individual value is reported in the table (see ..1 and ..2). In addition, two values are used as quality controls for individual plates: Z'-Factor [1-(3 * (sd(NegCtrl)+sd(PosCtrl)))/(average(PosCtrl)-average(NegCtrl)))] and Standard Antibiotic controls at different concentrations (>MIC and < MIC). The plate passes the quality control if Z'-Factor >0.4 and Standards are active and inactive at highest and lowest concentrations, respectively.

Antibiotic standards preparation and Quality control

Colistin and Vancomycin were used as positive bacterial inhibitor standards for Gram-negative and Gram-positive bacteria, respectively (see MIC values on following page). Fluconazole was used as a positive fungal inhibitor standard for C. albicans and C. neoformans. The antibiotics were provided in 4 concentrations, with 2 above and 2 below its MIC value, and plated into the first 8 wells of column 23 of the 384-well NBS plates. The quality control (QC) of the assays was determined by the antimicrobial controls and the Z'-factor (using positive and negative controls). Each plate was deemed to fulfill the quality criteria (pass QC), if the Z'-factor was above 0.4, and the antimicrobial standards showed full range of activity, with full growth inhibition at their highest concentration, and no growth inhibition at their lowest concentration.

Primary Screening Panel Strain Susceptibility Profiles

MIC [µg/mL] determined in BMD method; CA-MHB, Corning 3640 384- w NBS plates		GP_020_2 Staphylococcus aureus ATCC 43300	GN_001_2 Escherichia coli ATCC 25922	GN_003_2 Klebsiella pheumoniae ATCC 700603	GN_034_2 Acinetobacter baumannii ATCC 19606	GN_042_2 Pseudomonas aeruginosa ATCC 27853	FG_001_2 Candida albicans ATCC 90028	FG_002_2 Cryptococcus neofomans H99 ATCC 208821
CompoundID	Compound type	MRSA	FDA control	ESBL	Type strain	QC control strain	CLSI reference	Type strain
Amoxicillin	antibiotic	16	8	>32	>32	>32		
Ciprofloxacin	antibiotic	0.25	0.007	0.5	1	0.25		
Ampicillin	antibiotic	32	8	>32	>32	>32		
Colistin	antibiotic	>32	0.125	0.25	0.25	0.25		
Azithromycin	antibiotic	>32	4	32	32	32	-	
Dalbavancin	antibiotic	0.25	>32	>32	>32	>32		
Daptomycin	antibiotic	2	>32	>32	>32	>32		
Cefepime	antibiotic	16	0.125	2	16	2		
Cefotaxime	antibiotic	16	0.125	16	16	32		
Ceftazidime	antibiotic	>32	2	>32	32	4		
Gentamicin	antibiotic	>32	1	8	8	1		
Ceftriaxone	antibiotic	32	0.125	16	32	32		
Amikacin	antibiotic	16	2	1	16	4		
Linezolid	antibiotic	4	>32	>32	>32	>32		
Cephalothin	antibiotic	4	16	>32	>32	>32		
Meropenem	antibiotic	4	0.06	0.125	2	1		
Chloramphenicol	antibiotic	8	8	>32	>32	>32		
Oxacillin	antibiotic	4	>32	>32	>32	>32		
Tobramycin	antibiotic	>32	0.5	0.5	0.25	0.5		
Vancomycin	antibiotic	1	>32	>32	>32	>32		
Tetracycline	antibiotic	0.25	1	16	2	32		
Trimethoprim	antibiotic	1	0.5	2	16	>32		
Piperacillin	antibiotic		1	>32	≥32	16		
Aztreonam	antibiotic		0.06	≥32	16	16		
Ceftaroline	antibiotic	1	0.06					
Erythromycin	antibiotic		>32					
Streptomycin	antibiotic		8					
Oritavancin	antibiotic	≤0.016						
Telavancin	antibiotic	0.125						
Chloroeremomycin	antibiotic	0.25						
Amphotericin B	antifungal						1.56	1.56
Fluconazole	antifungal						0.125	8
5-Fluorocytosine	antifungal						0.06	0.03
Posaconazole	antifungal						≤0.06	≤0.02
Voriconazole	antifungal						0.002	0.03
Ketoconazole	antifungal						0.125	2
Itraconazole	antifungal						≤0.001	0.03
Caspofungin	antifungal						≤0.0009	8

Toxicity assessment for compounds for compounds 6c and 6e

Growth inhibition of HEK293 cells was determined measuring fluorescence at ex:530/10 nm and em: 590/10 nm (F560/590), after the addition of resazurin (25 ug/mL final concentration) and incubation at 37 °C and 5% CO₂, for additional 3 h. The fluorescence was measured using a Tecan M1000 Pro monochromator plate reader. The percentage of growth inhibition was calculated for each well, using the Negative Control (media only) and Positive Control (cell culture without inhibitors) on the same plate as references. No toxicity was observed at 50 ug/mL.

2018.01.02.i5_MBH-V-38pr_dmso_H1_1D — 498.120 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm) — temp 26.9 C -> actual temp = 27.0 C, autoxdb probe —

N^{_OH}

- 20 - 18

41

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 f1 (ppm)

2017.12.15.mr4_MBH-IV-93_c_H1_1D — — 399.980 MHz H1 1D in dmso (ref. to DMSO @ 2.49 ppm) — temp 25.9 C -> actual temp = 27.0 C, onenmr probe —

46

- 6

- 5

- 4

- 3

- 2

- 1

- 0

--1

-10 -20

60 50 40 30 20 10 0

2017.12.03.u5_MBH-IV-199pr_c_loc1_14.10_H1_1D — Michele, MBH-IV-199pr_c — 499.797 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm) — temp 27.7 C -> actual temp = 27.0 C, col

5a

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)

2018.01.04.u5_MBH-V-33_2_loc10_17.58_H1_1D — Michele, MBH-V-33_2 — 499.797 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm) — temp 27.7 C -> actual temp = 27.0 C, colddual r

20 10 0 -10

4.5

- 4.0 - 3.5 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 - 0.0

2017.12.21.u5_MBH-V-34pr_c_loc7_15.27_H1_1D — Michele, MBH-V-34pr_c — 499.797 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm) — temp 27.7 C -> actual temp = 27.0 C, coldua

2017.12.21.u5_MBH-V-35pr_c_loc8_15.32_C13_1D — Michele, MBH-V-35pr_c — 125.688 MHz C13{H1} 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm) — temp 27.7 C -> actual temp = 27.0 C,

2017.12.21.u5_MBH-V-36pr_loc1_16.37_H1_1D — Michele, MBH-V-36pr_ — 499.797 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm) — temp 27.7 C -> actual temp = 27.0 C, colddual J

2017.12.17.u5_MBH-V-26_drydry_c_loc4_16.17_C13_1D — Michele, MBH-V-26_drydry_c — 125.688 MHz C13{H1} 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm) — temp 27.7 C -> actual tem

2017.07.11.m4_MBH-III-183pr_c_loc43_12.54_C13_1D — Michele, MBH-III-183pr_c — 100.688 MHz C13{H1} 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm) — temp 27.0 C -> actual temp =

90 80 70 60 50 40 30 20 10 0 -10

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

2017.03.16.u5_MBH-II-191pr_loc4_12.53_H1_1D — Michele, MBH-II-191pr — 499.797 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm) — temp 27.7 C -> actual temp = 27.0 C, coldual

- 1 - 0 - -1 - -2

2017.12.06.u5_MBH-IV-203pr_c_loc3_22.53_H1_1D — Michele, MBH-IV-203pr_c — 499.797 MHz H1 1D in cdcl3 (ref. to CDCl3 @ 7.26 ppm) — temp 27.7 C -> actual temp = 27.0 C, column

2017.10.10.m4_MBH-IV-142pr_c_loc42_15.36_C13_1D — Michele, MBH-IV-142pr_c — 100.688 MHz C13{H1} 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm) — temp 27.0 C -> actual temp = 2

9 X-ray crystallographic reports

STRUCTURE REPORT (2)

XCL Code: DGH1703

Date: 3 October 2017

- **Compound:** 4-(2-Methyl-4-phenyl-1,3,5,2-oxadiazaborol-3(2*H*)-yl)benzenesulfonamide•0.5*n*-hexane
- **Formula:** C₁₇H₂₁BN₃O₃S (C₁₄H₁₄BN₃O₃S•0.5C₆H₁₄)

Supervisor: D. G. Hall

Crystallographer: R. McDonald

Figure Legends

- **Figure 1.** Perspective view of the 4-(2-methyl-4-phenyl-1,3,5,2-oxadiazaborol-3(2*H*)yl)benzenesulfonamide molecule showing the atom labelling scheme. Nonhydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- **Figure 2.** Illustration of hydrogen-bonded interactions between adjacent molecules within the crystal lattice. Primed atoms are related to unprimed ones via the crystallographic symmetry operation $(1-x, \frac{1}{2}+y, \frac{1}{2}-z)$. Douple-primed atoms are related to unprimed ones via the crystallographic symmetry operation $(1-x, \frac{-1}{2}+y, \frac{1}{2}-z)$. The chain propagates in a direction parallel to the crystal unit cell's *b* axis.

List of Tables

- Table 1.
 Crystallographic Experimental Details
- **Table 2.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- Table 5.
 Hydrogen-Bonded Interactions
- **Table 6.**Torsional Angles
- Table 7.
 Anisotropic Displacement Parameters
- Table 8.
 Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

 Table 1. Crystallographic Experimental Details

A. Crystal Data	
formula	C ₁₇ H ₂₁ BN ₃ O ₃ S
formula weight	358.24
crystal dimensions (mm)	$0.28 \times 0.13 \times 0.12$
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
unit cell parameters ^a	
<i>a</i> (Å)	12.7713 (2)
<i>b</i> (Å)	7.93520 (14)
<i>c</i> (Å)	17.9462 (3)
β (deg)	94.7903 (7)
$V(Å^3)$	1812.36 (5)
Ζ	4
ρ_{calcd} (g cm ⁻³)	1.313
μ (mm ⁻¹)	1.762

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD^b
radiation (λ [Å])	Cu K α (1.54178) (microfocus source)
temperature (°C)	-100
scan type	ω and ϕ scans (1.0°) (5 s exposures)
data collection 2θ limit (deg)	147.77
total data collected	$12464 \ (-15 \le h \le 15, -9 \le k \le 9, -22 \le l \le 22)$
independent reflections	3667 ($R_{\text{int}} = 0.0312$)
number of observed reflections (NO)	$3375 [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	intrinsic phasing (SHELXT-2014 ^c)
refinement method 2014^d)	full-matrix least-squares on F ² (SHELXL-
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	1.0000-0.6717

data/restraints/parameters	3667 / 9 ^e / 227
goodness-of-fit (S) ^f [all data]	1.080
final R indices ^g	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0553
wR_2 [all data]	0.1704
largest difference peak and hole	0.918 and –0.492 e Å-3

*a*Obtained from least-squares refinement of 9862 reflections with $6.94^{\circ} < 2\theta < 147.52^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

(continued)

^cSheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.

^dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

- ^{*e*}Distances within the inversion-disordered solvent *n*-hexane molecule were constrained during refinement: d(C1S-C2S) = d(C2S-C3S) = d(C3S-C4S) = d(C4S-C5S) = d(C5S-C6S) = 1.52(1) Å; $d(C1S\cdots C3S) = d(C2S\cdots C4S) = d(C3S\cdots C5S) = d(C4S\cdots C6S) = 2.52(1)$ Å.
- $fS = [\Sigma w(F_0^2 F_c^2)^2 / (n p)]^{1/2} (n = \text{number of data}; p = \text{number of parameters varied}; w = [\sigma^2 (F_0^2) + (0.0946P)^2 + 1.7529P]^{-1} \text{ where } P = [Max(F_0^2, 0) + 2F_c^2]/3).$

 $gR_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

1	(a)	atoms o	of 4-	(2-meth	vl-4-	ohen	vl-1	1.3.	5.2	2-oxadiazabo	rol-3	(2H))-v	l)benzenesı	ılfor	namide
٠.	/			(P		, - ,	- ,-			1	/ /			

Atom	x	У	Ζ	$U_{\rm eq}$, Å ²
S	0.43007(4)	0.21218(7)	0.27000(3)	0.0262(2)*
01	-0.01279(15)	0.3062(3)	-0.08233(9)	0.0397(4)*
O2	0.41776(13)	0.0542(2)	0.30713(9)	0.0330(4)*
03	0.42576(13)	0.3645(2)	0.31286(9)	0.0337(4)*
N1	0.08786(15)	0.2745(2)	0.02552(10)	0.0280(4)*
N2	-0.07993(17)	0.2721(3)	-0.02333(11)	0.0355(5)*
N3	0.54288(16)	0.2092(3)	0.23615(12)	0.0321(5)*
C1	-0.01772(18)	0.2549(3)	0.03673(12)	0.0275(5)*
C2	0.1864(2)	0.3463(4)	-0.09836(14)	0.0451(6)*
C3	0.17176(17)	0.2550(3)	0.08221(12)	0.0255(4)*
C4	0.24025(18)	0.3894(3)	0.09790(12)	0.0297(5)*
C5	0.32049(18)	0.3744(3)	0.15460(13)	0.0300(5)*
C6	0.33051(17)	0.2258(3)	0.19547(12)	0.0250(4)*
C7	0.26400(19)	0.0905(3)	0.17935(14)	0.0338(5)*
C8	0.18426(19)	0.1049(3)	0.12190(14)	0.0347(5)*
C9	-0.05960(18)	0.2271(3)	0.11019(12)	0.0282(5)*
C10	-0.02020(19)	0.3162(3)	0.17327(13)	0.0334(5)*
C11	-0.0628(2)	0.2933(4)	0.24094(14)	0.0408(6)*
C12	-0.1449(2)	0.1823(4)	0.24625(16)	0.0444(7)*
C13	-0.1854(2)	0.0945(4)	0.18412(18)	0.0473(7)*
C14	-0.14317(19)	0.1159(3)	0.11542(15)	0.0379(6)*
В	0.0907(2)	0.3104(4)	-0.05254(15)	0.0342(6)*
H3NA	0.559(3)	0.303(5)	0.217(2)	0.050(10)
H3NB	0.555(3)	0.124(4)	0.2121(19)	0.043(8)
(b) solven	t n-hexane atoms			
Atom	x	У	Ζ	$U_{\rm eq}$, Å ²
C1S ^a	0.5451(17)	0.3895(19)	0.0095(14)	0.219(5)
$C2S^a$	0.5997(19)	0.2286(19)	-0.0088(16)	0.219(5)
$C3S^a$	0 5457(16)	0.0739(18)	0.0182(12)	0.219(5)

0.5537(14) -0.0216(14) $C4S^a$ -0.084(2)0.219(5) -0.0242(14) $C5S^a$ 0.4547(18) -0.197(2)0.219(5)

-0.144(3)

0.3840(17)

 $C6S^a$

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} +$ $2klb*c*U_{23}+2hla*c*U_{13}+2hka*b*U_{12})$]. *a*Refined with an occupancy factor of 0.5 and a common isotropic displacement parameter.

