Supporting information

Diastereoselective Synthesis and Profiling of Bicyclic Imidazolidinone Derivatives Bearing a Difluoromethylated Catechol Unit as Potent Phosphodiesterase 4 Inhibitors

Valentin S. Dorokhov, ${ }^{a, b}$ Ivan S. Golovanov, ${ }^{a}$ Vladimir A. Tartakovsky, ${ }^{a}$ Alexey Yu. Sukhorukov, ${ }^{a,{ }^{*}}$ Sema L. Ioffe ${ }^{a}$
${ }^{a}$ N. D. Zelinsky Institute of Organic Chemistry, 119991, Leninsky prospect, 47, Moscow, Russian Federation. E-mail: sukhorukov@ioc.ac.ru
${ }^{b}$ Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology of Russia, 125047, Miusskaya sq., 9, Moscow, Russian Federation

* sukhorukov@ioc.ac.ru

1. Methods S2
2. Synthetic procedures and characterization data S6
3. Biological studies: primary data S44
4. Quantum-chemical calculations S67
5. Molecular docking S82
6. Copies of NMR, FT-IR spectra and HPLC chromatograms S88

1. Methods

Synthesis of target compounds

All reactions were performed in oven-dried $\left(150^{\circ} \mathrm{C}\right)$ glassware. Catalytic hydrogenations were carried out in a steel autoclave with external stirring and heating. Column chromatography was performed using Kieselgel $40-60 \mu \mathrm{~m} 60 \mathrm{~A}$ silica gel. 1D and 2D NMR spectra were recorded at room temperature in CDCl_{3}. The chemical shifts (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$) are given $\mathrm{ppm}(\delta)$ in relative to the solvent signal. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Peaks in IR-spectra data are reported in cm^{-1} with the following relative intensities: s (strong), m (medium), w (weak), br (broad), sh (shoulder). Concentrations c in optical rotation angles are given in $\mathrm{g} / 100 \mathrm{~mL} .[\alpha]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Analytical thin-layer chromatography was performed on silica gel plates with QF-254. Visualization was accomplished with UV light or the solution of anisaldehyde/ $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol. Elemental analysis was performed by the Analytical Laboratory of the Institute of Organic Chemistry. HRMS were measured on electrospray ionization (ESI) instrument with a time-of-flight (TOF) detector. GC-MS was performed on a Chromatec 5000 with Agilent DB-1MS column 122-0132. EI mass spectra were recorded on a Finnigan MAT Incos 50 spectrometer (70 eV). Chiral HPLC analysis was performed on a Shimadzu LC-20 Prominence with a UV-VIS photodiode array detector.
Glacial acetic acid was recrystallized two times. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (technical grade), MeCN (technical grade), DMF, $\mathrm{Et}_{3} \mathrm{~N}$, and $\mathrm{Me}_{3} \mathrm{SiBr}$ were redistilled from CaH_{2}, acetone was distilled from $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Hexane, methyl tert-butyl ether (MTBE), EtOAc and methanol were technical grade and distilled without drying agents. $(-)-(1 R, 2 S)$-2-phenylcyclohexanol (99% ee), ethyl vinyl ether, $\mathrm{SnCl}_{4}, \mathrm{NaN}_{3}, \mathrm{NaI}, \mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{NH}_{4} \mathrm{OAc}$, nitroethane, isovanillin, (bromomethyl)cyclopropane, DBU, DIBAL-H, methanesulfonyl chloride, DMSO, triphosgene, Lawesson's reagent, methyl iodide, NaH (in mineral oil), Raney nickel (50% slurry in water), $\mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \bullet 9 \mathrm{H}_{2} \mathrm{O}, \mathrm{TMSCF}_{2} \mathrm{Br}, \mathrm{BrF}_{2} \mathrm{CCO}_{2} \mathrm{Et}$ were purchased from commercial sources and used as received.

Docking

Docking was performed using AutoDock Vina software (X-Score function) ${ }^{1}$ with using standard parameters with the degree of exhaustiveness set to 16. For the docking of predesigned structures (Figures 3, 4 in the manuscript and on pp. 82-84 in Supporting information) PDE4B structure $1 \mathrm{XMU}^{2}$ (catalytic domain of human phosphodiesterase 4B in complex with Roflumilast) was used. Protein structure was prepared according to classical AutoDock scenario: ligand and water molecules were removed, atoms of Zn^{2+} and Mg^{2+} were remained in the protein structure, polar hydrogens, Gasteiger-Huckel charges and studied ligands were added to protein ($p d b q t$ input files of ligands to be prepared using AutoDock Tools 1.5.6). The obtained protein model was verified by successful redocking of Roflumilast.

3D structures of ligands were generated using ChemBio3D Ultra 13.0 (MM2 force field for geometry optimization). Gasteiger charges and all the active torsions were added to the structures of ligands using AutoDock Tools 1.5.6 software.
AutoGrid implemented in AutoDock Tools 1.5 .6 was used for defining the active site. The dimensions of the grid were set to $40 \AA \times 40 \AA \times 40 \AA$ points with grid spacing $0.375 \AA$. The grid was centered on the co-crystallised ligand present in the complex. These dimensions and position of the grid box were defined

[^0]so as to include the entire binding site of the enzyme and provide space for the translational and rotational of the ligand.

Top scored poses according to predicted free energy of binding were selected for further comparison and analysis of protein-ligand interactions. Docking results were compared by the total score values.

Visualization of interactions of molecules with PDE4 was done using Pymol v. 2.1.1.

DFT calculations

Quantum-chemical calculations were performed with the Gaussian 16 Rev A. 03 program ${ }^{3}$. For calculations of thermodynamics DFT MN15L/Def2TZVP level of theory was used. In the development of the theoretical models of all compounds geometrical parameters from various experimental X-Rays taken from The Cambridge Structural Database (CCDC) and Protein Data Bank (RCSB) were used as starting points. All calculations were performed in water (SMD model), the approach of Martin and co-workers was followed ${ }^{4}$. Cartesian coordinates are given in angstroms, absolute energies for all substances are given in hartrees. Analysis of vibrational frequencies was performed for all optimized structures. All compounds were characterized by only real vibrational frequencies. Wavefunction stability, using stable keyword, was also checked for all calculations.
Geometry optimization of all generated structures was performed using following keywords ${ }^{5}$:
\# opt freq MN15L/Def2TZVP/Fit scrf=(smd,solvent=water) guess=Always pressure=1357 nosymm $S C F=Y Q C$

Biology

1. In vitro enzymatic assay for recombinant human PDE4B1

Materials: Apremilast is purchased from Cayman Chemicals (Ann Arbor, MI, Item Number 18502), PDE Assay Buffer (BPS Catalog number 60393), PDE Binding Agent (BPS Catalog number 60390), PDE Binding Agent Diluent (cAMP) (BPS Catalog number 60391), PDE-4B1 (BPS Catalog number 60041), substrate (100 nM FAM-cAMP).