0.0362(13)

0.219(5)

Atom1	Atom2	Distance	Atom1	Atom2	Distance
S	02	1.4345(17)	C3	C4	1.393(3)
S	03	1.4361(17)	C3	C8	1.390(3)
S	N3	1.610(2)	C4	C5	1.388(3)
S	C6	1.770(2)	C5	C6	1.389(3)
01	N2	1.443(3)	C6	C7	1.384(3)
01	В	1.384(3)	C7	C8	1.392(3)
N1	C1	1.389(3)	C9	C10	1.393(3)
N1	C3	1.423(3)	C9	C14	1.394(3)
N1	В	1.433(3)	C10	C11	1.383(3)
N2	C1	1.292(3)	C11	C12	1.379(4)
C1	C9	1.480(3)	C12	C13	1.379(5)
C2	В	1.555(4)	C13	C14	1.397(4)

Table 3. Selected Interatomic Distances (Å)

(a) within 4-(2-methyl-4-phenyl-1,3,5,2-oxadiazaborol-3(2H)-yl)benzenesulfonamide

(b) within the solvent *n*-hexane molecule

Atom1	Atom2	Distance	Atom1	Atom2	Distance
C1S	C2S	1.505(10) ^a	C4S	C5S	1.548(9) ^a
C2S	C3S	1.507(10) ^a	C5S	C6S	1.528(10) ^a
C3S	C4S	$1.450(9)^a$			

^{*a*}Distances were constrained to a target value of 1.52(1) Å during refinement.

Table 4.	Selected	Interatomic	Angles	(deg)
----------	----------	-------------	--------	-------

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
O2	S	O3		N1	C3	C4	118.9(2)
	118.42(1	0)		N1	C3	C8	120.4(2)
O2	S	N3		C4	C3	C8	120.6(2)
	107.38(1	1)		C3	C4	C5	119.7(2)
O2	S	C6		C4	C5	C6	119.4(2)
	107.74(1	0)		S	C6	C5	
O3	S	N3			118.66(16	5)	
	106.86(1	1)		S	C6	C7	
O3	S	C6			120.01(17	')	
	107.23(1	.0)		C5	C6	C7	121.3(2)
N3	S	C6		C6	C7	C8	119.3(2)
	108.96(1	1)		C3	C8	C7	119.7(2)
N2	01	В		C1	C9	C10	121.0(2)
	109.15(1	8)		C1	C9	C14	119.3(2)
C1	N1	C3		C10	C9	C14	119.6(2)
	124.51(1	.9)		C9	C10	C11	120.3(2)
C1	N1	В		C10	C11	C12	120.1(3)
	105.55(1	.9)		C11	C12	C13	120.2(3)
C3	N1	В	129.9(2)	C12	C13	C14	120.4(3)
01	N2	C1		C9	C14	C13	119.4(2)
	105.69(1	.9)		01	В	N1	105.7(2)
N1	C1	N2	113.8(2)	01	В	C2	124.6(2)
N1	C1	C9	125.0(2)	N1	В	C2	129.7(2)
N2	C1	C9	121.1(2)				

(a) within 4-(2-methyl-4-phenyl-1,3,5,2-oxadiazaborol-3(2H)-yl)benzenesulfonamide

(b) within the solvent n-hexane molecule

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C1S	C2S	C3S		C3S	C4S	C5S	
	112.8(10	$)^{a}$			115.2(10)	a	
C2S	C3S	C4S		C4S	C5S	C6S	110.4(8) ^a
	119.5(11)a					

^{*a*}Angle contains distances constrained during refinement: $d(C1S-C2S) = d(C2S-C3S) = d(C3S-C4S) = d(C4S-C5S) = d(C5S-C6S) = 1.52(1) \text{ Å}; d(C1S\cdots C3S) = d(C2S\cdots C4S) = d(C3S\cdots C5S) = d(C4S\cdots C6S) = 2.52(1) \text{ Å}.$

Table 5. Hydrogen-Bonded Interactions

D–H···A	D–H (Å)	H····A (Å)	D…A (Å)	∠D–H…A (deg)
N3–H3NA \cdots O2 ^{<i>a</i>}	0.85(4)	2.07(4)	2.901(3)	167(3)
N3–H3NB…O3 ^b	0.82(3)	2.12(4)	2.911(3)	159(3)

^{*a*}At 1–*x*, 1/2+y, 1/2-z.

^{*b*}At 1–*x*, $^{-1}/_{2}+y$, $^{1}/_{2}-z$.

Atom1	Atom2	Atom3	Atom4	Angle	Atom1 Atom2 Atom3 Atom4				
	Angle								
02	S	C6	C5	174.75(18)	N1	C1	C9	C14	-141.4(2)
O2	S	C6	C7	-4.7(2)	N2	C1	C9	C10	-134.4(3)
03	S	C6	C5	46.3(2)	N2	C1	C9	C14	42.4(3)
O3	S	C6	C7	-133.2(2)	N1	C3	C4	C5	178.0(2)
N3	S	C6	C5	-69.0(2)	C8	C3	C4	C5	-1.2(4)
N3	S	C6	C7	111.5(2)	N1	C3	C8	C7	-177.2(2)
В	01	N2	C1	-1.0(3)	C4	C3	C8	C7	2.0(4)
N2	01	В	N1	1.4(3)	C3	C4	C5	C6	-0.7(4)
N2	01	В	C2	-179.1(3)	C4	C5	C6	S	-177.50(18)
C3	N1	C1	N2	-177.4(2)	C4	C5	C6	C7	2.0(4)
C3	N1	C1	C9	6.2(4)	S	C6	C7	C8	178.24(19)
В	N1	C1	N2	0.6(3)	C5	C6	C7	C8	-1.2(4)
В	N1	C1	C9	-175.8(2)	C6	C7	C8	C3	-0.8(4)
C1	N1	C3	C4	-122.1(2)	C1	C9	C10	C11	177.6(2)
C1	N1	C3	C8	57.1(3)	C14	C9	C10	C11	0.8(4)
В	N1	C3	C4	60.4(3)	C1	C9	C14	C13	-177.6(2)
В	N1	C3	C8	-120.4(3)	C10	C9	C14	C13	-0.7(4)
C1	N1	В	01	-1.2(3)	C9	C10	C11	C12	-0.2(4)
C1	N1	В	C2	179.3(3)	C10	C11	C12	C13	-0.4(4)
C3	N1	В	01	176.7(2)	C11	C12	C13	C14	0.5(4)
C3	N1	В	C2	-2.8(5)	C12	C13	C14	C9	0.1(4)
01	N2	C1	N1	0.2(3)	C1S	C2S	C3S	C4S	151(2) ^a
01	N2	C1	C9	176.8(2)	C2S	C3S	C4S	C5S	$-145(2)^{a}$
N1	C1	C9	C10	41.7(4)	C3S	C4S	C5S	C6S	$-18(3)^{a}$

^{*a*}Angle contains distances constrained during refinement: $d(C1S-C2S) = d(C2S-C3S) = d(C3S-C4S) = d(C4S-C5S) = d(C5S-C6S) = 1.52(1) \text{ Å}; d(C1S\cdots C3S) = d(C2S\cdots C4S) = d(C3S\cdots C5S) = d(C4S\cdots C6S) = 2.52(1) \text{ Å}.$

U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
0.0268(3)	0.0272(3)	0.0230(3)	0.00082(18)	-0.0063(2)	0.00362(19)
0.0417(10)	0.0556(12)	0.0206(8)	0.0011(7)	-0.0055(7)	-0.0017(8)
0.0374(9)	0.0312(9)	0.0294(8)	0.0072(7)	-0.0033(7)	0.0050(7)
0.0392(9)	0.0328(9)	0.0273(8)	-0.0056(7)	-0.0072(7)	0.0037(7)
0.0283(10)	0.0343(10)	0.0204(9)	-0.0002(7)	-0.0041(7)	-0.0030(7)
0.0341(11)	0.0464(12)	0.0245(10)	0.0012(8)	-0.0070(8)	-0.0044(9)
0.0280(10)	0.0302(11)	0.0368(11)	0.0014(9)	-0.0043(8)	0.0036(8)
0.0288(11)	0.0289(11)	0.0235(10)	-0.0012(8)	-0.0063(8)	-0.0036(9)
0.0468(15)	0.0587(18)	0.0301(12)	0.0051(12)	0.0049(11)	0.0024(13)
0.0250(10)	0.0306(11)	0.0200(10)	0.0002(8)	-0.0036(8)	-0.0006(8)
0.0326(11)	0.0287(11)	0.0266(11)	0.0036(9)	-0.0056(9)	-0.0029(9)
0.0310(11)	0.0276(11)	0.0298(11)	0.0026(9)	-0.0075(9)	-0.0039(9)
0.0231(10)	0.0284(11)	0.0224(10)	0.0001(8)	-0.0049(8)	0.0017(8)
0.0366(12)	0.0283(12)	0.0344(12)	0.0058(9)	-0.0091(9)	-0.0032(9)
0.0342(12)	0.0289(12)	0.0385(13)	0.0033(10)	-0.0108(10)	-0.0077(9)
0.0271(11)	0.0324(12)	0.0242(11)	0.0041(8)	-0.0040(8)	0.0005(9)
0.0347(12)	0.0395(13)	0.0251(11)	0.0018(9)	-0.0021(9)	-0.0035(10)
0.0445(15)	0.0516(16)	0.0263(12)	0.0039(10)	0.0023(10)	0.0060(12)
0.0442(15)	0.0511(16)	0.0394(14)	0.0139(12)	0.0126(11)	0.0080(12)
0.0376(13)	0.0468(16)	0.0588(17)	0.0128(13)	0.0117(12)	-0.0032(12)
0.0313(12)	0.0397(14)	0.0419(13)	0.0015(11)	-0.0023(10)	-0.0050(10)
0.0396(14)	0.0388(14)	0.0230(12)	-0.0004(10)	-0.0035(10)	0.0010(11)
	U_{11} 0.0268(3) 0.0417(10) 0.0374(9) 0.0392(9) 0.0283(10) 0.0283(10) 0.0280(10) 0.0288(11) 0.0280(10) 0.0250(10) 0.0326(11) 0.0310(11) 0.0310(11) 0.0366(12) 0.0342(12) 0.0347(12) 0.0445(15) 0.0442(15) 0.0376(13) 0.0313(12) 0.0396(14)	U_{11} U_{22} $0.0268(3)$ $0.0272(3)$ $0.0417(10)$ $0.0556(12)$ $0.0374(9)$ $0.0312(9)$ $0.0392(9)$ $0.0328(9)$ $0.0283(10)$ $0.0343(10)$ $0.0341(11)$ $0.0464(12)$ $0.0280(10)$ $0.0302(11)$ $0.0280(10)$ $0.0302(11)$ $0.0288(11)$ $0.0289(11)$ $0.0288(11)$ $0.0289(11)$ $0.0288(11)$ $0.0289(11)$ $0.026(11)$ $0.0306(11)$ $0.0250(10)$ $0.0306(11)$ $0.0326(11)$ $0.0287(11)$ $0.0326(11)$ $0.0287(11)$ $0.0310(11)$ $0.0284(11)$ $0.0342(12)$ $0.0283(12)$ $0.0342(12)$ $0.0283(12)$ $0.0347(12)$ $0.0395(13)$ $0.0445(15)$ $0.0516(16)$ $0.0376(13)$ $0.0468(16)$ $0.0313(12)$ $0.0388(14)$	U_{11} U_{22} U_{33} 0.0268(3)0.0272(3)0.0230(3)0.0417(10)0.0556(12)0.0206(8)0.0374(9)0.0312(9)0.0294(8)0.0392(9)0.0328(9)0.0273(8)0.0283(10)0.0343(10)0.0204(9)0.0341(11)0.0464(12)0.0245(10)0.0280(10)0.0302(11)0.0368(11)0.0288(11)0.0289(11)0.0235(10)0.0468(15)0.0587(18)0.0301(12)0.0250(10)0.0306(11)0.0200(10)0.0326(11)0.0287(11)0.0266(11)0.0310(11)0.0276(11)0.0298(11)0.0366(12)0.0283(12)0.0344(12)0.0342(12)0.0289(12)0.0385(13)0.0271(11)0.0324(12)0.0251(11)0.0347(12)0.0516(16)0.0263(12)0.0442(15)0.0511(16)0.0394(14)0.0376(13)0.0468(16)0.0588(17)0.0313(12)0.0397(14)0.0419(13)0.0396(14)0.0388(14)0.0230(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 7.	Anisotropic Displacement Parameters	(U_{ij}, I)	Å ²)
i able 7.	Anisotropic Displacement Parameters	$(U_{\rm IJ}, I$	A-)

The form of the anisotropic displacement parameter is:

$$\exp\left[-2\pi^{2}(h^{2}a^{*2}U_{11}+k^{2}b^{*2}U_{22}+l^{2}c^{*2}U_{33}+2klb^{*}c^{*}U_{23}+2hla^{*}c^{*}U_{13}+2hka^{*}b^{*}U_{12})\right]$$

Atom	x	У	Z	$U_{ m eq}$, Å ²
H2A	0.243989	0.269599	-0.082187	0.068
H2B	0.209471	0.463070	-0.090120	0.068
H2C	0.165945	0.328814	-0.151658	0.068
H4	0.232061	0.490849	0.069919	0.036
Н5	0.368110	0.464795	0.165341	0.036
H7	0.272682	-0.011013	0.207206	0.041
H8	0.138612	0.012519	0.109866	0.042
H10	0.036185	0.393152	0.169802	0.040
H11	-0.035394	0.354153	0.283818	0.049
H12	-0.173674	0.166368	0.292872	0.053
H13	-0.242281	0.018809	0.188058	0.057
H14	-0.171179	0.055361	0.072641	0.046
H1SA ^a	0.583199	0.485719	-0.009215	0.263
H1SB ^a	0.473067	0.388454	-0.014162	0.263
H1SC ^a	0.543306	0.399166	0.063827	0.263
H2SA ^a	0.672805	0.231665	0.014284	0.263
H2SB ^a	0.602590	0.220957	-0.063677	0.263
H3SA ^a	0.573117	0.054226	0.070698	0.263
H3SB ^a	0.470122	0.100797	0.018720	0.263
H4SA ^a	0.613898	-0.148380	0.002140	0.263
H4SB ^a	0.569218	-0.058755	-0.073602	0.263
H5SA ^a	0.415423	-0.187870	-0.074003	0.263
H5SB ^a	0.476071	-0.316254	-0.016488	0.263
H6SA ^a	0.321767	-0.216869	0.033916	0.263
H6SB ^a	0.422707	-0.154960	0.085507	0.263
H6SC ^a	0.362160	-0.026790	0.028088	0.263

Table 8. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

^{*a*}Included with an occupancy factor of 0.5.

STRUCTURE REPORT (6a)

XCL Code: DGH1702

Date: 20 March 2017

Compound: $[^{n}Bu_{4}N][(N'-(hydroxy-\kappa O)-N-\{2-(hydroxy-\kappa O)phenyl\}-2-methylpropanimid$ $amidato-<math>\kappa N$)(phenyl)borate]

Formula: $C_{32}H_{52}BN_3O_2$

Supervisor: D. G. Hall

Crystallographer: R. McDonald

Figure Legends

Figure 1.Perspective view of one of the two crystallographically-independent [(N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}-2-methylpropanimidamidato- κN)(phenyl)borate]+ions (moiety A) showing the atom labelling scheme. Non-hydrogen atoms are
represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are
shown with arbitrarily small thermal parameters.

Figure 2. Alternate view of moiety A.

Fugure 3.View of the second crystallographically-independent $[(N^{\circ}-(hydroxy-\kappa O)-N-\{2-(hydroxy-\kappa O)phenyl\}-2-methylpropanimidamidato-\kappa N)(phenyl)borate]^+$ ion (moiety B).

Figure 4. Alternate view of moiety B.

List of Tables

- Table 1.
 Crystallographic Experimental Details
- **Table 2.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- **Table 3.**Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- **Table 5.**Torsional Angles
- Table 6.
 Anisotropic Displacement Parameters
- **Table 7.** Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

 Table 1. Crystallographic Experimental Details

A. Crystal Data			
formula	C ₃₂ H ₅₂ BN ₃ O ₂		
formula weight	521.57		
crystal dimensions (mm)	$0.32 \times 0.31 \times 0.04$		
crystal system	orthorhombic		
space group	<i>Pbca</i> (No. 61)		
unit cell parameters ^a			
<i>a</i> (Å)	17.9063 (5)		
<i>b</i> (Å)	21.5998 (6)		
<i>c</i> (Å)	33.6902 (9)		
$V(Å^3)$	13030.4 (6)		
Ζ	16		
ρ_{calcd} (g cm ⁻³)	1.063		
$\mu \text{ (mm}^{-1}\text{)}$	0.501		

B. Data Collection and Refinement Conditions

Bruker D8/APEX II CCD ^b
Cu K α (1.54178) (microfocus source)
-100
ω and ϕ scans (1.0°) (5-10 s exposures)
137.66
77128 (-21 $\leq h \leq 21$, -25 $\leq k \leq 22$, -40 $\leq l \leq 40$)
11938 (<i>R</i> _{int} = 0.1059)
7068 $[F_0^2 \ge 2\sigma(F_0^2)]$
direct methods/dual space (SHELXD ^c)
full-matrix least-squares on F ² (SHELXL-
Gaussian integration (face-indexed)
1.0000-0.6961
11938 / 0 / 686

extinction coefficient $(x)^e$	0.00008(3)
goodness-of-fit (S) ^f [all data]	1.028
final R indices ^g	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0740
wR_2 [all data]	0.2436
largest difference peak and hole	0.798 and –0.795 e Å $^{-3}$

*a*Obtained from least-squares refinement of 9888 reflections with $6.92^{\circ} < 2\theta < 134.34^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

(continued)

Table 1. Crystallographic Experimental Details (continued)

^cSchneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.

^dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

 ${}^{e}F_{c}^{*} = kF_{c}[1 + x\{0.001F_{c}^{2}\lambda^{3}/\sin(2\theta)\}]^{-1/4}$ where k is the overall scale factor.

 $fS = [\Sigma w (F_0^2 - F_c^2)^2 / (n - p)]^{1/2} (n = \text{number of data}; p = \text{number of parameters varied}; w = [\sigma^2 (F_0^2) + (0.1225P)^2 + 5.1297P]^{-1} \text{ where } P = [\text{Max}(F_0^2, 0) + 2F_c^2]/3).$

 $gR_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

(a) atoms of the [(N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}-2-methylpropanimidamidato- κN)(phenyl)borate]⁺ ion, moiety A

Atom	x	У	Ζ	$U_{\rm eq}$, Å ²
O1A	0.15445(11)	0.24171(10)	0.42198(6)	0.0469(5)*
O2A	0.29400(12)	0.25462(11)	0.41236(6)	0.0550(6)*
N1A	0.12854(14)	0.18018(12)	0.41457(7)	0.0457(6)*
N2A	0.23906(13)	0.16827(11)	0.44712(7)	0.0407(6)*
C1A	0.17702(17)	0.14204(15)	0.42802(9)	0.0445(7)*
C2A	0.16605(19)	0.07363(16)	0.42450(10)	0.0527(8)*
C3A	0.0989(2)	0.05639(18)	0.39973(12)	0.0697(10)*
C4A	0.1604(3)	0.04350(19)	0.46553(11)	0.0776(12)*
C5A	0.31144(17)	0.15348(15)	0.43220(8)	0.0440(7)*
C6A	0.34047(17)	0.20495(17)	0.41248(9)	0.0491(8)*
C7A	0.4106(2)	0.2025(2)	0.39499(10)	0.0641(10)*
C8A	0.4500(2)	0.1464(2)	0.39763(11)	0.0684(12)*
C9A	0.4212(2)	0.0963(2)	0.41691(11)	0.0651(11)*
C10A	0.35134(18)	0.09896(16)	0.43481(9)	0.0516(8)*
C11A	0.23372(15)	0.28432(14)	0.47816(9)	0.0421(7)*
C12A	0.19976(17)	0.26690(16)	0.51394(9)	0.0488(8)*
C13A	0.1998(2)	0.30519(19)	0.54730(10)	0.0611(10)*
C14A	0.2343(2)	0.36198(19)	0.54569(12)	0.0674(11)*
C15A	0.2690(2)	0.37994(18)	0.51148(13)	0.0674(11)*
C16A	0.26870(18)	0.34170(16)	0.47823(11)	0.0546(8)*
B1A	0.22948(19)	0.23896(17)	0.44020(10)	0.0439(8)*

(b) atoms of the [(N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}-2-methylpropanimidamidato- κN)(phenyl)borate]⁺ ion, moiety B

Atom	x	У	Ζ	$U_{\rm eq}$, Å ²
O1B	0.41142(12)	0.31765(10)	0.16464(6)	0.0471(5)*
O2B	0.37990(13)	0.28783(10)	0.23488(6)	0.0536(6)*
N1B	0.44108(15)	0.37867(13)	0.16001(8)	0.0497(7)*
N2B	0.35087(13)	0.38750(12)	0.20748(7)	0.0440(6)*
C1B	0.40766(18)	0.41485(15)	0.18442(9)	0.0472(7)*
C2B	0.4287(2)	0.48127(17)	0.18804(13)	0.0681(10)*
C3B	0.4954(3)	0.4987(2)	0.16189(15)	0.0948(15)*
C4B	0.3614(3)	0.5233(2)	0.18009(19)	0.115(2)*
C5B	0.35865(16)	0.38993(15)	0.24983(9)	0.0458(7)*
C6B	0.37591(16)	0.33116(16)	0.26372(9)	0.0472(8)*
C7B	0.38900(19)	0.3210(2)	0.30358(10)	0.0635(10)*
C8B	0.3836(2)	0.3712(3)	0.32949(12)	0.0830(14)*
C9B	0.3656(2)	0.4280(3)	0.31609(13)	0.0842(15)*
T 11 A	A O 1.	(1D 1		

 Table 2. Atomic Coordinates and Displacement Parameters (continued)

Atom	x	У	Ζ	$U_{\rm eq},{ m \AA}^2$
C10B	0.3527(2)	0.43878(19)	0.27570(12)	0.0656(10)*
C11B	0.2785(2)	0.28607(18)	0.18122(9)	0.0579(10)*
C12B	0.2233(2)	0.3197(2)	0.16181(10)	0.0775(13)*
C13B	0.1588(3)	0.2920(4)	0.14770(13)	0.123(3)*
C14B	0.1477(4)	0.2293(6)	0.1531(2)	0.173(5)*
C15B	0.2010(5)	0.1961(4)	0.1710(2)	0.152(4)*
C16B	0.2657(3)	0.2230(2)	0.18577(13)	0.0911(16)*
B1B	0.3541(2)	0.31871(18)	0.19618(10)	0.0452(8)*

(c) tetra-n-butylammonium ion atoms

Atom	x	У	Z	$U_{\rm eq}$, Å ²
N2	0.44384(12)	0.28416(11)	0.04319(6)	0.0374(5)*
C21	0.45268(16)	0.24800(14)	0.08193(8)	0.0398(7)*
C22	0.39830(18)	0.19555(16)	0.08844(9)	0.0499(8)*
C23	0.42020(19)	0.16019(16)	0.12605(10)	0.0567(9)*
C24	0.3750(3)	0.1020(2)	0.13144(13)	0.0844(14)*
C25	0.50738(15)	0.33062(14)	0.04369(8)	0.0397(7)*
C26	0.51384(17)	0.37241(15)	0.00764(9)	0.0465(7)*
C27	0.57596(17)	0.41944(15)	0.01467(10)	0.0508(8)*
C28	0.58810(18)	0.46219(16)	-0.02046(11)	0.0593(9)*
C29	0.36848(15)	0.31505(15)	0.04030(9)	0.0446(7)*
C30	0.35230(17)	0.36730(16)	0.06894(10)	0.0510(8)*
C31	0.2719(2)	0.3885(2)	0.06302(12)	0.0721(12)*
C32	0.2536(3)	0.4479(2)	0.08536(14)	0.0904(15)*
C33	0.44893(17)	0.24175(15)	0.00740(8)	0.0460(7)*
C34	0.5171(2)	0.20035(17)	0.00573(10)	0.0567(9)*
C35	0.5302(3)	0.1731(2)	-0.03554(12)	0.0801(12)*
C36	0.4731(3)	0.1325(3)	-0.04942(18)	0.137(3)*
N3	0.12880(13)	0.27778(12)	0.29338(7)	0.0402(6)*
C37	0.12129(16)	0.30842(14)	0.33390(8)	0.0408(7)*
C38	0.17959(18)	0.35675(15)	0.34380(9)	0.0479(8)*
C39	0.16048(18)	0.38732(15)	0.38349(9)	0.0482(8)*
C40	0.2119(2)	0.44060(17)	0.39329(11)	0.0651(10)*
C41	0.13243(16)	0.32501(14)	0.26012(8)	0.0433(7)*
C42	0.06738(18)	0.36980(17)	0.25824(10)	0.0536(8)*
C43	0.0771(2)	0.41510(19)	0.22383(11)	0.0677(11)*
C44	0.1427(2)	0.4574(2)	0.22791(16)	0.0941(16)*
C45	0.20114(16)	0.24118(15)	0.29024(9)	0.0444(7)*
C46	0.2098(2)	0.18686(19)	0.31779(12)	0.0699(11)*
C47	0.2800(2)	0.1508(2)	0.30751(16)	0.0860(14)*
Table 2. Atomic Coordinates and Displacement Parameters (continued)				

Atom x

У

 $U_{
m eq}$, Å²

Z

0.2857(4)	0.0919(3)	0.3199(3)	0.187(4)*
0.06031(17)	0.23661(16)	0.28945(9)	0.0496(8)*
0.0537(2)	0.20252(18)	0.24990(11)	0.0649(10)*
-0.0096(2)	0.1546(2)	0.25102(16)	0.0833(14)*
0.0080(4)	0.1002(3)	0.27362(18)	0.125(2)*
	0.2857(4) 0.06031(17) 0.0537(2) -0.0096(2) 0.0080(4)	0.2857(4)0.0919(3)0.06031(17)0.23661(16)0.0537(2)0.20252(18)-0.0096(2)0.1546(2)0.0080(4)0.1002(3)	0.2857(4)0.0919(3)0.3199(3)0.06031(17)0.23661(16)0.28945(9)0.0537(2)0.20252(18)0.24990(11)-0.0096(2)0.1546(2)0.25102(16)0.0080(4)0.1002(3)0.27362(18)

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})].$

Table 3. Selected Interatomic Distances (Å)

(a) within the $[(N'-(hydroxy-\kappa O)-N-\{2-(hydroxy-\kappa O)phenyl\}-2-methylpropanimidamidato-\kappa N)(phenyl)borate]^+$ ions

Moiety A

Moiety B

Atom1	Atom2	Distance	Atom1	Atom2	Distance
O1A	N1A	1.430(3)	O1B	N1B	1.430(3)
OlA	B1A	1.478(4)	O1B	B1B	1.477(4)
O2A	C6A	1.358(4)	O2B	C6B	1.351(4)
O2A	B1A	1.526(4)	O2B	B1B	1.536(4)
N1A	C1A	1.280(4)	N1B	C1B	1.283(4)
N2A	C1A	1.403(4)	N2B	C1B	1.409(4)
N2A	C5A	1.426(4)	N2B	C5B	1.435(4)
N2A	B1A	1.554(4)	N2B	B1B	1.535(4)
C1A	C2A	1.495(5)	C1B	C2B	1.488(5)
C2A	C3A	1.511(5)	C2B	C3B	1.530(6)
C2A	C4A	1.531(5)	C2B	C4B	1.533(6)
C5A	C6A	1.395(5)	C5B	C6B	1.388(5)
C5A	C10A	1.380(4)	C5B	C10B	1.373(4)
C6A	C7A	1.388(4)	C6B	C7B	1.381(4)
C7A	C8A	1.405(5)	C7B	C8B	1.395(6)
C8A	C9A	1.363(6)	C8B	C9B	1.347(7)
C9A	C10A	1.390(5)	C9B	C10B	1.399(6)
C11A	C12A	1.402(4)	C11B	C12B	1.391(6)
C11A	C16A	1.389(4)	C11B	C16B	1.389(5)
C11A	B1A	1.613(5)	C11B	B1B	1.608(5)
C12A	C13A	1.395(5)	C12B	C13B	1.384(6)
C13A	C14A	1.374(5)	C13B	C14B	1.381(11)
C14A	C15A	1.365(6)	C14B	C15B	1.337(13)
C15A	C16A	1.392(5)	C15B	C16B	1.388(8)

(b) within the tetra-n-butylammonium ions

Atom1	Atom2	Distance	Atom1	Atom2	Distance
N2	C21	1.529(3)	C29	C30	1.513(4)
N2	C25	1.517(3)	C30	C31	1.523(4)
N2	C29	1.509(3)	C31	C32	1.523(6)
N2	C33	1.517(3)	C33	C34	1.514(4)
C21	C22	1.510(4)	C34	C35	1.528(5)
C22	C23	1.531(4)	C35	C36	1.426(6)
C23	C24	1.506(5)	N3	C37	1.523(3)
C25	C26	1.518(4)	N3	C41	1.517(4)
C26	C27	1.525(4)	N3	C45	1.521(4)
C27	C28	1.517(4)	N3	C49	1.521(4)

Distance	Atom1	Atom2	Distance
1.514(4)	C45	C46	1.504(5)
1.530(4)	C46	C47	1.519(5)
1.510(4)	C47	C48	1.342(7)
1.515(4)	C49	C50	1.527(4)
1.527(5)	C50	C51	1.534(5)
1.495(6)	C51	C52	1.435(7)
	Distance 1.514(4) 1.530(4) 1.510(4) 1.515(4) 1.527(5) 1.495(6)	DistanceAtom11.514(4)C451.530(4)C461.510(4)C471.515(4)C491.527(5)C501.495(6)C51	DistanceAtom1Atom21.514(4)C45C461.530(4)C46C471.510(4)C47C481.515(4)C49C501.527(5)C50C511.495(6)C51C52

Table 3. Selected Interatomic Distances (continued)

Table 4. Selected Interatomic Angles (deg)

(a) within the $[(N'-(hydroxy-\kappa O)-N-\{2-(hydroxy-\kappa O)phenyl\}-2-methylpropanimidamidato-\kappa N)(phenyl)borate]^+$ ions