Assay conditions: The serial dilution of the compounds was first performed in 100% DMSO with the highest concentration at 0.3 mM . Each intermediate compound dilution (in $100 \% \mathrm{DMSO}$) will then get directly diluted 10 x fold into assay buffer for $10 \% \mathrm{DMSO}$ and $5 \mu \mathrm{l}$ of the dilution was added to a $50 \mu \mathrm{l}$ reaction so that the final concentration of DMSO is 1% in all of reactions. The enzymatic reactions were conducted at room temperature for 60 minutes in a $50 \mu 1$ mixture containing PDE assay buffer, 100 nM FAM-cAMP, a PDE4B1 enzyme and the test compound. After the enzymatic reaction, $100 \mu \mathrm{l}$ of a binding solution (1:100 dilution of the binding agent with the binding agent diluent) was added to each

[^1]reaction and the reaction was performed at room temperature for 60 minutes. Fluorescence intensity was measured at an excitation of 485 nm and an emission of 528 nm using a Tecan Infinite M1000 microplate reader.

Data analysis: PDE activity assays were performed in duplicate at each concentration. Fluorescence intensity is converted to fluorescence polarization using the Tecan Magellan6 software. The fluorescence polarization data were analyzed using the computer software, Graphpad Prism. The fluorescence polarization $\left(\mathrm{FP}_{\mathrm{t}}\right)$ in absence of the compound in each data set was defined as 100% activity. In the absence of PDE and the compound, the value of fluorescent polarization (FP_{b}) in each data set was defined as 0% activity. The percent activity in the presence of the compound was calculated according to the following equation: $\%$ activity $=\left(\mathrm{FP}^{-} \mathrm{FP}_{\mathrm{b}}\right) /\left(\mathrm{FP}_{\mathrm{t}}-\mathrm{FP}_{\mathrm{b}}\right) \times 100 \%$, where $\mathrm{FP}=$ the fluorescence polarization in the presence of the compound. The values of $\%$ activity versus a series of compound concentrations were then plotted using non-linear regression analysis of Sigmoidal dose-response curve generated with the equation $\mathrm{Y}=\mathrm{B}+(\mathrm{T}-\mathrm{B}) / 1+10^{(\text {(LogEC50-X }) \times \text { Hill Slope })}$, where $\mathrm{Y}=$ percent activity, $\mathrm{B}=$ minimum percent activity, $\mathrm{T}=$ maximum percent activity, $\mathrm{X}=$ logarithm of compound and Hill Slope=slope factor or Hill coefficient. The IC_{50} value was determined by the concentration causing a half-maximal percent activity.

2. In vitro selectivity enzymatic assay for a series of PDE4 isotypes

Materials: Apremilast is purchased from Cayman Chemicals (Ann Arbor, MI, Item Number 18502), PDE Assay Buffer (BPS Catalog number 60393), PDE Binding Agent (BPS Catalog number 60390), PDE Binding Agent Diluent (cAMP) (BPS Catalog number 60391).

Enzymes and Substrates:

Assay	Catalog \#	Enzyme Lot \#	Enzyme Used $(\mathrm{ng}) /$ Reaction	Substrate
PDE4A1A	60040	$160926-\mathrm{G}$	0.1	100 nM FAM-cAMP
PDE4A4B	60039	110411	0.06	100 nM FAM-cAMP
PDE4A10	60038	$110428-\mathrm{GC}$	0.128	100 nM FAM-cAMP
PDE4B2	60042	$121218-\mathrm{G1}$	0.025	100 nM FAM-cAMP
PDE4C1	60044	90812	0.24	100 nM FAM-cAMP
PDE4D2	60048	$130102-\mathrm{GC}$	0.03	100 nM FAM-cAMP
PDE4D3	60046	121011	0.025	100 nM FAM-cAMP
PDE4D7	60047	101101	0.045	100 nM FAM-cAMP

Assay conditions: $0.1 \mu \mathrm{M}$ dilutions of the test compounds were prepared in assay buffer (10% DMSO concentration) and $5 \mu \mathrm{l}$ of the dilution was added to a $50 \mu \mathrm{l}$ reaction so that the final concentration of DMSO is 1% in all of reactions. The enzymatic reactions were conducted at room temperature for 60 minutes in a $50 \mu 1$ mixture containing PDE assay buffer, 100 nM FAM-cAMP, a PDE enzyme and the test compound. After the enzymatic reaction, 100μ l of a binding solution (1:100 dilution of the binding agent with the binding agent diluent) was added to each reaction and the reaction was performed at room temperature for 60 minutes. Fluorescence intensity was measured at an excitation of 485 nm and an emission of 528 nm using a Tecan Infinite M1000 microplate reader.

Data analysis: PDE activity assays were performed in duplicate at each concentration. Fluorescence intensity is converted to fluorescence polarization using the Tecan Magellan6 software. The fluorescence polarization data were analyzed using the computer software, Graphpad Prism. The fluorescence polarization $\left(\mathrm{FP}_{\mathrm{t}}\right)$ in absence of the compound in each data set was defined as 100% activity. In the absence of PDE and the compound, the value of fluorescent polarization (FP_{b}) in each data set was defined as 0% activity. The percent activity in the presence of the compound was calculated according to the following equation: $\%$ activity $=\left(\mathrm{FP}^{-} \mathrm{FP}_{\mathrm{b}}\right) /\left(\mathrm{FP}_{\mathrm{t}}-\mathrm{FP}_{\mathrm{b}}\right) \times 100 \%$, where $\mathrm{FP}=$ the fluorescence polarization in the presence of the compound.

3. PDE4B Cell Signaling Pathway Assay

Materials: HEK293 cell line (ATCC \# CRL-1573), MEM/EBSS medium (Hyclone \# SH30024.01), Fetal Bovine Serum (ThermoFisher \# 26140-079), Non-essential amino acids (Hyclone \#SH30238.01), Napyruvate (Hyclone \#SH30239.01), Penn-strep (Hyclone \# SV30010), Lipofectamine ${ }^{\text {TM }} 2000$ (Invitrogen \# 11668027), Opti-MEM I Reduced Serum Medium (Invitrogen \#31985-062), PDE4B DNA (Origene \# RC211956), Forskolin (BPS Bioscience \# 27067), ONE-Step luciferase assay system (BPS Bioscience \# 60690)

Cell Culture: HEK293 cells were cultured in MEM/EBSS medium with 10% Fetal bovine serum, 1% Penn-strep, 1% Non-essential amino acid, 1 mM Na-pyruvate.

Assay conditions: HEK293 cells were seeded at 30,000 cells per well into 96 -well microplate in $100 \mu \mathrm{l}$ of growth medium. Cells were incubated at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ overnight. The following day, using Lipofectamine 2000, the cells were transiently transfected with a PDEB expression vector and a CRE luciferase reporter. Cells were incubated at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ for 6 hours. The cells were then treated with test compounds in 50 ul of fresh growth medium for ~ 24 hours. Following treatment, Forskolin was added in 5 ul of growth medium to stimulated wells to a final concentration of 10 uM . Cells were placed at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ for an additional 5-6 hours. The next day, cells were lysed and a luciferase assay was performed using ONE-Step luciferase assay system: add $100 \mu \mathrm{l}$ of One-Step Luciferase reagent per well and rock at room temperature for ~ 30 minutes. Luminescence was measured using a luminometer (BioTek Synergy ${ }^{\mathrm{TM}} 2$ microplate reader).