Moiety A

Moiety B

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
N1A	O1A	B1A	109.3(2)	N1B	O1B	B1B	108.8(2)
C6A	O2A	B1A	106.7(2)	C6B	O2B	B1B	107.1(2)
O1A	N1A	C1A	108.4(2)	O1B	N1B	C1B	108.6(2)
C1A	N2A	C5A	117.9(2)	C1B	N2B	C5B	117.6(2)
C1A	N2A	B1A	103.9(2)	C1B	N2B	B1B	104.0(2)
C5A	N2A	B1A	105.5(2)	C5B	N2B	B1B	106.2(2)
N1A	C1A	N2A	116.1(3)	N1B	C1B	N2B	115.8(3)
N1A	C1A	C2A	121.3(3)	N1B	C1B	C2B	121.4(3)
N2A	C1A	C2A	122.6(3)	N2B	C1B	C2B	122.8(3)
C1A	C2A	C3A	113.1(3)	C1B	C2B	C3B	112.8(3)
C1A	C2A	C4A	110.9(3)	C1B	C2B	C4B	111.0(3)
C3A	C2A	C4A	110.0(3)	C3B	C2B	C4B	111.5(4)
N2A	C5A	C6A	109.1(3)	N2B	C5B	C6B	108.9(3)
N2A	C5A	C10A	129.7(3)	N2B	C5B	C10B	130.7(3)
C6A	C5A	C10A	121.1(3)	C6B	C5B	C10B	120.4(3)
O2A	C6A	C5A	113.7(3)	O2B	C6B	C5B	113.8(3)
O2A	C6A	C7A	125.7(3)	O2B	C6B	C7B	125.5(3)
C5A	C6A	C7A	120.5(3)	C5B	C6B	C7B	120.8(3)
C6A	C7A	C8A	117.4(4)	C6B	C7B	C8B	118.2(4)
C7A	C8A	C9A	121.7(3)	C7B	C8B	C9B	121.0(4)
C8A	C9A	C10A	120.9(3)	C8B	C9B	C10B	121.1(4)
C5A	C10A	C9A	118.3(4)	C5B	C10B	C9B	118.5(4)
C12A	C11A	C16A	115.7(3)	C12B	C11B	C16B	116.5(4)
C12A	C11A	B1A	119.9(3)	C12B	C11B	B1B	121.1(3)
C16A	C11A	B1A	124.4(3)	C16B	C11B	B1B	122.3(4)
C11A	C12A	C13A	122.2(3)	C11B	C12B	C13B	121.9(5)
C12A	C13A	C14A	119.9(4)	C12B	C13B	C14B	119.9(7)
C13A	C14A	C15A	119.4(4)	C13B	C14B	C15B	118.9(6)
C14A	C15A	C16A	120.6(4)	C14B	C15B	C16B	122.1(8)
C11A	C16A	C15A	122.2(4)	C11B	C16B	C15B	120.6(6)
O1A	B1A	O2A	115.1(3)	O1B	B1B	O2B	113.3(3)
O1A	B1A	N2A	101.7(3)	O1B	B1B	N2B	102.7(3)
O1A	B1A	C11A	110.3(2)	O1B	B1B	C11B	110.6(3)
O2A	B1A	N2A	103.1(2)	O2B	B1B	N2B	102.8(2)
O2A	B1A	C11A	108.5(3)	O2B	B1B	C11B	109.2(3)
N2A	B1A	C11A	118.2(3)	N2B	B1B	C11B	118.1(3)

Table 4. Selected Interatomic Angles (continued)

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C21	N2	C25	104.5(2)	C37	N3	C41	111.9(2)
C21	N2	C29	111.9(2)	C37	N3	C45	111.3(2)
C21	N2	C33	111.3(2)	C37	N3	C49	105.1(2)
C25	N2	C29	112.3(2)	C41	N3	C45	105.2(2)
C25	N2	C33	111.3(2)	C41	N3	C49	111.3(2)
C29	N2	C33	105.6(2)	C45	N3	C49	112.1(2)
N2	C21	C22	116.1(2)	N3	C37	C38	115.9(2)
C21	C22	C23	109.2(2)	C37	C38	C39	109.6(2)
C22	C23	C24	112.3(3)	C38	C39	C40	112.6(3)
N2	C25	C26	116.2(2)	N3	C41	C42	115.3(2)
C25	C26	C27	109.1(2)	C41	C42	C43	110.7(3)
C26	C27	C28	112.9(3)	C42	C43	C44	114.3(3)
N2	C29	C30	117.4(2)	N3	C45	C46	116.8(2)
C29	C30	C31	108.8(3)	C45	C46	C47	110.2(3)
C30	C31	C32	113.1(4)	C46	C47	C48	118.6(4)
N2	C33	C34	115.8(2)	N3	C49	C50	114.9(2)
C33	C34	C35	112.7(3)	C49	C50	C51	111.2(3)
C34	C35	C36	115.1(4)	C50	C51	C52	113.8(4)

(b) within the tetra-n-butylammonium ions

Table 5. Torsional Angles (deg)

(a) within the [(N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}-2-methylpropanimidamidato- κN)(phenyl)borate]⁺ ions

Moiety A

Moiety B

Atom1	Atom2 Angle	Atom3	Atom4	Angle	Atom	1 Atom	n2 Atom	3 Aton	n4
	014	N1 A	C1A	$2 \Lambda(2)$	D1D	01P	N1D	C1D	0.8(3)
M1A	01A	NIA B1A	O2A	3.4(3) 103 0(3)	DID N1R	O1B	R1R	$O^{2}B$	-0.8(3) -107.0(3)
N1A	01A	B1A	$N2\Delta$	-6.8(3)	N1B	OIB OIB	B1B B1B	N2B	-107.0(3)
N1A	01A	B1A	C11A	-1330(2)	N1B	O1B	B1B	C11B	130.0(3)
B1A	02A	C6A	C5A	8 7(4)	B1B	O2B	C6B	C5B	-6 6(3)
B1A	02A	C6A	C7A	-1717(3)	B1B	02B 02B	C6B	C7B	174 9(3)
C6A	02A	BIA	O1A	-122.7(3)	C6B	02B	B1B	O1B	1207(3)
C6A	02A	BIA	N2A	-12.9(3)	C6B	02B	B1B	N2B	10.7(3)
C6A	02A	BIA	C11A	1132(3)	C6B	02B	B1B	C11B	-115 5(3)
O1A	N1A	C1A	N2A	2.3(3)	O1B	N1B	C1B	N2B	-2.3(4)
01A	N1A	C1A	C2A	-179.6(2)	O1B	N1B	C1B	C2B	177 2(3)
C5A	N2A	C1A	N1A	-122 8(3)	C5B	N2B	C1B	N1B	121 2(3)
C5A	N2A	C1A	C2A	59 1(4)	C5B	N2B	C1B	C2B	-583(4)
BIA	N2A	C1A	N1A	-6 6(3)	B1B	N2B	C1B	N1B	4 2(4)
BIA	N2A	C1A	C2A	175 4(3)	B1B	N2B	C1B	C2B	-175 2(3)
C1A	N2A	C5A	C6A	107.1(3)	C1B	N2B	C5B	C6B	-108.0(3)
C1A	N2A	C5A	C10A	-72.5(4)	C1B	N2B	C5B	C10B	71.0(4)
B1A	N2A	C5A	C6A	-8.3(3)	B1B	N2B	C5B	C6B	7.8(3)
B1A	N2A	C5A	C10A	172.1(3)	B1B	N2B	C5B	C10B	-173.2(3)
C1A	N2A	B1A	O1A	7.6(3)	C1B	N2B	B1B	O1B	-4.2(3)
C1A	N2A	B1A	O2A	-111.9(2)	C1B	N2B	B1B	O2B	113.7(3)
C1A	N2A	B1A	C11A	128.5(3)	C1B	N2B	B1B	C11B	-126.1(3)
C5A	N2A	B1A	O1A	132.2(2)	C5B	N2B	B1B	O1B	-128.8(2)
C5A	N2A	B1A	O2A	12.7(3)	C5B	N2B	B1B	O2B	-11.0(3)
C5A	N2A	B1A	C11A	-106.9(3)	C5B	N2B	B1B	C11B	109.2(3)
N1A	C1A	C2A	C3A	7.0(4)	N1B	C1B	C2B	C3B	-3.3(5)
N1A	C1A	C2A	C4A	-117.1(3)	N1B	C1B	C2B	C4B	122.6(4)
N2A	C1A	C2A	C3A	-175.1(3)	N2B	C1B	C2B	C3B	176.1(3)
N2A	C1A	C2A	C4A	60.9(4)	N2B	C1B	C2B	C4B	-58.0(5)
N2A	C5A	C6A	O2A	-0.1(4)	N2B	C5B	C6B	O2B	-0.8(3)
N2A	C5A	C6A	C7A	-179.7(3)	N2B	C5B	C6B	C7B	177.7(3)
C10A	C5A	C6A	O2A	179.5(3)	C10B	C5B	C6B	O2B	-179.9(3)
C10A	C5A	C6A	C7A	-0.1(5)	C10B	C5B	C6B	C7B	-1.4(5)
N2A	C5A	C10A	C9A	178.9(3)	N2B	C5B	C10B	C9B	-178.0(3)
C6A	C5A	C10A	C9A	-0.6(5)	C6B	C5B	C10B	C9B	0.9(5)
O2A	C6A	C7A	C8A	-178.8(3)	O2B	C6B	C7B	C8B	179.1(3)
C5A	C6A	C7A	C8A	0.7(5)	C5B	C6B	C7B	C8B	0.7(5)

Table 5.	Torsional	Angles	(continued)
----------	-----------	--------	-------------

Atom1	Atom2	Atom3	Atom4	Angle
	Angle			
C6A	C7A	C8A	C9A	-0.7(5)
C7A	C8A	C9A	C10A	0.0(6)
C8A	C9A	C10A	C5A	0.7(5)
C16A	C11A	C12A	C13A	1.1(4)
B1A	C11A	C12A	C13A	-178.1(3)
C12A	C11A	C16A	C15A	-1.0(4)
B1A	C11A	C16A	C15A	178.1(3)
C12A	C11A	B1A	O1A	75.8(3)
C12A	C11A	B1A	O2A	-157.3(3)
C12A	C11A	B1A	N2A	-40.5(4)
C16A	C11A	B1A	O1A	-103.3(3)
C16A	C11A	B1A	O2A	23.6(4)
C16A	C11A	B1A	N2A	140.3(3)
C11A	C12A	C13A	C14A	-0.2(5)
C12A	C13A	C14A	C15A	-0.8(5)
C13A	C14A	C15A	C16A	0.9(5)
C14A	C15A	C16A	C11A	0.1(5)

(b) within the tetra-n-butylammonium ions

Atom1	Atom2	Atom3	Atom4	Angle
	Angle			
C25	N2	C21	C22	-177.0(3)
C29	N2	C21	C22	61.3(3)
C33	N2	C21	C22	-56.7(3)
C21	N2	C25	C26	178.4(2)
C29	N2	C25	C26	-60.1(3)
C33	N2	C25	C26	58.1(3)
C21	N2	C29	C30	67.5(3)
C25	N2	C29	C30	-49.7(3)
C33	N2	C29	C30	-171.2(3)
C21	N2	C33	C34	-52.4(3)
C25	N2	C33	C34	63.7(3)
C29	N2	C33	C34	-174.1(3)
N2	C21	C22	C23	173.9(3)
C21	C22	C23	C24	-172.1(3)
N2	C25	C26	C27	175.2(2)
C25	C26	C27	C28	178.3(3)
N2	C29	C30	C31	-175.9(3)
C29	C30	C31	C32	-170.3(3)
N2	C33	C34	C35	-163.7(3)

Atom1 Atom2 Atom3 Atom4

C6B	C7B	C8B	C9B	0.4(6)
C7B	C8B	C9B	C10B	-0.9(6)
C8B	C9B	C10B	C5B	0.2(6)
C16B	C11B	C12B	C13B	0.0(5)
B1B	C11B	C12B	C13B	178.1(3)
C12B	C11B	C16B	C15B	0.6(5)
B1B	C11B	C16B	C15B	-177.4(4)
C12B	C11B	B1B	O1B	-88.7(4)
C12B	C11B	B1B	O2B	146.0(3)
C12B	C11B	B1B	N2B	29.2(4)
C16B	C11B	B1B	O1B	89.3(4)
C16B	C11B	B1B	O2B	-36.0(4)
C16B	C11B	B1B	N2B	-152.9(3)
C11B	C12B	C13B	C14B	0.7(7)
C12B	C13B	C14B	C15B	-2.0(10)
C13B	C14B	C15B	C16B	2.7(11)
C14B	C15B	C16B	C11B	-2.0(9)

Atom1 Atom2 Atom3 Atom4

C33 C34 C35 C36 -64.0(6)

C41	N3	C37	C38	-53.7(3)
C45	N3	C37	C38	63.6(3)
C49	N3	C37	C38	-174.7(3)
C37	N3	C41	C42	-56.1(3)
C45	N3	C41	C42	-177.1(3)
C49	N3	C41	C42	61.2(3)
C37	N3	C45	C46	63.7(4)
C41	N3	C45	C46	-174.9(3)
C49	N3	C45	C46	-53.8(4)
C37	N3	C49	C50	177.6(3)
C41	N3	C49	C50	56.2(4)
C45	N3	C49	C50	-61.3(4)
N3	C37	C38	C39	174.8(3)
C37	C38	C39	C40	-174.2(3)
N3	C41	C42	C43	179.9(3)
C41	C42	C43	C44	-64.8(5)
N3	C45	C46	C47	173.0(3)
C45	C46	C47	C48	-159.9(6)
N3	C49	C50	C51	171.0(3)
C49	C50	C51	C52	-74.3(5)