Data analysis: Cell based assays were performed in triplicate at each concentration. To obtain the normalized luciferase activity of CRE reporter, subtract background luminescence then from the CRE reporter. The normalized luciferase activity data was analyzed using the Graphpad Prism. In the absence of the compound, the normalized luciferase activity $\left(L_{t}\right)$ in each data set was defined as 1 . The fold induction in the presence of each compound was calculated according to the following equation: fold induction $=\mathrm{L} / \mathrm{L}_{t}$, where $\mathrm{L}=$ the normalized luciferase activity in the presence of the compound, $\mathrm{L}_{\mathrm{t}}=$ the normalized luciferase activity in the absence of the compound. The values of \% luminescence versus a series of compound concentrations were then plotted using non-linear regression analysis of Sigmoidal dose-response curve generated with the equation $\mathrm{Y}=\mathrm{B}+(\mathrm{T}-\mathrm{B}) / 1+10^{((\operatorname{LogEC} 50-\mathrm{X}) \times H i l l}$ Slope) , where $\mathrm{Y}=$ percent luminescence, $\mathrm{B}=$ minimum percent luminescence, $\mathrm{T}=$ maximum percent luminescence, $\mathrm{X}=$ logarithm of compound and Hill Slope=slope factor or Hill coefficient. The EC_{50} value was determined by the concentration causing a half-maximal percent activity.

2. Synthetic procedures and characterization data

7-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)hexahydro-3H-pyrrolo[1,2-c]imidazol-3-one

 (1a)

Rel-(7S,7aR)-1a (rac-1a)

To a solution of azide $\mathbf{1 2 a}(0.162 \mathrm{~g}, 0.407 \mathrm{mmol})$ in methanol (6 ml) in a vial equipped with a magnetic stirrer was added $\mathrm{Boc}_{2} \mathrm{O}(0.089 \mathrm{~g}, 0.407 \mathrm{mmol})$. Then a suspension of Raney ${ }^{\oplus}$ nickel (ca. 100 mg , washed with methanol) in methanol (2 ml) was added. The vial was placed to a steel autoclave which was flushed and filled with H_{2} to a pressure of 20 bar. The mixture was stirred at r.t. for 2 h , then the autoclave was heated to $60^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 6 h . Then the autoclave was cooled to r.t., slowly evacuated and the catalyst was removed. The solvent was then evaporated under vacuum. The residue was dissolved in DMSO (5 ml) and the resulting solution was gently refluxed for 30 min in argon atmosphere. Then the solvent was evaporated under vacuum (ca. $100^{\circ} \mathrm{C}, 10 \mathrm{Torr}$) and the residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=1: 1 \rightarrow \mathrm{EtOAc} / \mathrm{MeOH}=1: 0$ $\rightarrow 10: 1)$ to yield $0.075 \mathrm{~g}(55 \%)$ of pyrroloimidazolidinone rac-1a. Yellow solid, m.p. $=127-129^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=$ $0.71(\mathrm{EtOAc} / \mathrm{MeOH}=3: 1)$.
(-)-(7S,7aR)-1a
To a solution of azide $\mathbf{1 2 c}(0.011 \mathrm{~g}, 0.021 \mathrm{mmol})$ in methanol (2 ml) in a vial equipped with a magnetic stirrer was added $\mathrm{Boc}_{2} \mathrm{O}(0.005 \mathrm{~g}, 0.021 \mathrm{mmol})$. Then a suspension of Raney® nickel (ca. 10 mg , washed with methanol) in methanol (0.5 ml) was added. The test tube was placed to a steel autoclave which was flushed and filled with H_{2} to a pressure of 10 bar. The mixture was stirred at r.t. for 2 h . Then the autoclave was slowly evacuated and the catalyst was removed. The solvent was then evaporated under vacuum. The residue was dissolved in DMSO (1 ml) and the resulting solution was gently refluxed for 30 \min in argon atmosphere. Then the solvent was evaporated under vacuum (ca. $100^{\circ} \mathrm{C}, 10 \mathrm{Torr}$) and the residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=1: 1 \rightarrow$ $\mathrm{EtOAc} / \mathrm{MeOH}=1: 0 \rightarrow 10: 1$) to yield $0.003 \mathrm{~g}(42 \%)$ of pyrroloimidazolidinone $(-)-(7 \mathrm{~S}, 7 \mathrm{aR})-1 \mathrm{la}$. Yellow oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz , COSY, HSQC, NOESY, CDCl_{3}) $\delta 7.10(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 6.78$ (s, 1H, 9CH), 6.77 ($\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}$), $6.59\left(\mathrm{t}, \mathrm{J}=75.6 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CHF}_{2}\right), 6.01(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, 2-\mathrm{NH}), 3.85(\mathrm{~d}$, $\left.\mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 3.78-3.61\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}^{\prime}\right.$ and $\left.7 \mathrm{a}-\mathrm{CH}\right), 3.52(\mathrm{dd}, \mathrm{J}=10.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH})$, 3.33 (ddd, J = 10.2, 9.7, 2.7 Hz, 1H, 5-CH' $), 3.29$ (dd, J = 10.8, $10.2 \mathrm{~Hz} 1 \mathrm{H}, 1-\mathrm{CH}$), 2.76 (ddd, J = 11.1, $10.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}$), 2.37 (dddd, J = 12.6, $8.1,8.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}^{\prime}$), 2.04 (dddd, J = 12.6, 11.1, $\left.9.7,9.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}^{\prime}\right), 1.34-1.13(\mathrm{~m}, 1 \mathrm{H}, 16-\mathrm{CH}), 0.63\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 0.34\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$.

[^2]Characteristic 2D-NOESY correlations: 7a-CH/9-CH, 7a-CH/13-CH, 7-CH/6-CH' .
${ }^{19} \mathrm{~F}$ NMR $\left(188 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-81.42(\mathrm{~d}, \mathrm{~J}=75.4 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 339.1515$, found $339.1511[\mathrm{M}+\mathrm{H}]^{+}$.
For (-)-(7S,7aR)-1a:
Optical rotation: $[\alpha]^{20}{ }_{\mathrm{D}}=-22^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{C}=0.3 \mathrm{~g} / 100 \mathrm{ml}\right)$.
Chiral HPLC: e.e. 96% (RT: 20.2 min; Column: CHIRALPAK IA-3; Solvent: Hexane/i-PrOH = 90:10; Temperature: $40^{\circ} \mathrm{C}$; Flow rate: $1 \mathrm{ml} / \mathrm{min}$; Injection volume: $5 \mu \mathrm{~L}$).