Atom	U_{11}	U ₂₂	U_{33}	U ₂₃	U_{13}	U_{12}
O1A	0.0440(12)	0.0484(13)	0.0483(12)	0.0023(9)	-0.0024(9)	0.0091(9)
O2A	0.0474(13)	0.0668(16)	0.0508(13)	0.0155(11)	0.0124(10)	0.0083(11)
N1A	0.0465(15)	0.0473(16)	0.0435(14)	-0.0030(11)	0.0026(11)	0.0057(12)
N2A	0.0386(13)	0.0471(15)	0.0363(12)	-0.0018(10)	0.0013(10)	0.0098(11)
C1A	0.0445(17)	0.051(2)	0.0382(16)	-0.0003(13)	0.0060(13)	0.0100(14)
C2A	0.056(2)	0.051(2)	0.0508(19)	-0.0061(14)	0.0023(15)	0.0060(15)
C3A	0.070(3)	0.064(3)	0.075(3)	-0.0128(19)	-0.007(2)	-0.0022(19)
C4A	0.108(3)	0.059(3)	0.065(2)	0.0073(19)	-0.006(2)	-0.009(2)
C5A	0.0422(16)	0.057(2)	0.0328(14)	-0.0057(13)	-0.0048(12)	0.0124(14)
C6A	0.0406(17)	0.071(2)	0.0355(15)	-0.0019(14)	-0.0004(12)	0.0104(15)
C7A	0.048(2)	0.102(3)	0.0425(19)	-0.0067(18)	0.0050(15)	0.0036(19)
C8A	0.0394(19)	0.111(4)	0.055(2)	-0.023(2)	0.0013(16)	0.020(2)
C9A	0.046(2)	0.086(3)	0.063(2)	-0.021(2)	-0.0094(17)	0.0269(19)
C10A	0.0497(18)	0.060(2)	0.0450(17)	-0.0127(15)	-0.0082(14)	0.0166(15)
C11A	0.0340(15)	0.0427(18)	0.0495(17)	0.0044(13)	-0.0029(13)	0.0108(12)
C12A	0.0427(17)	0.057(2)	0.0465(17)	0.0005(14)	-0.0048(14)	0.0051(14)
C13A	0.055(2)	0.081(3)	0.0481(19)	-0.0058(17)	-0.0085(16)	0.0172(19)
C14A	0.070(3)	0.063(3)	0.070(3)	-0.0191(19)	-0.030(2)	0.021(2)
C15A	0.059(2)	0.051(2)	0.092(3)	-0.006(2)	-0.030(2)	0.0064(17)
C16A	0.0433(18)	0.052(2)	0.069(2)	0.0079(17)	-0.0123(16)	0.0048(15)
B1A	0.0382(18)	0.051(2)	0.0427(18)	0.0064(15)	0.0038(14)	0.0090(15)
O1B	0.0508(12)	0.0517(13)	0.0390(11)	-0.0016(9)	0.0074(9)	-0.0046(10)
O2B	0.0715(15)	0.0499(14)	0.0393(11)	0.0027(10)	0.0039(10)	0.0059(11)
N1B	0.0484(15)	0.0550(18)	0.0459(15)	0.0098(12)	-0.0006(12)	-0.0067(12)
N2B	0.0394(14)	0.0464(16)	0.0463(14)	-0.0008(11)	-0.0008(11)	-0.0016(11)
C1B	0.0471(18)	0.0462(19)	0.0482(18)	0.0061(14)	-0.0060(14)	0.0014(14)
C2B	0.069(2)	0.050(2)	0.086(3)	0.0115(19)	-0.004(2)	-0.0030(18)
C3B	0.109(4)	0.065(3)	0.110(4)	0.021(3)	0.022(3)	-0.028(3)
C4B	0.112(4)	0.057(3)	0.176(6)	0.021(3)	-0.027(4)	0.011(3)
C5B	0.0336(15)	0.057(2)	0.0467(17)	-0.0134(14)	0.0058(13)	-0.0063(14)
C6B	0.0373(16)	0.067(2)	0.0371(15)	-0.0040(14)	0.0052(12)	-0.0064(14)
C7B	0.048(2)	0.103(3)	0.0397(18)	0.0049(18)	0.0033(15)	-0.0095(19)
C8B	0.063(3)	0.143(5)	0.043(2)	-0.019(3)	0.0033(18)	-0.026(3)
C9B	0.073(3)	0.117(4)	0.063(3)	-0.050(3)	0.017(2)	-0.025(3)
C10B	0.051(2)	0.071(3)	0.075(3)	-0.028(2)	0.0151(18)	-0.0090(18)
C11B	0.063(2)	0.072(3)	0.0394(17)	-0.0152(16)	0.0207(16)	-0.0271(18)
C12B	0.055(2)	0.135(4)	0.043(2)	-0.003(2)	-0.0018(17)	-0.031(2)
C13B	0.065(3)	0.249(8)	0.055(3)	-0.029(4)	0.003(2)	-0.058(4)
C14B	0.123(6)	0.298(13)	0.097(5)	-0.106(7)	0.060(4)	-0.142(8)
C15B	0.170(7)	0.156(7)	0.129(6)	-0.084(5)	0.096(5)	-0.126(6)

Table 6.	Anisotropic Displacement Parameters	$(U_{ij}, Å^2)$

Table 6.	Anisotropic	Displacement Parameters	(continued)
----------	-------------	--------------------------------	-------------

Atom	U_{11}	U_{22}	U_{33}	U ₂₃	<i>U</i> ₁₃	U_{12}
C16B	0.111(4)	0.086(3)	0.076(3)	-0.032(2)	0.048(3)	-0.051(3)
B1B	0.049(2)	0.051(2)	0.0362(17)	-0.0019(15)	0.0038(15)	-0.0023(16)
N2	0.0315(12)	0.0472(15)	0.0334(12)	0.0024(10)	-0.0045(9)	-0.0033(10)
C21	0.0365(15)	0.0516(19)	0.0312(14)	0.0042(12)	-0.0031(11)	-0.0003(13)
C22	0.0439(18)	0.063(2)	0.0432(17)	0.0081(14)	-0.0041(13)	-0.0093(15)
C23	0.053(2)	0.064(2)	0.0522(19)	0.0157(16)	-0.0049(15)	-0.0058(16)
C24	0.097(3)	0.081(3)	0.076(3)	0.029(2)	-0.012(2)	-0.026(2)
C25	0.0311(14)	0.0491(18)	0.0388(15)	0.0013(12)	-0.0058(11)	-0.0018(12)
C26	0.0399(17)	0.054(2)	0.0453(17)	0.0058(14)	-0.0006(13)	0.0000(14)
C27	0.0351(16)	0.055(2)	0.063(2)	0.0084(16)	-0.0001(14)	-0.0004(13)
C28	0.0433(18)	0.060(2)	0.075(2)	0.0188(18)	0.0058(17)	0.0034(16)
C29	0.0299(15)	0.064(2)	0.0398(16)	0.0077(14)	-0.0068(12)	0.0003(13)
C30	0.0384(17)	0.067(2)	0.0475(18)	0.0057(15)	-0.0028(14)	0.0089(15)
C31	0.050(2)	0.106(3)	0.061(2)	0.012(2)	0.0036(17)	0.025(2)
C32	0.077(3)	0.096(4)	0.098(3)	0.016(3)	0.029(2)	0.036(3)
C33	0.0483(18)	0.058(2)	0.0320(15)	-0.0047(13)	-0.0068(13)	-0.0070(14)
C34	0.058(2)	0.066(2)	0.0459(18)	-0.0075(16)	0.0005(15)	0.0041(17)
C35	0.086(3)	0.096(3)	0.058(2)	-0.018(2)	0.001(2)	0.005(2)
C36	0.098(4)	0.181(6)	0.132(5)	-0.081(5)	-0.002(4)	-0.011(4)
N3	0.0343(13)	0.0475(15)	0.0389(13)	-0.0028(10)	0.0057(10)	-0.0049(10)
C37	0.0396(16)	0.0481(18)	0.0346(15)	-0.0009(12)	0.0066(12)	-0.0001(13)
C38	0.0462(17)	0.054(2)	0.0432(17)	-0.0069(14)	0.0052(13)	-0.0059(14)
C39	0.0524(19)	0.050(2)	0.0425(17)	-0.0022(13)	0.0035(14)	-0.0015(14)
C40	0.083(3)	0.058(2)	0.055(2)	-0.0139(17)	0.0085(18)	-0.0165(19)
C41	0.0398(16)	0.054(2)	0.0363(15)	0.0031(13)	0.0043(12)	-0.0065(13)
C42	0.0384(17)	0.068(2)	0.054(2)	0.0086(16)	0.0013(14)	-0.0004(15)
C43	0.052(2)	0.085(3)	0.067(2)	0.023(2)	0.0013(17)	0.0081(19)
C44	0.070(3)	0.081(3)	0.132(4)	0.049(3)	0.006(3)	0.002(2)
C45	0.0376(16)	0.051(2)	0.0447(16)	-0.0050(13)	0.0088(13)	0.0011(13)
C46	0.058(2)	0.072(3)	0.080(3)	0.019(2)	0.0235(19)	0.0138(18)
C47	0.064(3)	0.064(3)	0.130(4)	0.015(3)	0.017(3)	0.017(2)
C48	0.118(5)	0.078(5)	0.366(13)	-0.046(6)	0.084(7)	0.007(4)
C49	0.0401(17)	0.053(2)	0.0561(19)	-0.0073(15)	0.0079(14)	-0.0144(14)
C50	0.055(2)	0.071(3)	0.069(2)	-0.0186(19)	0.0031(18)	-0.0143(18)
C51	0.056(2)	0.063(3)	0.131(4)	-0.028(3)	0.001(2)	-0.014(2)
C52	0.136(5)	0.091(4)	0.146(5)	-0.038(4)	0.039(4)	-0.040(4)

The form of the anisotropic displacement parameter is:

 $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	x	У	Z	U_{eq} , Å ²
H2A	0.2112	0.0562	0.4111	0.063
H3A	0.0945	0.0112	0.3985	0.084
H3B	0.0537	0.0738	0.4118	0.084
H3C	0.1048	0.0730	0.3729	0.084
H4A	0.1533	-0.0012	0.4625	0.093
H4B	0.2065	0.0513	0.4804	0.093
H4C	0.1179	0.0611	0.4799	0.093
H7A	0.4311	0.2373	0.3817	0.077
H8A	0.4979	0.1433	0.3857	0.082
H9A	0.4493	0.0590	0.4181	0.078
H10A	0.3316	0.0642	0.4485	0.062
H12A	0.1759	0.2277	0.5155	0.059
H13A	0.1761	0.2920	0.5711	0.073
H14A	0.2341	0.3885	0.5682	0.081
H15A	0.2935	0.4189	0.5104	0.081
H16A	0.2933	0.3553	0.4548	0.066
H2B	0.4442	0.4883	0.2162	0.082
H3D	0.5068	0.5427	0.1654	0.114
H3E	0.5388	0.4738	0.1695	0.114
H3F	0.4831	0.4907	0.1340	0.114
H4D	0.3766	0.5667	0.1826	0.138
H4E	0.3427	0.5159	0.1532	0.138
H4F	0.3219	0.5143	0.1994	0.138
H7B	0.4014	0.2809	0.3131	0.076
H8B	0.3927	0.3652	0.3570	0.100
H9B	0.3615	0.4613	0.3344	0.101
H10B	0.3402	0.4790	0.2664	0.079
H12B	0.2299	0.3630	0.1581	0.093
H13B	0.1223	0.3161	0.1343	0.147
H14B	0.1030	0.2101	0.1443	0.207
H15B	0.1943	0.1527	0.1738	0.182
H16B	0.3016	0.1981	0.1991	0.109
H21A	0.5039	0.2309	0.0828	0.048
H21B	0.4477	0.2774	0.1043	0.048
H22A	0.3991	0.1673	0.0653	0.060
H22B	0.3471	0.2122	0.0913	0.060
H23A	0.4738	0.1493	0.1247	0.068
H23B	0.4129	0.1874	0.1494	0.068
H24A	0.3908	0.0809	0.1558	0.101
H24B	0.3219	0.1126	0.1334	0.101

 Table 7. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

Atom	x	У	Ζ	$U_{\rm eq}$, Å ²
H24C	0.3828	0.0746	0.1086	0.101
H25A	0.5549	0.3076	0.0466	0.048
H25B	0.5016	0.3571	0.0675	0.048
H26A	0.4659	0.3942	0.0031	0.056
H26B	0.5253	0.3473	-0.0162	0.056
H27A	0.5635	0.4446	0.0383	0.061
H27B	0.6230	0.3971	0.0203	0.061
H28A	0.6285	0.4913	-0.0144	0.071
H28B	0.6016	0.4376	-0.0438	0.071
H28C	0.5421	0.4852	-0.0259	0.071
H29A	0.3297	0.2829	0.0440	0.054
H29B	0.3628	0.3313	0.0130	0.054
H30A	0.3869	0.4022	0.0640	0.061
H30B	0.3595	0.3529	0.0966	0.061
H31A	0.2630	0.3952	0.0343	0.086
H31B	0.2378	0.3553	0.0721	0.086
H32A	0.2015	0.4593	0.0805	0.109
H32B	0.2613	0.4414	0.1139	0.109
H32C	0.2864	0.4813	0.0761	0.109
H33A	0.4038	0.2152	0.0069	0.055
H33B	0.4481	0.2676	-0.0169	0.055
H34A	0.5109	0.1661	0.0250	0.068
H34B	0.5616	0.2245	0.0137	0.068
H35A	0.5354	0.2076	-0.0547	0.096
H35B	0.5781	0.1502	-0.0353	0.096
H36A	0.4862	0.1173	-0.0759	0.164
H36B	0.4684	0.0973	-0.0312	0.164
H36C	0.4256	0.1549	-0.0507	0.164
H37A	0.0714	0.3281	0.3355	0.049
H37B	0.1232	0.2757	0.3545	0.049
H38A	0.1811	0.3885	0.3226	0.057
H38B	0.2294	0.3371	0.3455	0.057
H39A	0.1084	0.4026	0.3826	0.058
H39B	0.1637	0.3560	0.4049	0.058
H40A	0.1975	0.4586	0.4189	0.078
H40B	0.2635	0.4256	0.3948	0.078
H40C	0.2081	0.4722	0.3725	0.078
H41A	0.1791	0.3492	0.2631	0.052
H41B	0.1353	0.3026	0.2345	0.052
H42A	0.0641	0.3931	0.2835	0.064
Atom	x	У	Z	$U_{\rm eq}$, Å ²
------	---------	--------	--------	-------------------------------
H42B	0.0203	0.3464	0.2548	0.064
H43A	0.0825	0.3912	0.1989	0.081
H43B	0.0313	0.4405	0.2215	0.081
H44A	0.1452	0.4849	0.2048	0.113
H44B	0.1373	0.4822	0.2521	0.113
H44C	0.1886	0.4329	0.2295	0.113
H45A	0.2058	0.2259	0.2626	0.053
H45B	0.2432	0.2700	0.2950	0.053
H46A	0.1657	0.1595	0.3155	0.084
H46B	0.2129	0.2017	0.3455	0.084
H47A	0.2851	0.1508	0.2783	0.103
H47B	0.3232	0.1739	0.3183	0.103
H48A	0.3336	0.0747	0.3112	0.225
H48B	0.2830	0.0907	0.3490	0.225
H48C	0.2448	0.0675	0.3087	0.225
H49A	0.0152	0.2624	0.2932	0.060
H49B	0.0612	0.2056	0.3111	0.060
H50A	0.1014	0.1814	0.2439	0.078
H50B	0.0438	0.2328	0.2285	0.078
H51A	-0.0547	0.1743	0.2625	0.100
H51B	-0.0217	0.1422	0.2235	0.100
H52A	-0.0347	0.0718	0.2731	0.149
H52B	0.0517	0.0798	0.2621	0.149
H52C	0.0188	0.1120	0.3011	0.149

Table 7. Derived Parameters for Hydrogen Atoms (continued)

STRUCTURE REPORT (6b)

XCL Code: DGH1707

Date: 21 December 2017

- **Compound:** Tetra-*n*-butylammonium {N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}benzenecarboximidamidato- κN }(phenyl)borate
- **Formula:** C₃₅H₅₀BN₃O₂
- Supervisor: D. G. Hall

Crystallographer: R. McDonald

Figure Legends

- **Figure 1.** Perspective view of the $\{N'-(hydroxy-\kappa O)-N-\{2-(hydroxy-\kappa O)phenyl\}$ benzenecarboximidamidato- $\kappa N\}$ (phenyl) borate ion showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- **Figure 2.** Alternate view of the {N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}benzenecarboximidamidato- κN }(phenyl)borate ion.

List of Tables

- Table 1.
 Crystallographic Experimental Details
- **Table 2.** Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- **Table 3.**Selected Interatomic Distances
- Table 4.
 Selected Interatomic Angles
- **Table 5.**Torsional Angles
- Table 6.
 Anisotropic Displacement Parameters
- **Table 7.** Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

 Table 1. Crystallographic Experimental Details

A. Crystal Data	
formula	C35H50BN3O2
formula weight	555.59
crystal dimensions (mm)	$0.37 \times 0.23 \times 0.06$
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
unit cell parameters ^a	
<i>a</i> (Å)	9.7871(3)
<i>b</i> (Å)	17.5209(4)
<i>c</i> (Å)	19.0833(5)
β (deg)	94.1963(16)
$V(Å^3)$	3263.61(15)
Ζ	4
ρ_{calcd} (g cm ⁻³)	1.131
μ (mm ⁻¹)	0.533

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	Cu K α (1.54178) (microfocus source)
temperature (°C)	-100
scan type	ω scans (1.0°) (5-10 s exposures) ^c
data collection 2θ limit (deg)	147.97
total data collected	90976 (-12 $\leq h \leq$ 12, -21 $\leq k \leq$ 21, -23 $\leq l \leq$ 23)
independent reflections	6562 ($R_{\text{int}} = 0.0893$
number of observed reflections (NO)	5673 $[F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	direct methods/dual space (SHELXD ^d)
refinement method 2014 ^e)	full-matrix least-squares on F ² (SHELXL-
absorption correction method	multi-scan (TWINABS)
range of transmission factors	0.9194–0.7139

data/restraints/parameters	6562 / 0 / 371
goodness-of-fit (S) ^f [all data]	1.051
final R indices ^g	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]$	0.0624
wR_2 [all data]	0.1793
largest difference peak and hole	0.695 and -0.275 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 9892 reflections with $6.86^{\circ} < 2\theta < 146.32^{\circ}$.

(continued)

Table 1. Crystallographic Experimental Details (continued)

- ^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker. The crystal used for data collection was found to display non-merohedral twinning. Both components of the twin were indexed with the program *CELL_NOW* (Bruker AXS Inc., Madison, WI, 2004). The second twin component can be related to the first component by 180° rotation about the [0.15 0 1] axis in real space and about the [0 0 1] axis in reciprocal space. Integrated intensities for the reflections from the two components were written into a *SHELXL-2014* HKLF 5 reflection file with the data integration program *SAINT* (version 8.38A), using all reflection data (exactly overlapped, partially overlapped and non-overlapped). The refined value of the twin fraction (*SHELXL-2014* BASF parameter) was 0.2962(16).
- ^cData were collected with the detector set at three different positions. Low-angle (detector $2\theta = -33^{\circ}$) and medium-angle (detector $2\theta = 75^{\circ}$) data frames were collected using a scan time of 5 s, and high-angle (detector $2\theta = 117^{\circ}$) frames using a scan time of 10 s.

dSchneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.

^eSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

 $fS = [\Sigma w (F_0^2 - F_c^2)^2 / (n - p)]^{1/2} (n = \text{number of data}; p = \text{number of parameters varied}; w = [\sigma^2 (F_0^2) + (0.0962P)^2 + 1.1326P]^{-1} \text{ where } P = [\text{Max}(F_0^2, 0) + 2F_c^2]/3).$

 $gR_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

(a) atoms of the {N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}benzenecarboximidamidato- κN }(phenyl)borate ion

Atom	x	У	Ζ	$U_{\rm eq}$, Å ²
01	0.11338(17)	0.40487(14)	0.34547(11)	0.0602(5)*
O2	0.2284(2)	0.52211(11)	0.30080(11)	0.0616(6)*
N1	0.34931(17)	0.40647(10)	0.31800(10)	0.0332(4)*
N2	0.3624(2)	0.53620(12)	0.33174(12)	0.0500(5)*
C1	0.3263(2)	0.35108(12)	0.37082(11)	0.0334(4)*
C2	0.1875(2)	0.35359(16)	0.38526(13)	0.0456(6)*
C3	0.1385(3)	0.30799(19)	0.43598(14)	0.0596(8)*
C4	0.2284(4)	0.25794(19)	0.47188(15)	0.0675(10)*
C5	0.3645(4)	0.25397(16)	0.45766(15)	0.0586(7)*
C6	0.4154(3)	0.30152(13)	0.40632(13)	0.0420(5)*
C7	0.4223(2)	0.47184(12)	0.34151(12)	0.0349(5)*
C8	0.5642(2)	0.46924(12)	0.37318(11)	0.0332(4)*
C9	0.6585(2)	0.41968(13)	0.34721(12)	0.0370(5)*
C10	0.7941(2)	0.41953(15)	0.37466(14)	0.0464(6)*
C11	0.8354(3)	0.46764(16)	0.42870(14)	0.0517(7)*
C12	0.7418(3)	0.51623(16)	0.45632(14)	0.0528(7)*
C13	0.6060(3)	0.51762(14)	0.42875(12)	0.0424(5)*
C14	0.1426(2)	0.42200(13)	0.21401(14)	0.0438(5)*
C15	0.2229(3)	0.43284(17)	0.15807(16)	0.0596(7)*
C16	0.1712(4)	0.4251(2)	0.08869(18)	0.0721(9)*
C17	0.0364(4)	0.4071(2)	0.07361(18)	0.0741(10)*
C18	-0.0464(3)	0.39507(19)	0.12757(19)	0.0698(9)*
C19	0.0069(3)	0.40183(16)	0.19726(16)	0.0524(6)*
В	0.2053(3)	0.43871(17)	0.29312(16)	0.0439(6)*

(b) tetra-n-butylammonium ion atoms

Atom	x	У	Ζ	$U_{\rm eq},{ m \AA}^2$
N3	0.1346(2)	0.14983(10)	0.23890(10)	0.0385(4)*
C20	0.0495(3)	0.18481(13)	0.29379(12)	0.0418(5)*
C21	-0.0659(3)	0.13570(16)	0.31794(15)	0.0510(6)*
C22	-0.1568(3)	0.18209(19)	0.36327(19)	0.0656(8)*
C23	-0.2755(4)	0.1373(2)	0.3880(2)	0.0782(10)*
C24	0.2398(2)	0.20954(13)	0.22193(13)	0.0405(5)*
C25	0.3360(3)	0.18709(18)	0.16618(15)	0.0538(7)*
C26	0.4455(3)	0.2473(2)	0.15780(18)	0.0657(8)*
C27	0.5565(4)	0.2465(3)	0.2159(2)	0.0853(12)*
C28	0.0454(3)	0.12743(15)	0.17344(13)	0.0455(6)*
C29	-0.0437(3)	0.18961(18)	0.13967(14)	0.0539(7)*
T-11. 1	Atomic Condin	- 4 1 D: 1		· · · · · · · · · · · · · · · · · · ·

 Table 2.
 Atomic Coordinates and Displacement Parameters (continued)

Atom	x	У	Ζ	$U_{\rm eq},{ m \AA}^2$
C30	-0.1278(3)	0.1562(2)	0.07671(15)	0.0660(9)*
C31	-0.2203(4)	0.2144(3)	0.03875(18)	0.0920(13)*
C32	0.2035(3)	0.07685(14)	0.26450(16)	0.0519(6)*
C33	0.2931(4)	0.0815(2)	0.33208(18)	0.0695(9)*
C34	0.3711(4)	0.0030(2)	0.3409(2)	0.0784(10)*
C35	0.4293(4)	-0.0074(3)	0.4133(2)	0.1040(15)*

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})].$

		_
Table 3.	Selected Interatomic Distances	(Å)

(a) within the {N'-(hydroxy- κ O)-N-{2-(hydroxy- κ O)phenyl}benzenecarboximidamidato- κ N}-(phenyl)borate ion

Atom1	Atom2	Distance	Atom1	Atom2	Distance
01	C2	1.353(3)	C7	C8	1.474(3)
01	В	1.514(4)	C8	C9	1.385(3)
O2	N2	1.420(3)	C8	C13	1.395(3)
O2	В	1.484(4)	C9	C10	1.390(3)
N1	C1	1.429(3)	C10	C11	1.370(4)
N1	C7	1.406(3)	C11	C12	1.383(4)
N1	В	1.559(3)	C12	C13	1.394(4)
N2	C7	1.278(3)	C14	C15	1.384(4)
C1	C2	1.406(3)	C14	C19	1.389(4)
C1	C6	1.374(3)	C14	В	1.614(4)
C2	C3	1.369(4)	C15	C16	1.389(4)
C3	C4	1.387(5)	C16	C17	1.366(5)
C4	C5	1.380(5)	C17	C18	1.372(5)
C5	C6	1.405(4)	C18	C19	1.397(4)

(b) within the tetra-n-butylammonium ion

Atom1	Atom2	Distance	Atom1	Atom2	Distance
N3	C20	1.515(3)	C25	C26	1.521(4)
N3	C24	1.519(3)	C26	C27	1.494(5)
N3	C28	1.522(3)	C28	C29	1.510(4)
N3	C32	1.510(3)	C29	C30	1.523(4)
C20	C21	1.518(3)	C30	C31	1.513(5)
C21	C22	1.521(4)	C32	C33	1.508(4)
C22	C23	1.506(4)	C33	C34	1.575(5)
C24	C25	1.523(4)	C34	C35	1.468(5)

Table 4. Selected Interatomic Angles (deg)

(a) within the {N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}benzenecarboximidamidato- κN }-(phenyl)borate ion

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
C2	O1	В		N2	C7	C8	119.7(2)
	108.07(1	8)		C7	C8	C9	
N2	O2	В			120.36(19))	
	109.98(1	7)		C7	C8	C13	120.5(2)
C1	N1	C7		C9	C8	C13	119.1(2)
	115.53(1	7)		C8	C9	C10	120.6(2)
C1	N1	В		C9	C10	C11	120.3(3)
	105.97(1	8)		C10	C11	C12	119.9(2)
C7	N1	В		C11	C12	C13	120.5(2)
	103.21(1	8)		C8	C13	C12	119.7(2)
O2	N2	C7		C15	C14	C19	116.4(3)
	107.84(1	9)		C15	C14	В	119.8(2)
N1	C1	C2	108.8(2)	C19	C14	В	123.6(3)
N1	C1	C6	130.5(2)	C14	C15	C16	122.3(3)
C2	C1	C6	120.7(2)	C15	C16	C17	120.1(3)
01	C2	C1	113.4(2)	C16	C17	C18	119.4(3)
01	C2	C3	125.7(2)	C17	C18	C19	120.1(3)
C1	C2	C3	120.9(3)	C14	C19	C18	121.6(3)
C2	C3	C4	118.4(3)	O1	В	O2	114.5(2)
C3	C4	C5	121.4(3)	01	В	N1	103.0(2)
C4	C5	C6	120.3(3)	01	В	C14	110.0(2)
C1	C6	C5	118.3(3)	O2	В	N1	
N1	C7	N2	117.1(2)		101.46(19))	
N1	C7	C8		O2	В	C14	108.4(2)
	123.15(1	8)		N1	В	C14	119.5(2)

(b) within the tetra-n-butylammonium ion

Atom1	Atom2	Atom3	Angle
C20	N3	C24	
	106.52(17	7)	
C20	N3	C28	
	111.11(18	3)	
C20	N3	C32	112.0(2)
C24	N3	C28	
	111.09(19))	
C24	N3	C32	
	111.01(19))	
C28	N3	C32	
	105.24(18	8)	

Atom2	Atom3	Angle
C20	C21	
116.08(19)	
C21	C22	110.4(2)
C22	C23	113.3(3)
	Atom2 C20 116.08(19 C21 C22	Atom2 Atom3 C20 C21 116.08(19) C21 C22 C22 C23

N3	C24	C25	115.7(2)
C24	C25	C26	111.7(2)
C25	C26	C27	113.3(3)
N3	C28	C29	116.3(2)
C28	C29	C30	108.7(2)
C29	C30	C31	112.9(3)
N3	C32	C33	116.7(2)
C32	C33	C34	106.9(3)
C33	C34	C35	111.1(4)

Table 5. Torsional Angles (deg)

(a) within the {N'-(hydroxy- κO)-N-{2-(hydroxy- κO)phenyl}benzenecarboximidamidato- κN }-(phenyl)borate ion

Atom1	Atom2	Atom3	Atom4	Angle	Ato	m1 Atom	2 Ato	m3 Ator	n4
	Angle								
В	01	C2	C1	4.7(3)	01	C2	C3	C4	179.6(2)
В	01	C2	C3	-176.3(2)	C1	C2	C3	C4	-1.4(4)
C2	01	В	O2	-117.4(2)	C2	C3	C4	C5	0.4(4)
C2	01	В	N1	-8.2(3)	C3	C4	C5	C6	0.5(4)
C2	01	В	C14	120.3(2)	C4	C5	C6	C1	-0.5(4)
В	O2	N2	C7	1.7(3)	N1	C7	C8	C9	38.6(3)
N2	O2	В	01	105.4(2)	N1	C7	C8	C13	-142.7(2)
N2	O2	В	N1	-4.7(3)	N2	C7	C8	C9	-138.4(2)
N2	O2	В	C14	-131.4(2)	N2	C7	C8	C13	40.3(3)
C7	N1	C1	C2	106.9(2)	C7	C8	C9	C10	176.9(2)
C7	N1	C1	C6	-72.0(3)	C13	C8	C9	C10	-1.8(3)
В	N1	C1	C2	-6.7(2)	C7	C8	C13	C12	-177.7(2)
В	N1	C1	C6	174.4(2)	C9	C8	C13	C12	1.1(3)
C1	N1	C7	N2	-120.8(2)	C8	C9	C10	C11	1.1(4)
C1	N1	C7	C8	62.1(3)	C9	C10	C11	C12	0.4(4)
В	N1	C7	N2	-5.6(3)	C10	C11	C12	C13	-1.1(4)
В	N1	C7	C8	177.3(2)	C11	C12	C13	C8	0.4(4)
C1	N1	В	O1	8.9(2)	C19	C14	C15	C16	0.8(4)
C1	N1	В	O2	127.6(2)	В	C14	C15	C16	-174.9(3)
C1	N1	В	C14	-113.4(2)	C15	C14	C19	C18	-1.8(4)
C7	N1	В	O1	-112.9(2)	В	C14	C19	C18	173.7(3)
C7	N1	В	O2	5.8(2)	C15	C14	В	01	-166.1(2)
C7	N1	В	C14	124.8(2)	C15	C14	В	O2	68.1(3)
O2	N2	C7	N1	2.7(3)	C15	C14	В	N1	-47.3(4)
O2	N2	C7	C8	179.9(2)	C19	C14	В	01	18.6(3)
N1	C1	C2	O1	1.5(3)	C19	C14	В	O2	-107.3(3)
N1	C1	C2	C3	-177.7(2)	C19	C14	В	N1	137.3(3)
C6	C1	C2	O1	-179.5(2)	C14	C15	C16	C17	0.9(5)
C6	C1	C2	C3	1.4(3)	C15	C16	C17	C18	-1.6(5)
N1	C1	C6	C5	178.4(2)	C16	C17	C18	C19	0.6(5)
C2	C1	C6	C5	-0.5(3)	C17	C18	C19	C14	1.2(5)

(b) within the tetra-n-butylammonium ion

Atom1	Atom2	Atom3	Atom4	Angle	Atom1 Atom2 Atom3 Atom4				n4	
	Angle									
C24	N3	C20	C21	178.6(2)	C	20	N3	C24	C25	-178.8(2)
C28	N3	C20	C21	57.5(3)	C	28	N3	C24	C25	-57.7(3)
C32	N3	C20	C21	-59.9(3)	C.	32	N3	C24	C25	59.1(3)