Rel-(7S,7aR)-7-(4-(benzyloxy)-3-(cyclopropylmethoxy)phenyl)hexahydro-3H-pyrrolo[1,2-

 c〕imidazol-3-one (1b)

To a solution of azide $\mathbf{1 2 b}(0.142 \mathrm{~g}, 0.324 \mathrm{mmol})$ in methanol (2 ml) in a vial equipped with a magnetic stirrer were added $\mathrm{Boc}_{2} \mathrm{O}(0.0704 \mathrm{~g}, 0.324 \mathrm{mmol})$ and triethylamine $(0.090 \mathrm{ml}, 0.648 \mathrm{mmol})$. Then a suspension of Raney ${ }^{\circledR}$ nickel (ca. 30 mg , washed with methanol) in methanol (1 ml) was added. The vial was placed to a steel autoclave which was flushed and filled with H_{2} to a pressure of 50 bar. The mixture was stirred at r.t. for 1 h , then the autoclave was heated to $50^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 3 h . The autoclave was cooled to r.t., then evacuated and Raney ${ }^{\circledR}$ nickel (ca. 30 mg) was added. The autoclave was filled with $\mathrm{H}_{2}(50 \mathrm{bar})$ and the mixture was stirred for 1 h at $50^{\circ} \mathrm{C}$. Then the autoclave was cooled to r.t., slowly evacuated and the catalyst was removed. The solvent was then evaporated under vacuum. The residue was dissolved in recrystallized DMSO (1 ml). The resulting solution was degassed under vacuum for 15 min and then gently refluxed for 50 min in argon atmosphere. Then the solvent was evaporated under vacuum (ca. $100^{\circ} \mathrm{C}, 10 \mathrm{Torr}$) and the residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=1: 1 \rightarrow 0: 1$) to yield $0.053 \mathrm{~g}(43 \%)$ of pyrroloimidazolidinone 1b. Brown solid, m.p. $=103-105^{\circ} \mathrm{C}$ (recrystallized from Hexanes $/ \mathrm{MTBE}=1: 1$). $\mathrm{R}_{\mathrm{f}}=0.78(\mathrm{EtOAc} / \mathrm{MeOH}=3: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 6.78(\mathrm{~d}, \mathrm{~J}=2.1$ $\mathrm{Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 6.71(\mathrm{dd}, \mathrm{J}=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, 14-\mathrm{CH}_{2}\right), 5.07(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{NH}), 3.88(\mathrm{~d}, \mathrm{~J}$ $\left.=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 3.76-3.64\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}^{\prime}\right.$ and $\left.7 \mathrm{a}-\mathrm{CH}\right), 3.52(\mathrm{dd}, \mathrm{J}=9.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH})$, 3.36 (ddd, J = 9.8, $\left.9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}^{\prime}\right), 3.30(\mathrm{dd}, \mathrm{J}=11.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 2.80-2.65(\mathrm{~m}, 1 \mathrm{H}, 7-$ CH), 2.37 (dddd, J = 12.6, 8.1, 8.1, 2.6 Hz, 1H, 6-CH), 2.05 (dddd, J = 12.6, 12.5, 9.2, 9.2 Hz, 1H, 6-CH), $1.39-1.22(\mathrm{~m}, 1 \mathrm{H}, 16-\mathrm{CH}), 0.63\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.63$ (3-C), 149.75 (10-C), 148.35 (11-C), 137.56 (i-Ph), 132.79 (8-C), 128.60 (m-Ph), 127.90 (13-C), 127.36 (o-Ph), 120.35 (p-Ph), 115.73 (12-C), 114.66 ($9-\mathrm{C}), 74.65$ (15-C), 71.64 (14-C), 66.16 (7a-C), 48.69 (7-C), 45.35 (5-C), 41.40 (1-C), 34.64 (6-C), 10.64 (16-C), 3.43 (17-C).

HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 379.2016$, found $379.2025[\mathrm{M}+\mathrm{H}]^{+}$.

Rel-(7S,7aR)-7-(3-(cyclopropylmethoxy)-4-hydroxyphenyl)hexahydro-3H-pyrrolo[1,2-c]imidazol-3-

 one (1c)

To a solution of benzyl ether $\mathbf{1 b}(0.071 \mathrm{~g}, 0.188 \mathrm{mmol})$ in methanol $(2 \mathrm{ml})$ in a vial was added Pd / C $(0.035 \mathrm{~g}, 10 \mathrm{wt} \%)$. The vial was placed to a steel autoclave which was flushed and filled with H_{2} to a pressure of 45 bar . The autoclave was heated to $60^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 3 h , then the autoclave was cooled to r.t., slowly evacuated and the catalyst was removed by centrifugation. The resulting solution was evaporated and dried under vacuum to yield $0.051 \mathrm{~g}(94 \%)$ of phenol $\mathbf{1 c}$. White solid, m.p. $=152-153^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 6.71(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 6.67(\mathrm{~s}$, $1 \mathrm{H}, 9-\mathrm{CH}$), 5.77 (s, br, 1H, 2-NH), 5.13 (s, 1H, 14-OH), 3.87 (d, J = 7.1 Hz, 2H, 15-CH), 3.79-3.62 (m, $2 \mathrm{H}, 5-\mathrm{CH}$ ' and $7 \mathrm{a}-\mathrm{CH}$), $3.52(\mathrm{dd}, \mathrm{J}=10.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 3.41-3.28\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{CH}^{\prime}\right), 3.30(\mathrm{dd}, \mathrm{J}=$ $11.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}$), 2.72 (m, 1H, $7-\mathrm{CH}$), 2.36 (m, 1H, 6-CH''), 2.03 (m, 1H, 6-CH'), $1.34-1.19$ $(\mathrm{m}, 1 \mathrm{H}, 16-\mathrm{CH}), 0.67\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.71$ (3-C), 146.31 and 145.30 ($10-\mathrm{C}$ and $11-\mathrm{C}$), 131.06 ($8-\mathrm{C}$), 120.45 (12-C), 114.79 ($13-\mathrm{C}$), 111.50 ($9-\mathrm{C}$), 74.29 ($15-\mathrm{C}$), 66.21 (7a-C), 48.84 (7-C), 45.33 ($5-\mathrm{C}$), 41.38 ($1-\mathrm{C}$), 34.73 (6-C), 10.46 (16-C), 3.45 (17-C).

HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+} 311.1366\right.$, found $311.1358[\mathrm{M}+\mathrm{Na}]^{+}$.

Rel-(7S,7aR)-7-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-methylhexahydro-3H-pyrrolo[1,2-c]imidazol-3-one (1d)

A solution of pyrroloimidazolidinone rac-1a $(0.014 \mathrm{~g}, 0.044 \mathrm{mmol})$ in dry THF in Schlenk flask under argon atmosphere was cooled to $0^{\circ} \mathrm{C} . \mathrm{NaH}(60 \%$ suspension in oil, $0.0075 \mathrm{~g}, 0.178 \mathrm{mmol})$ was added and the reaction mixture was stirred for 40 min . Then $\mathrm{CH}_{3} \mathrm{I}(5.5 \mu \mathrm{l}, 0.089 \mathrm{mmol})$ was added, the reaction mixture was stirred for 2 h allowing to warm to r.t. Methanol (5 ml) was added and the solvent was evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{MeOH}=1: 0 \rightarrow 10: 1)$ to yield $0.0137 \mathrm{~g}(88 \%)$ of methylated amide 1d. Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.69$ ($\mathrm{EtOAc} / \mathrm{MeOH}=3: 1$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{CH}), 6.78(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}, 13-\mathrm{CH}), 6.60\left(\mathrm{t}, \mathrm{J}=75.6 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CHF}_{2}\right), 3.87\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 3.72(\mathrm{ddd}, \mathrm{J}=11.6$, $8.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 7 \mathrm{a}-\mathrm{CH}$), 3.62 (ddd, J = $\left.9.6,7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}^{\prime}\right), 3.41(\mathrm{dd}, \mathrm{J}=9.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 1-$ CH), $3.40-3.32\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{CH}\right.$), $3.22(\mathrm{dd}, \mathrm{J}=9.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 2.84\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 2.74-2.62$ (m, 1H, 7-CH), 2.36 (dddd, J = 12.8, 12.8, 7.9, 2.1 Hz, 1H, 6-CH' '), $2.03(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}$), $1.36-1.20(\mathrm{~m}$, $1 \mathrm{H}, 16-\mathrm{CH}), 0.66\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.95$ (3-C), 150.96 (10-C), 139.61 (t, J = $3.1 \mathrm{~Hz}, 11-\mathrm{C}$), 138.52 (8-C), 123.22 (12-C), 120.25 (13-C), 116.30 (t, J = $260.0 \mathrm{~Hz}, 14-\mathrm{C}$), 113.97 (9-C), 74.24 (15-C), 63.27 (7a-C), 49.28 (7-C), 48.28 (5-C), 46.05 (1-C), 34.72 (6-C), 31.00 (18-C), 10.34 (16-C), 3.35 (17-C).
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-82.44(\mathrm{~d}, \mathrm{~J}=75.5 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+} 353.1671$, found $353.1668[\mathrm{M}+\mathrm{H}]^{+}$.

Rel-(7S,7aR)-7-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)hexahydro-3H-pyrrolo[1,2-

c]imidazole-3-thione (1e)

To a stirred solution of pyrroloimidazolidinone rac-1a ($0.0335 \mathrm{mg}, 0.099 \mathrm{mmol}$) in toluene (2 ml) Lawesson's reagent $(0.0515 \mathrm{~g}, 0.129 \mathrm{mmol})$ was added. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 1.5 h under argon atmosphere, then cooled to r.t. and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=1: 0 \rightarrow 5: 1 \rightarrow 3: 1$) to yield 0.014 g (40%) of thione 1e. White solid, m.p. $=109.7-111.3^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.86($ EtOAc $)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 6.78(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{CH}), 6.76(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, 13-\mathrm{CH}), 6.60\left(\mathrm{t}, \mathrm{J}=75.5 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CHF}_{2}\right), 6.50(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{NH}), 4.08(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}$ ' and $7 \mathrm{a}-\mathrm{CH})$, $3.86\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 3.70(\mathrm{dd}, \mathrm{J}=10.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 3.58(\mathrm{ddd}, \mathrm{J}=12.1,9.6,2.7 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{CH}$ '), 3.47 (dd, J = 10.0, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}$), 2.84 (ddd, J = 11.8, 10.9, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}$), 2.48 (dddd, J = 12.7, 8.0, 7.8, 2.7 Hz, 1H, 6-CH''), 2.15 (dddd, J = 12.7, 11.8, 9.6, $9.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}$ '), 1.38 1.17 (m, 1H, 16-CH), $0.70-0.61\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.12(3-\mathrm{C}), 151.04(10-\mathrm{C}), 139.76(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 11-\mathrm{C}), 137.32(8-\mathrm{C})$,
$123.32(12-\mathrm{C}), 119.96(13-\mathrm{C}), 116.22(\mathrm{t}, \mathrm{J}=260.0 \mathrm{~Hz}, 14-\mathrm{C}), 113.84(9-\mathrm{C}), 74.22(15-\mathrm{C}), 69.33(7 \mathrm{a}-\mathrm{C})$,
$49.02(7-\mathrm{C}), 47.52(5-\mathrm{C}), 45.87(1-\mathrm{C}), 34.56(6-\mathrm{C}), 10.28(16-\mathrm{C}), 3.33(17-\mathrm{C})$.
${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.47(\mathrm{~d}, \mathrm{~J}=75.5 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right]^{+} 355.1286$, found $355.1276[\mathrm{M}+\mathrm{H}]^{+}$.

Rel-(4S,4aR)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)hexahydro-7H-imidazo[1,5-b][1,2]oxazin-7-one (2a)

To a solution of azide 22a($0.061 \mathrm{~g}, 0.172 \mathrm{mmol}, 6.5: 1$ mixture of isomers) in methanol (1.5 ml) in a Schlenk flask equipped with a magnetic stirrer was added a solution of $\mathrm{Boc}_{2} \mathrm{O}(0.0375 \mathrm{~g}, 0.172 \mathrm{mmol})$ in methanol (0.5 ml). Then a suspension of Raney ${ }^{\circledR}$ nickel (ca. 100 mg , washed with methanol) in methanol $(1 \mathrm{ml})$ was added. The flask was connected to a balloon filled with $\mathrm{H}_{2}(1 \mathrm{bar})$. The mixture was stirred at r.t. for 10 min , then the balloon was disconnected and the catalyst was removed and washed with hot methanol ($5 \times 3 \mathrm{ml}$). The solvent was then evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=5: 1 \rightarrow 1: 1$) to yield $0.045 \mathrm{~g}(61 \%)$ of Boc-protected aminooxazine which was immediately used in the next step.

The Boc-protected aminooxazine ($0.045 \mathrm{~g}, 0.105 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid (0.5 ml) was added and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then it was evaporated and dried under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. A solution of triphosgene ($0.018 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml}$) and triethylamine ($0.090 \mathrm{ml}, 0.624 \mathrm{mmol}$) were added, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ under argon for 1 h . The solution was evaporated under vacuum and the residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=1: 1 \rightarrow 0: 1$) to yield $0.014 \mathrm{~g}(23 \%)$ of 2a. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.62(\mathrm{EtOAc} / \mathrm{MeOH}=3: 1)$.
${ }^{1} \mathrm{H}$ NMR (300 MHz , COSY, HSQC, NOESY, CDCl_{3}) $\delta 7.13$ (d, J = $\left.7.8 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}\right), 6.80(\mathrm{~s}, 1 \mathrm{H}, 10-$ CH), 6.79 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}$), $6.61\left(\mathrm{t}, \mathrm{J}=75.5 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CHF}_{2}\right.$), 5.47 (s, 1H, 2-NH), 4.09 (ddd, $\mathrm{J}=10.7,4.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}$ 'eq), 4.02 (ddd, J = $12.0,10.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}$ 'ax $), 3.87$ (d, J = 6.9 Hz , $2 \mathrm{H}, 16-\mathrm{CH}_{2}$), $3.86-3.81$ (m, 1H, $8 \mathrm{a}-\mathrm{CH}$), 3.29 (dd, J = 9.0, $6.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}$), 3.02 (ddd, J = 9.0, 2.5 $\mathrm{Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 2.87\left(d d d, \mathrm{~J}=12.3,10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{\mathrm{ax}}\right.$, $2.14(\mathrm{dddd}, \mathrm{J}=13.8,12.3,12.0$, 4.8 Hz , $1 \mathrm{H}, 7$-CH'ax), 1.90 (dddd, J = 13.8, 4.1, 2.3, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}{ }^{\prime}$ eq), $1.36-1.20$ (m, 1H, 17-CH), $0.70-$ $0.61\left(\mathrm{~m}, 2 \mathrm{H}, 18-\mathrm{CH}_{2}\right), 0.40-0.33\left(\mathrm{~m}, 2 \mathrm{H}, 18-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 160.22$ (3-C), 151.04 (11-C), 139.85 (9-C), 139.14 (12-C), 123.32 (13-C), 120.38 ($14-\mathrm{C}$), 116.22 (t, J = $260.0 \mathrm{~Hz}, 15-\mathrm{C}$), 114.13 ($10-\mathrm{C}$), 74.24 ($16-\mathrm{C}$), 69.73 ($6-\mathrm{C}$), 60.30 (8а-C), 41.79 (8-C), 40.60 (1-C), 31.38 (7-C), 10.30 (17-C), 3.34 (18-C).

Characteristic 2D-NOESY correlations: $8 \mathrm{a}-\mathrm{CH} / 10-\mathrm{CH}, 8 \mathrm{a}-\mathrm{CH} / 14-\mathrm{CH}, 8-\mathrm{CH} / 7-\mathrm{CH}$ 'eq.
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-81.69(\mathrm{~d}, \mathrm{~J}=75.5 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 355.1464$, found $355.1459[\mathrm{M}+\mathrm{H}]^{+}$.

Rel-(4S,4aR)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2,2-dimethylhexahydro-7H-imidazo[1,5-b][1,2]oxazin-7-one (2b)

To a solution of azide $\mathbf{2 2 b}(0.152 \mathrm{~g}, 0.398 \mathrm{mmol})$ in methanol (2 ml) in a vial equipped with a magnetic stirrer was added a suspension of Raney ${ }^{\circledR}$ nickel (ca. 100 mg , washed with methanol) in methanol (0.5 ml). The vial was placed to a steel autoclave which was flushed and filled with H_{2} to a pressure of 10 bar. The mixture was stirred at r.t. for 1 h , then the autoclave was evacuated and Raney® nickel (ca. 50 mg) was added. The autoclave was filled with $\mathrm{H}_{2}(10 \mathrm{bar})$ and the mixture was stirred for 40 min . Then the autoclave was slowly evacuated and the catalyst was removed. The solvent was then evaporated under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{ml})$ and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. A solution of triphosgene $(0.059 \mathrm{mg}, 0.199 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ and triethylamine $(0.170 \mathrm{ml}, 1.20$ mmol) were added, and the reaction mixture was stirred at r.t. under argon for $2 \mathrm{~h} .10 \%$ aqueous solution of $\mathrm{HCl}(10 \mathrm{ml})$ was added, and the reaction mixture was poured into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and water (50 ml). The aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$. The combined organic layers were washed with water ($2 \times 50 \mathrm{ml}$) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=$ $1: 1 \rightarrow 0: 1)$ to yield $0.078 \mathrm{~g}(51 \%)$ of $\mathbf{2 b}$. White solid, m.p. $=163-165^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.71(\mathrm{EtOAc} / \mathrm{MeOH}=$ 3:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.78(\mathrm{dd}, \mathrm{J}=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH})$, $6.77(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 6.61\left(\mathrm{t}, \mathrm{J}=75.5 \mathrm{~Hz}, 1 \mathrm{H}, 17-\mathrm{CHF}_{2}\right), 4.62(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{NH}), 3.88(\mathrm{~d}, \mathrm{~J}=6.9$ $\mathrm{Hz}, 2 \mathrm{H}, 18-\mathrm{CH}_{2}$), 3.67 (ddd, J = 10.9, $7.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 8 \mathrm{a}-\mathrm{CH}$), $3.30(\mathrm{dd}, \mathrm{J}=9.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 3.06$ (dd, J = 9.3, 6.2 Hz, 1H, 1-CH), 3.03 (dd, J = 10.9, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}$), $1.86-1.80\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 1.48$ $\left(\mathrm{s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right.$ or $\left.10-\mathrm{CH}_{3}\right), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right.$ or $\left.10-\mathrm{CH}_{3}\right), 1.31-1.23(\mathrm{~m}, 1 \mathrm{H}, 19-\mathrm{CH}), 0.69-0.63(\mathrm{~m}$, $2 \mathrm{H}, 20-\mathrm{CH}_{2}$), $0.41-0.32\left(\mathrm{~m}, 2 \mathrm{H}, 20-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.13$ (3-C), 151.09 (13-C), 139.88 (11-C), 138.90 (14-C), 123.34 ($15-$ C), 120.18 ($16-\mathrm{C}$), 116.25 ($\mathrm{t}, \mathrm{J}=260.0 \mathrm{~Hz}, 17-\mathrm{C}$), 113.93 ($12-\mathrm{C}$), 79.81 ($6-\mathrm{C}), 74.30$ ($18-\mathrm{C}$), 60.32 ($8 \mathrm{a}-$ C), 42.98 ($7-\mathrm{C}$), 41.25 ($1-\mathrm{C}$), 40.96 ($8-\mathrm{C}$), 28.51 and 23.00 ($9-\mathrm{C}$ and $10-\mathrm{C}$), 10.34 (19-C), 3.36 ($20-\mathrm{C}$).

Characteristic trans-diaxial J constant: $\mathrm{J}=10.9 \mathrm{~Hz}(8-\mathrm{CH} / 8 \mathrm{a}-\mathrm{CH})$
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.48(\mathrm{~d}, \mathrm{~J}=75.7 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 383.1777$, found $383.1775[\mathrm{M}+\mathrm{H}]^{+}$.

2-(cyclopropylmethoxy)-1-(difluoromethoxy)-4-(2-nitroprop-1-en-1-yl)benzene (4a)

To a solution of 3-(cyclopropylmethoxy)-4-(difluoromethoxy)benzaldehyde $\mathbf{6 a}(0.811 \mathrm{~g}, 3.35 \mathrm{mmol}$) in nitroethane $(6.7 \mathrm{ml})$ ammonium acetate $(0.258 \mathrm{~g}, 3.35 \mathrm{mmol})$ and $\mathrm{AcOH}(3 \mathrm{ml})$ were added. The reaction mixture was intensively stirred at $90^{\circ} \mathrm{C}$ under argon atmosphere for 9 h and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=1: 0 \rightarrow$ $20: 1)$ to yield $0.542 \mathrm{~g}(54 \%)$ of nitroalkene $\mathbf{4 a}$. Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.58(\mathrm{Hexane} / \mathrm{EtOAc}=3: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{CH}), 7.20(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}), 7.00(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\mathrm{CH}), 6.99(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 6.68\left(\mathrm{t}, \mathrm{J}=75.1 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{CHF}_{2}\right), 3.89\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 2.42$ $\left(\mathrm{s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.38-1.18(\mathrm{~m}, 1 \mathrm{H}, 12-\mathrm{CH}), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.66$ (7-C), 148.01 (2-C), 141.54 (6-C), 132.60 (3-C), 130.85 (4-C), 122.90 ($8-\mathrm{C}$), 122.67 (9-C), 116.07 ($5-\mathrm{C}$), 115.98 (t, J = $260.5 \mathrm{~Hz}, 10-\mathrm{C}$), 74.17 (11-C), 14.00 (1-C), 10.11 (12-C), 3.25 (13-C).
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.59(\mathrm{~d}, \mathrm{~J}=74.9 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{NO}_{4}\right]^{+} 300.1042$, found $300.1048[\mathrm{M}+\mathrm{H}]^{+}$.

1-(benzyloxy)-2-(cyclopropylmethoxy)-4-(2-nitroprop-1-en-1-yl)benzene (4b)

To a solution of 4-(benzyloxy)-3-(cyclopropylmethoxy)benzaldehyde $\mathbf{6 b}(0.416 \mathrm{~g}, 1.47 \mathrm{mmol}$) in nitroethane (2.5 ml) ammonium acetate $(0.120 \mathrm{~g}, 1.48 \mathrm{mmol})$ and $\mathrm{AcOH}(1.3 \mathrm{ml})$ were added. The reaction mixture was intensively stirred at $90^{\circ} \mathrm{C}$ under argon atmosphere for 10 h and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=$ $1: 0 \rightarrow 10: 1)$ to yield $0.387 \mathrm{~g}(77 \%)$ of nitroalkene $\mathbf{4 b}$. Yellow solid, m.p. $=74-75^{\circ} \mathrm{C}$ (recrystallized from ethanol). $\mathrm{R}_{\mathrm{f}}=0.58$ (Hexane/EtOAc $=3: 1$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{CH}), 7.51-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.37(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-$ $\mathrm{CH}), 7.01(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 6.95(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 3.91(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.11-\mathrm{CH}_{2}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.41-1.21(\mathrm{~m}, 1 \mathrm{H}, 12-\mathrm{CH}), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 0.37\left(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.80,149.34$ and 146.09 (2-C, 6-C and 7-C), 136.81 (i-Ph), 133.87 (3-C), 128.72 (m-Ph), 128.12 (9-C), 127.24 (o-Ph), 125.63 (4-C), 124.41 (p-Ph), 116.83 ($8-\mathrm{C}), 114.62$ (5-C), 74.59 (11-C), 71.15 (10-C), 14.30 (1-C), 10.48 (12-C), 3.47 (13-C).

HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4}\right]^{+} 340.1543$, found $340.1544[\mathrm{M}+\mathrm{H}]^{+}$.
Elemental analysis: calcd. C, 70.78; H, 6.24; N, 4.13; found C, 71.01; H, 6.23; N, 4.16.

4-(difluoromethoxy)-3-hydroxybenzaldehyde (5a)

Preparation procedure from ethyl 2-bromo-2,2-difluoroacetate
To a stirred solution of 3,4-dihydroxybenzaldehyde $3(5.0 \mathrm{~g}, 36.2 \mathrm{mmol})$ and ethyl 2-bromo-2,2difluoroacetate ($4.78 \mathrm{ml}, 36.2 \mathrm{mmol}$) in DMF (50 ml) and water (1 ml) mixture was added $\mathrm{NaOH}(2.9 \mathrm{~g}$, 72.4 mmol). The reaction mixture was intensively stirred at $70^{\circ} \mathrm{C}$ for 2 h and then the resulting solution was poured into a mixture of $\mathrm{EtOAc}(50 \mathrm{ml})$ and 10% solution of $\mathrm{HCl}(50 \mathrm{ml})$. The aqueous layer was back-extracted with EtOAc ($2 \times 30 \mathrm{ml}$). The combined organic layers were washed with water (50 ml) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1$) to yield $3.43 \mathrm{~g}(50 \%)$ of 4-(difluoromethoxy)-3-hydroxybenzaldehyde 5a. White solid. $\mathrm{R}_{\mathrm{f}}=0.24$ (Hexane/EtOAc $=3: 1$).

Preparation procedure from potassium 2-bromo-2,2-difluoroacetate

To a stirred solution of 3,4-dihydroxybenzaldehyde $\mathbf{3}(0.500 \mathrm{~g}, 3.62 \mathrm{mmol})$ and potassium 2-bromo-2,2difluoroacetate $(0.772 \mathrm{~g}, 3.62 \mathrm{mmol})$ in DMF (5 ml) and water (0.1 ml) mixture was added $\mathrm{NaOH}(0.145$ $\mathrm{g}, 3.62 \mathrm{mmol}$). The reaction mixture was intensively stirred at $70^{\circ} \mathrm{C}$ for 2 h and then the resulting solution was poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ and 10% solution of $\mathrm{HCl}(20 \mathrm{ml})$. The aqueous layer was backextracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$. The combined organic layers were washed with water (20 ml) and brine (20 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1$) to yield $0.360 \mathrm{~g}(53 \%)$ of 4 -(difluoromethoxy)-3-hydroxybenzaldehyde 5a. White solid. $\mathrm{R}_{\mathrm{f}}=0.24$ (Hexane/EtOAc $=3: 1$).
${ }^{1}$ H NMR spectrum is concordant with the one reported in literature. ${ }^{6}$

[^3]
4-(benzyloxy)-3-hydroxybenzaldehyde (5b)

To a stirred solution of 3,4-dihydroxybenzaldehyde $3(4.6 \mathrm{~g}, 33.3 \mathrm{mmol})$ in DMF (40 ml) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(4.14 \mathrm{~g}, 30.0 \mathrm{mmol})$, KI $(0.112 \mathrm{~g}, 0.675 \mathrm{mmol})$ and benzyl bromide ($\left.4.4 \mathrm{ml}, 37.1 \mathrm{mmol}\right)$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 11.5 h under argon atmosphere. Then the resulting solution was poured into a mixture of $\mathrm{EtOAc}(150 \mathrm{ml})$ and water $(150 \mathrm{ml})$. The aqueous layer was back-extracted with $\operatorname{EtOAc}(100 \mathrm{ml})$. The combined organic layers were washed with water $(2 \times 100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: EtOAc/Hexane $=40 \% \rightarrow 50 \% \rightarrow 70 \%$) to yield $5.15 \mathrm{~g}(68 \%)$ of 4 -(benzyloxy)-3hydroxybenzaldehyde $\mathbf{6 b}$. For analytical purposes the product was recrystallized from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=$ $1: 1$ mixture $(4 \mathrm{ml})$. White solid. $\mathrm{R}_{\mathrm{f}}=0.43(\mathrm{EtOAc} /$ Hexane $=40 \%)$.
${ }^{1} \mathrm{H}$ NMR spectrum is concordant with the one reported in literature. ${ }^{7}$

[^4]
3-(cyclopropylmethoxy)-4-(difluoromethoxy)benzaldehyde (6a)

To a stirred solution of 4-(difluoromethoxy)-3-hydroxybenzaldehyde $\mathbf{5 a}(1.225 \mathrm{~g}, 6.52 \mathrm{mmol})$ in dry THF $(18 \mathrm{ml})$ in Schlenk flask under argon atmosphere was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.785 \mathrm{~g}, 12.9 \mathrm{mmol})$ and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. (Bromomethyl)cyclopropane ($1.4 \mathrm{ml}, 14.4 \mathrm{mmol}$) was added and the reaction mixture was gently refluxed under argon atmosphere for 5.5 h . Then (bromomethyl)cyclopropane (0.7 ml , 7.2 mmol) was added, the reaction mixture was refluxed for 5.5 h and then cooled to r.t. 2 M solution of $\mathrm{NaOH}(70 \mathrm{ml})$ was added to the mixture and the resulting solution was poured to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 35 \mathrm{ml})$. The combined organic layers were washed with brine $(100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to yield $1.413 \mathrm{~g}(90 \%)$ of $\mathbf{6 a}$. White solid. $\mathrm{R}_{\mathrm{f}}=0.63($ Hexane $/ \mathrm{EtOAc}=1: 1)$.
${ }^{1} \mathrm{H}$ NMR spectrum is concordant with the one reported in literature. ${ }^{8}$

4-(benzyloxy)-3-(cyclopropylmethoxy)benzaldehyde (6b)

To a stirred solution of 4-(benzyloxy)-3-hydroxybenzaldehyde $\mathbf{5 b}(5 \mathrm{~g}, 21.91 \mathrm{mmol})$ in DMF (40 ml) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(6.06 \mathrm{~g}, 43.81 \mathrm{mmol})$ and (bromomethyl)cyclopropane ($4.25 \mathrm{ml}, 43.81 \mathrm{mmol}$). The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 2.5 h under argon atmosphere and then cooled to r.t. MTBE (100 $\mathrm{ml})$ was added and the resulting mixture was poured into a saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{ml})$. The organic layer were washed with water $(100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to yield 6.126 g (99\%) of 4-(benzyloxy)-3-(cyclopropylmethoxy)benzaldehyde $\mathbf{6 b}$. White solid, m.p. $=48.5-50.0^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.60($ Hexane $/ \mathrm{EtOAc}=1: 1)$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl3) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{CHO}), 7.38(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{CH}), 7.53-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.37(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 6.99(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 5.26\left(\mathrm{~s}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.94(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 9-$ $\left.\mathrm{CH}_{2}\right), 1.43-1.24(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{CH}), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 0.38\left(\mathrm{~m}, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 190.99$ (1-C), 154.24 and 149.76 (4-C and 5-C), 136.49 (i-Ph), 130.52 (2C), 128.73 (m-Ph), 128.14 (7-C), 127.12 (o-Ph), 126.51 (p-Ph), 113.38 (6-C), 111.98 (3-C), 74.10 (9-C), 71.01 (8-C), 10.31 (10-C), 3.46 (11-C).

HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}\right]^{+} 283.1329$, found $283.1319[\mathrm{M}+\mathrm{H}]^{+}$.

[^5]
4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-6-ethoxy-3-methyl-5,6-dihydro-4H-1,2oxazine 2 -oxide (7a)

A solution of nitroalkene $\mathbf{4 a}(0.574 \mathrm{~g}, 1.92 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml})$ with $\mathrm{CaH}_{2}(\mathrm{ca} 0.05 \mathrm{~g}$.$) was$ cooled to $-94^{\circ} \mathrm{C}$ (acetone/liquid nitrogen) in a Schlenk flask under argon atmosphere. $\mathrm{SnCl}_{4}(0.247 \mathrm{ml}$, $2.11 \mathrm{mmol})$ was added with intensive stirring. In 10 min a solution of ethyl vinyl ether $(0.734 \mathrm{ml}, 7.68$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ was added dropwise. The reaction mixture was intensively stirred at $-94^{\circ} \mathrm{C}$ for 20 min , then the resulting yellow-colored solution was poured into a mixture of EtOAc (200 ml) and saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{ml})$. The aqueous layer was back-extracted with EtOAc ($2 \times$ $100 \mathrm{ml})$. The combined organic layers were washed with water (100 ml) and brine (100 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1 \rightarrow 1: 1)$ to yield $0.299 \mathrm{~g}(42 \%)$ of nitronate. The fraction with initial nitroalkene was collected and recycled nitroalkene was subjected to the same procedure two more times to yield 0.168 g of nitronate 7a. Overall yield of nitronate $7 \mathbf{7 a}$ (after 3 cycles): 0.467 g (66%). White solid, m.p. $=114-116^{\circ} \mathrm{C}$ (recrystallized from Hexanes $/ \mathrm{Et}_{2} \mathrm{O}=1: 1$). $\mathrm{R}_{\mathrm{f}}=0.20(\mathrm{Hexane} / \mathrm{EtOAc}=1: 1)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \operatorname{COSY}, \mathrm{HSQC}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.75(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, $15-\mathrm{CH}$), 6.71 ($\mathrm{s}, 1 \mathrm{H}, 11-\mathrm{CH}$), 6.61 (t, J = $75.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CHF}_{2}$), 5.36 ($\mathrm{s}, 1 \mathrm{H}, 6-\mathrm{CH}$), 4.05 (dq, J = 14.5, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}$), $3.85-3.83$ (m, 1H, 4-CH), 3.83 (d, J = $6.5 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}$), $3.71(\mathrm{dq}, \mathrm{J}=14.5,7.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 2.25\left(\mathrm{dd}, \mathrm{J}=13.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\text {eq }}, 2.07\left(\mathrm{t}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.86(\mathrm{~s}, 3 \mathrm{H}, 9-\right.$ $\left.\mathrm{CH}_{3}\right), 1.26\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 1.26(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 0.64\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 151.31$ (12-C), 139.83 (13-C), 138.89 (10-C), 123.40 ($15-\mathrm{C}$), 122.84 (3-C), 120.81 ($14-\mathrm{C}$), 116.16 (t, J = $260.5 \mathrm{~Hz}, 16-\mathrm{C}$), 113.56 (11-C), 101.02 ($6-\mathrm{C}$), 74.17 (17-C), 65.18 (7-C), 40.59 (4-C), 34.49 (5-C), 17.67 (9-C), 15.13 (8-C), 10.18 (18-C), 3.31 (19-C).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.73(\mathrm{~d}, \mathrm{~J}=75.6 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{NO}_{5}\right]^{+