C20	N3	C28	C29	54.5(3)
C24	N3	C28	C29	-63.9(3)

Atom2	Atom3	Atom4	Angle	Atom1 Atom2 Atom3 Atom4				
Angle								
N3	C28	C29	175.9(2)	N3	C24	C25	C26	-174.7(2)
N3	C32	C33	-55.7(3)	C24	4 C25	C26	C27	75.8(4)
N3	C32	C33	63.2(3)	N3	C28	C29	C30	-178.4(2)
N3	C32	C33	-176.6(3)	C28	8 C29	C30	C31	-179.6(3)
C20	C21	C22	-170.6(2)	N3	C32	C33	C34	-170.9(3)
C21	C22	C23	178.8(3)	C32	2 C33	C34	C35	-163.5(3)
	Atom2 Angle N3 N3 N3 N3 C20 C21	Atom2Atom3Angle	Atom2Atom3Atom4Angle	Atom2Atom3Atom4AngleAngleN3C28C29175.9(2)N3C32C33-55.7(3)N3C32C3363.2(3)N3C32C33-176.6(3)C20C21C22-170.6(2)C21C22C23178.8(3)	Atom2Atom3Atom4AngleAAngleN3C28C29175.9(2)N3N3C32C33-55.7(3)C24N3C32C3363.2(3)N3N3C32C33-176.6(3)C28C20C21C22-170.6(2)N3C21C22C23178.8(3)C32	Atom2Atom3Atom4AngleAtom1Atom1AngleN3C28C29175.9(2)N3C24N3C32C33-55.7(3)C24C25N3C32C3363.2(3)N3C28N3C32C33-176.6(3)C28C29C20C21C22-170.6(2)N3C32C21C22C23178.8(3)C32C33	Atom2Atom3Atom4AngleAtom1Atom2Atom3AngleN3C28C29175.9(2)N3C24C25N3C32C33-55.7(3)C24C25C26N3C32C3363.2(3)N3C28C29N3C32C33-176.6(3)C28C29C30C20C21C22-170.6(2)N3C32C33C21C22C23178.8(3)C32C33C34	Atom2Atom3Atom4AngleAtom1Atom2Atom3Atom3AngleN3C28C29175.9(2)N3C24C25C26N3C32C33-55.7(3)C24C25C26C27N3C32C3363.2(3)N3C28C29C30N3C32C33-176.6(3)C28C29C30C31C20C21C22-170.6(2)N3C32C33C34C35

Table 5.	Torsional	Angles ((continued)
----------	-----------	----------	-------------

Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
01	0.0270(8)	0.0899(15)	0.0639(12)	-0.0100(11)	0.0047(8)	0.0075(9)
O2	0.0508(11)	0.0455(10)	0.0846(14)	-0.0187(10)	-0.0225(10)	0.0214(9)
N1	0.0257(8)	0.0313(9)	0.0422(9)	-0.0036(7)	0.0007(7)	0.0034(7)
N2	0.0470(12)	0.0371(11)	0.0640(13)	-0.0069(9)	-0.0093(10)	0.0074(9)
C1	0.0322(10)	0.0334(10)	0.0349(10)	-0.0093(8)	0.0052(8)	-0.0075(8)
C2	0.0349(12)	0.0579(15)	0.0445(12)	-0.0208(11)	0.0053(10)	-0.0114(11)
C3	0.0507(15)	0.082(2)	0.0477(14)	-0.0217(14)	0.0159(13)	-0.0320(15)
C4	0.090(2)	0.072(2)	0.0423(13)	-0.0061(13)	0.0193(15)	-0.0452(19)
C5	0.079(2)	0.0477(15)	0.0485(14)	0.0064(12)	0.0030(14)	-0.0132(14)
C6	0.0443(13)	0.0374(12)	0.0442(12)	-0.0017(10)	0.0036(10)	-0.0053(10)
C7	0.0320(10)	0.0297(10)	0.0431(11)	-0.0029(9)	0.0034(9)	-0.0002(8)
C8	0.0326(10)	0.0297(10)	0.0374(10)	0.0035(8)	0.0034(9)	-0.0071(8)
C9	0.0307(10)	0.0396(12)	0.0405(11)	-0.0009(9)	0.0018(9)	-0.0057(9)
C10	0.0292(11)	0.0523(14)	0.0575(14)	0.0073(11)	0.0032(10)	-0.0062(10)
C11	0.0391(13)	0.0547(15)	0.0592(15)	0.0135(12)	-0.0117(12)	-0.0165(12)
C12	0.0631(17)	0.0486(14)	0.0441(13)	0.0011(11)	-0.0131(12)	-0.0225(13)
C13	0.0495(13)	0.0361(11)	0.0417(11)	-0.0007(9)	0.0042(10)	-0.0097(10)
C14	0.0369(12)	0.0353(11)	0.0574(14)	-0.0053(10)	-0.0080(11)	0.0106(9)
C15	0.0534(16)	0.0595(17)	0.0654(17)	-0.0132(14)	0.0004(14)	0.0024(14)
C16	0.084(2)	0.074(2)	0.0586(17)	-0.0126(16)	0.0038(17)	0.0036(19)
C17	0.091(3)	0.067(2)	0.0599(18)	-0.0171(15)	-0.0248(18)	0.0194(18)
C18	0.0533(17)	0.0662(19)	0.085(2)	-0.0238(17)	-0.0255(17)	0.0131(15)
C19	0.0393(13)	0.0489(14)	0.0674(16)	-0.0125(13)	-0.0059(12)	0.0089(11)
В	0.0281(12)	0.0478(15)	0.0552(15)	-0.0102(12)	-0.0019(11)	0.0121(11)
N3	0.0392(10)	0.0293(9)	0.0467(10)	-0.0091(8)	0.0018(9)	-0.0046(8)
C20	0.0427(12)	0.0389(12)	0.0439(12)	-0.0109(10)	0.0035(10)	-0.0051(10)
C21	0.0476(14)	0.0466(14)	0.0592(15)	-0.0071(12)	0.0072(12)	-0.0091(11)
C22	0.0519(16)	0.0666(19)	0.081(2)	-0.0214(16)	0.0209(15)	-0.0168(14)
C23	0.0577(18)	0.074(2)	0.106(3)	-0.014(2)	0.030(2)	-0.0130(17)
C24	0.0366(12)	0.0320(11)	0.0524(13)	-0.0063(10)	0.0004(10)	-0.0060(9)
C25	0.0463(14)	0.0641(17)	0.0517(14)	-0.0113(12)	0.0069(12)	-0.0079(13)
C26	0.0514(17)	0.074(2)	0.0739(19)	0.0056(16)	0.0168(15)	-0.0048(15)
C27	0.066(2)	0.115(3)	0.077(2)	-0.036(2)	0.0161(18)	-0.037(2)
C28	0.0404(12)	0.0457(13)	0.0505(13)	-0.0174(11)	0.0037(11)	-0.0080(11)
C29	0.0448(14)	0.0678(18)	0.0480(14)	-0.0140(13)	-0.0031(11)	0.0034(13)
C30	0.0569(17)	0.096(2)	0.0447(14)	-0.0015(15)	-0.0010(13)	-0.0292(17)
C31	0.060(2)	0.163(4)	0.0509(17)	-0.004(2)	-0.0100(15)	0.004(2)
C32	0.0478(14)	0.0338(12)	0.0738(17)	-0.0003(12)	0.0015(13)	-0.0010(11)
C33	0.0652(19)	0.076(2)	0.0669(18)	0.0111(16)	-0.0007(16)	0.0142(17)

Table 6.	Anisotropic Displacement Parameters $(U_{ij}, Å^2)$	1

 Table 6.
 Anisotropic Displacement Parameters (continued)

Atom	U_{11}	U_{22}	U_{33}	U_{23}	<i>U</i> ₁₃	U_{12}
C34	0.063(2)	0.092(3)	0.080(2)	0.014(2)	0.0026(18)	-0.0046(19)
C35	0.072(2)	0.146(4)	0.095(3)	0.043(3)	0.012(2)	0.013(3)

The form of the anisotropic displacement parameter is:

 $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	x	У	Ζ	U_{eq} , Å ²
H3	0.045174	0.310549	0.446357	0.072
H4	0.195633	0.225710	0.506998	0.081
Н5	0.423961	0.218953	0.482680	0.070
H6	0.509071	0.299452	0.396402	0.050
H9	0.630362	0.385499	0.310301	0.044
H10	0.858237	0.385928	0.355886	0.056
H11	0.928238	0.467627	0.447165	0.062
H12	0.770318	0.548890	0.494353	0.063
H13	0.542224	0.551341	0.447693	0.051
H15	0.316546	0.446064	0.167455	0.072
H16	0.229699	0.432212	0.051653	0.086
H17	0.000276	0.403011	0.026180	0.089
H18	-0.140038	0.382127	0.117534	0.084
H19	-0.051182	0.392392	0.234082	0.063
H20A	0.009563	0.233079	0.274690	0.050
H20B	0.111408	0.197938	0.335400	0.050
H21A	-0.027036	0.091732	0.345218	0.061
H21B	-0.121309	0.115646	0.276499	0.061
H22A	-0.100646	0.201419	0.404764	0.079
H22B	-0.192751	0.226770	0.336031	0.079
H23A	-0.330015	0.170078	0.416778	0.094
H23B	-0.332987	0.118944	0.347196	0.094
H23C	-0.240814	0.093574	0.415980	0.094
H24A	0.295860	0.222070	0.265724	0.049
H24B	0.190559	0.256543	0.206164	0.049
H25A	0.380528	0.137905	0.179390	0.065
H25B	0.282221	0.179860	0.120670	0.065
H26A	0.486771	0.238928	0.112590	0.079
H26B	0.401829	0.298306	0.155910	0.079
H27A	0.623676	0.286371	0.207585	0.102
H27B	0.516825	0.256011	0.260747	0.102
H27C	0.601828	0.196591	0.217396	0.102
H28A	0.105846	0.107969	0.138075	0.055
H28B	-0.014619	0.084787	0.185890	0.055
H29A	0.014226	0.231855	0.124246	0.065
H29B	-0.105334	0.210165	0.173973	0.065
H30A	-0.064875	0.134869	0.043411	0.079
H30B	-0.184473	0.113778	0.092869	0.079
H31A	-0.271843	0.189936	-0.001118	0.110
H31B	-0.284356	0.234896	0.071129	0.110

 Table 7. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

Atom	x	У	Ζ	$U_{\rm eq}$, Å ²
H31C	-0.164713	0.255995	0.021652	0.110
H32A	0.131444	0.038274	0.270592	0.062
H32B	0.260188	0.057962	0.227247	0.062
H33A	0.236530	0.090273	0.372253	0.083
H33B	0.359301	0.124001	0.330010	0.083
H34A	0.306801	-0.039239	0.328247	0.094
H34B	0.445517	0.001343	0.308446	0.094
H35A	0.477170	-0.056500	0.417358	0.125
H35B	0.494136	0.033968	0.425610	0.125
H35C	0.355569	-0.006570	0.445390	0.125

Table 7. Derived Parameters	for Hydrogen Aton	ns (continued)
-----------------------------	-------------------	----------------

STRUCTURE REPORT (7)

XCL Code: DGH1706

Date: 21 December 2017

- **Compound:** 3,7a-Diphenyl-5,6-dihydro[1,3]oxazolo[3,2-*d*][1,2,4]oxadiazole
- Formula: $C_{16}H_{14}N_2O_2$
- Supervisor: D. G. Hall

Crystallographer: R. McDonald

Figure Legends

- **Figure 1.** Perspective view of the 3,7a-diphenyl-5,6-dihydro[1,3]oxazolo[3,2-*d*][1,2,4]oxadiazole molecule showing the atom labelling scheme. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 30% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.
- Figure 2. Alternate view of the molecule.

List of Tables

- Table 1.
 Crystallographic Experimental Details
- Table 2.
 Atomic Coordinates and Equivalent Isotropic Displacement Parameters
- Table 3.
 Selected Interatomic Distances
- **Table 4.**Selected Interatomic Angles
- **Table 5.**Torsional Angles
- Table 6.
 Anisotropic Displacement Parameters
- Table 7.
 Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms

 Table 1. Crystallographic Experimental Details

A. Crystal Data	
formula	$C_{16}H_{14}N_2O_2$
formula weight	266.29
crystal dimensions (mm)	$0.73 \times 0.55 \times 0.12$
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
unit cell parameters ^a	
<i>a</i> (Å)	8.9000(2)
<i>b</i> (Å)	9.5626(3)
<i>c</i> (Å)	15.9864(5)
β (deg)	98.4476(10)
$V(Å^3)$	1345.80(7)
Ζ	4
ρ_{calcd} (g cm ⁻³)	1.314
μ (mm ⁻¹)	0.714

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	Cu K α (1.54178) (microfocus source)
temperature (°C)	-100
scan type	ω and ϕ scans (1.0°) (5 s exposures)
data collection 2θ limit (deg)	147.57
total data collected	9199 (-11 $\leq h \leq 11$, -11 $\leq k \leq 11$, -16 $\leq l \leq 19$)
independent reflections	2621 ($R_{\text{int}} = 0.0354$)
number of observed reflections (NO)	2545 $[F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	direct methods/dual space (SHELXD ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL–2014 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	1.0000-0.5852
data/restraints/parameters	2621 / 0 / 181

goodness-of-fit (S) ^e [all data]	1.034
final R indices ^f	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0403
wR_2 [all data]	0.1064
largest difference peak and hole	0.267 and -0.232 e Å ⁻³

*^a*Obtained from least-squares refinement of 9708 reflections with $10.82^{\circ} < 2\theta < 147.58^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

(continued)

Table 1. Crystallographic Experimental Details (continued)

^cSchneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.

^dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.

 ${}^{e}S = [\Sigma w(F_0{}^2 - F_c{}^2)^2 / (n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^2(F_0{}^2) + (0.0597P)^2 + 0.3398P]^{-1} \text{ where } P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$

 $f_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ w_{R_2} = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

x	У	Ζ	$U_{\rm eq},{ m \AA}^2$
0.23178(10)	0.35084(9)	0.37277(6)	0.0404(2)*
0.08866(10)	0.39212(8)	0.23928(6)	0.0389(2)*
0.13377(12)	0.33608(11)	0.43632(7)	0.0375(3)*
0.03611(10)	0.20586(8)	0.32277(6)	0.0249(2)*
0.02483(12)	0.25612(11)	0.40362(7)	0.0279(2)*
-0.09659(13)	0.22720(11)	0.25674(7)	0.0302(3)*
-0.07449(14)	0.37863(12)	0.23196(9)	0.0375(3)*
0.15893(12)	0.29029(10)	0.29612(8)	0.0293(3)*
-0.10125(12)	0.21773(11)	0.44928(7)	0.0284(2)*
-0.16039(13)	0.08234(12)	0.44351(8)	0.0342(3)*
-0.27817(15)	0.04789(15)	0.48778(9)	0.0438(3)*
-0.33918(16)	0.14800(17)	0.53552(9)	0.0482(3)*
-0.28170(16)	0.28271(16)	0.54041(9)	0.0459(3)*
-0.16162(15)	0.31789(13)	0.49809(8)	0.0367(3)*
0.27337(12)	0.20786(10)	0.25485(7)	0.0269(2)*
0.39077(13)	0.13679(12)	0.30465(8)	0.0346(3)*
0.48641(14)	0.05010(14)	0.26710(9)	0.0422(3)*
0.46677(15)	0.03379(13)	0.18035(9)	0.0414(3)*
0.35207(15)	0.10624(13)	0.13047(8)	0.0376(3)*
0.25573(13)	0.19323(11)	0.16755(8)	0.0313(3)*
	x 0.23178(10) 0.08866(10) 0.13377(12) 0.03611(10) 0.02483(12) -0.09659(13) -0.07449(14) 0.15893(12) -0.10125(12) -0.16039(13) -0.27817(15) -0.33918(16) -0.28170(16) -0.16162(15) 0.27337(12) 0.39077(13) 0.48641(14) 0.46677(15) 0.35207(15) 0.25573(13)	x y $0.23178(10)$ $0.35084(9)$ $0.08866(10)$ $0.39212(8)$ $0.13377(12)$ $0.33608(11)$ $0.03611(10)$ $0.20586(8)$ $0.02483(12)$ $0.25612(11)$ $-0.09659(13)$ $0.22720(11)$ $-0.07449(14)$ $0.37863(12)$ $0.15893(12)$ $0.29029(10)$ $-0.10125(12)$ $0.21773(11)$ $-0.16039(13)$ $0.08234(12)$ $-0.27817(15)$ $0.04789(15)$ $-0.33918(16)$ $0.14800(17)$ $-0.28170(16)$ $0.28271(16)$ $-0.16162(15)$ $0.31789(13)$ $0.27337(12)$ $0.20786(10)$ $0.39077(13)$ $0.13679(12)$ $0.48641(14)$ $0.05010(14)$ $0.46677(15)$ $0.03379(13)$ $0.35207(15)$ $0.10624(13)$ $0.25573(13)$ $0.19323(11)$	x y z $0.23178(10)$ $0.35084(9)$ $0.37277(6)$ $0.08866(10)$ $0.39212(8)$ $0.23928(6)$ $0.13377(12)$ $0.33608(11)$ $0.43632(7)$ $0.03611(10)$ $0.20586(8)$ $0.32277(6)$ $0.02483(12)$ $0.25612(11)$ $0.40362(7)$ $-0.09659(13)$ $0.22720(11)$ $0.25674(7)$ $-0.07449(14)$ $0.37863(12)$ $0.23196(9)$ $0.15893(12)$ $0.29029(10)$ $0.29612(8)$ $-0.10125(12)$ $0.21773(11)$ $0.44928(7)$ $-0.16039(13)$ $0.08234(12)$ $0.44351(8)$ $-0.27817(15)$ $0.04789(15)$ $0.48778(9)$ $-0.33918(16)$ $0.14800(17)$ $0.53552(9)$ $-0.28170(16)$ $0.28271(16)$ $0.54041(9)$ $-0.16162(15)$ $0.31789(13)$ $0.49809(8)$ $0.27337(12)$ $0.20786(10)$ $0.25485(7)$ $0.39077(13)$ $0.13679(12)$ $0.30465(8)$ $0.48641(14)$ $0.05010(14)$ $0.26710(9)$ $0.46677(15)$ $0.03379(13)$ $0.18035(9)$ $0.35207(15)$ $0.10624(13)$ $0.13047(8)$ $0.25573(13)$ $0.19323(11)$ $0.16755(8)$

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters

Anisotropically-refined atoms are marked with an asterisk (*). The form of the anisotropic displacement parameter is: $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$.

Atom1	Atom2	Distance	Atom1	Atom2	Distance
01	N1	1.4399(13)	C5	C10	1.3921(16)
01	C4	1.4226(14)	C6	C7	1.3878(17)
O2	C3	1.4453(15)	C7	C8	1.384(2)
O2	C4	1.4135(14)	C8	C9	1.384(2)
N1	C1	1.2842(15)	С9	C10	1.3876(18)
N2	C1	1.3963(14)	C11	C12	1.3939(16)
N2	C2	1.4780(14)	C11	C16	1.3883(17)
N2	C4	1.4714(13)	C12	C13	1.3865(18)
C1	C5	1.4722(15)	C13	C14	1.381(2)
C2	C3	1.5217(15)	C14	C15	1.3852(18)
C4	C11	1.5137(14)	C15	C16	1.3885(16)
C5	C6	1.3955(16)			

Table 3.	Selected	Interatomic	Distances ((Å))
----------	----------	-------------	-------------	-----	---

Table 4. Selected Interatomic Angles (deg)

Atom1	Atom2	Atom3	Angle	Atom1	Atom2	Atom3	Angle
N1	01	C4	108.73(8)	C1	C5	C6	120.40(10)
C3	O2	C4	109.57(8)	C1	C5	C10	119.43(10)
01	N1	C1	105.70(9)	C6	C5	C10	120.17(11)
C1	N2	C2	117.06(9)	C5	C6	C7	119.49(12)
C1	N2	C4	103.69(8)	C6	C7	C8	120.26(12)
C2	N2	C4	105.49(8)	C7	C8	C9	120.22(12)
N1	C1	N2	115.41(10)	C8	C9	C10	120.19(12)
N1	C1	C5	122.11(10)	C5	C10	C9	119.65(12)
N2	C1	C5	122.47(9)	C4	C11	C12	120.06(10)
N2	C2	C3	101.36(9)	C4	C11	C16	120.44(10)
O2	C3	C2	103.33(9)	C12	C11	C16	119.31(10)
01	C4	O2	112.08(8)	C11	C12	C13	120.04(12)
01	C4	N2	103.76(9)	C12	C13	C14	120.48(12)
01	C4	C11	109.67(9)	C13	C14	C15	119.70(11)
O2	C4	N2	106.66(9)	C14	C15	C16	120.20(12)
O2	C4	C11	109.94(9)	C11	C16	C15	120.25(11)
N2	C4	C11	114.62(8)				

Atom1	Atom2	Atom3	Atom4	Angle	Atom1	Atom2	Atom3	Atom4	Angle
C4	O1	N1	C1	8.70(13)	N2	C1	C5	C10	-141.86(11)
N1	01	C4	O2	99.42(10)	N2	C2	C3	O2	35.27(12)
N1	01	C4	N2	-15.29(11)	01	C4	C11	C12	34.62(13)
N1	01	C4	C11	-138.18(9)	01	C4	C11	C16	-150.45(10)
C4	O2	C3	C2	-23.89(13)	O2	C4	C11	C12	158.29(10)
C3	O2	C4	01	-110.48(10)	O2	C4	C11	C16	-26.78(13)
C3	O2	C4	N2	2.43(12)	N2	C4	C11	C12	-81.59(13)
C3	O2	C4	C11	127.26(10)	N2	C4	C11	C16	93.34(12)
O1	N1	C1	N2	2.34(14)	C1	C5	C6	C7	179.32(12)
01	N1	C1	C5	-179.02(10)	C10	C5	C6	C7	-0.96(18)
C2	N2	C1	N1	-127.50(11)	C1	C5	C10	C9	179.20(12)
C2	N2	C1	C5	53.87(13)	C6	C5	C10	C9	-0.52(19)
C4	N2	C1	N1	-11.82(13)	C5	C6	C7	C8	1.7(2)
C4	N2	C1	C5	169.54(10)	C6	C7	C8	C9	-0.9(2)
C1	N2	C2	C3	80.34(11)	C7	C8	C9	C10	-0.6(2)
C4	N2	C2	C3	-34.34(10)	C8	C9	C10	C5	1.3(2)
C1	N2	C4	01	15.80(10)	C4	C11	C12	C13	173.54(10)
C1	N2	C4	O2	-102.71(10)	C16	C11	C12	C13	-1.44(17)
C1	N2	C4	C11	135.37(10)	C4	C11	C16	C15	-173.55(10)
C2	N2	C4	01	139.40(9)	C12	C11	C16	C15	1.41(16)
C2	N2	C4	O2	20.90(10)	C11	C12	C13	C14	0.26(19)
C2	N2	C4	C11	-101.03(11)	C12	C13	C14	C15	1.0(2)
N1	C1	C5	C6	-140.68(12)	C13	C14	C15	C16	-1.0(2)
N1	C1	C5	C10	39.59(17)	C14	C15	C16	C11	-0.20(18)
N2	C1	C5	C6	37.86(16)					

U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
0.0400(5)	0.0360(5)	0.0485(6)	-0.0193(4)	0.0176(4)	-0.0172(4)
0.0420(5)	0.0154(4)	0.0627(6)	0.0089(3)	0.0194(4)	0.0029(3)
0.0388(5)	0.0336(5)	0.0426(6)	-0.0157(4)	0.0142(4)	-0.0096(4)
0.0296(4)	0.0153(4)	0.0310(5)	-0.0032(3)	0.0081(4)	-0.0033(3)
0.0335(5)	0.0178(5)	0.0332(6)	-0.0050(4)	0.0074(4)	-0.0013(4)
0.0363(6)	0.0198(5)	0.0342(6)	0.0003(4)	0.0037(4)	-0.0022(4)
0.0402(6)	0.0205(5)	0.0522(8)	0.0044(5)	0.0086(5)	0.0030(4)
0.0350(6)	0.0143(5)	0.0405(7)	-0.0034(4)	0.0118(5)	-0.0052(4)
0.0314(5)	0.0256(5)	0.0287(6)	-0.0012(4)	0.0057(4)	-0.0007(4)
0.0391(6)	0.0282(6)	0.0358(6)	-0.0011(4)	0.0068(5)	-0.0050(4)
0.0457(7)	0.0447(7)	0.0410(8)	0.0062(5)	0.0064(5)	-0.0152(6)
0.0400(7)	0.0678(10)	0.0390(8)	0.0062(6)	0.0131(5)	-0.0070(6)
0.0457(7)	0.0549(8)	0.0403(8)	-0.0042(6)	0.0175(6)	0.0055(6)
0.0428(6)	0.0317(6)	0.0371(7)	-0.0051(5)	0.0111(5)	0.0007(5)
0.0306(5)	0.0162(5)	0.0355(6)	0.0011(4)	0.0099(4)	-0.0042(4)
0.0374(6)	0.0343(6)	0.0326(6)	0.0042(4)	0.0068(5)	-0.0002(5)
0.0364(6)	0.0425(7)	0.0483(8)	0.0104(5)	0.0086(5)	0.0110(5)
0.0421(7)	0.0356(6)	0.0506(8)	0.0035(5)	0.0208(6)	0.0099(5)
0.0468(7)	0.0347(6)	0.0335(7)	0.0009(5)	0.0134(5)	0.0027(5)
0.0357(6)	0.0235(5)	0.0352(6)	0.0040(4)	0.0069(4)	0.0016(4)
	U_{11} 0.0400(5) 0.0420(5) 0.0388(5) 0.0296(4) 0.0335(5) 0.0363(6) 0.0402(6) 0.0350(6) 0.0350(6) 0.0391(6) 0.0457(7) 0.0400(7) 0.0457(7) 0.0428(6) 0.0364(6) 0.0374(6) 0.0364(6) 0.0357(6)	U_{11} U_{22} 0.0400(5)0.0360(5)0.0420(5)0.0154(4)0.0388(5)0.0336(5)0.0296(4)0.0153(4)0.0335(5)0.0178(5)0.0363(6)0.0198(5)0.0402(6)0.0205(5)0.0350(6)0.0143(5)0.0391(6)0.0282(6)0.0457(7)0.0447(7)0.0400(7)0.0678(10)0.0457(7)0.0549(8)0.0428(6)0.0317(6)0.0306(5)0.0162(5)0.0374(6)0.0343(6)0.0458(7)0.0347(6)0.0357(6)0.0235(5)	U_{11} U_{22} U_{33} 0.0400(5)0.0360(5)0.0485(6)0.0420(5)0.0154(4)0.0627(6)0.0388(5)0.0336(5)0.0426(6)0.0296(4)0.0153(4)0.0310(5)0.0335(5)0.0178(5)0.0332(6)0.0363(6)0.0198(5)0.0342(6)0.0402(6)0.0205(5)0.0522(8)0.0350(6)0.0143(5)0.0405(7)0.0314(5)0.0282(6)0.0358(6)0.0457(7)0.0447(7)0.0410(8)0.0400(7)0.0678(10)0.0390(8)0.0457(7)0.0549(8)0.0403(8)0.0428(6)0.0317(6)0.0371(7)0.0306(5)0.0162(5)0.0326(6)0.0374(6)0.0343(6)0.0326(6)0.0421(7)0.0347(6)0.0335(7)0.0357(6)0.0235(5)0.0352(6)	U_{11} U_{22} U_{33} U_{23} 0.0400(5)0.0360(5)0.0485(6)-0.0193(4)0.0420(5)0.0154(4)0.0627(6)0.0089(3)0.0388(5)0.0336(5)0.0426(6)-0.0157(4)0.0296(4)0.0153(4)0.0310(5)-0.0032(3)0.0335(5)0.0178(5)0.0332(6)-0.0050(4)0.0363(6)0.0198(5)0.0342(6)0.0003(4)0.0402(6)0.0205(5)0.0522(8)0.0044(5)0.0350(6)0.0143(5)0.0405(7)-0.0034(4)0.0314(5)0.0256(5)0.0287(6)-0.0012(4)0.0391(6)0.0282(6)0.0358(6)-0.0011(4)0.0457(7)0.0447(7)0.0410(8)0.0062(5)0.0400(7)0.0678(10)0.0390(8)-0.0042(6)0.0457(7)0.0549(8)0.0403(8)-0.0042(6)0.0428(6)0.0317(6)0.0371(7)-0.0051(5)0.0306(5)0.0162(5)0.0326(6)0.0042(4)0.0364(6)0.0425(7)0.0483(8)0.0104(5)0.0421(7)0.0356(6)0.0335(7)0.0009(5)0.0357(6)0.0235(5)0.0352(6)0.0040(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 6. Anisotropic Displacement Parameters (U_{ij} ,	Ų))
--	----	---

The form of the anisotropic displacement parameter is:

 $\exp[-2\pi^2(h^2a^{*2}U_{11} + k^2b^{*2}U_{22} + l^2c^{*2}U_{33} + 2klb^*c^*U_{23} + 2hla^*c^*U_{13} + 2hka^*b^*U_{12})]$

Atom	x	У	Ζ	$U_{\rm eq}$, Å ²
H2A	-0.193260	0.214356	0.279527	0.036
H2B	-0.094190	0.163167	0.208292	0.036
H3A	-0.123656	0.397082	0.173343	0.045
H3B	-0.116429	0.443717	0.270787	0.045
H6	-0.120324	0.014272	0.409546	0.041
H7	-0.317074	-0.044770	0.485297	0.053
H8	-0.420772	0.124168	0.565029	0.058
H9	-0.324588	0.351295	0.572826	0.055
H10	-0.120822	0.409850	0.502397	0.044
H12	0.405260	0.147769	0.364351	0.042
H13	0.566019	0.001561	0.301294	0.051
H14	0.531634	-0.026847	0.154991	0.050
H15	0.339279	0.096376	0.070710	0.045
H16	0.177444	0.242926	0.133055	0.038

 Table 7. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms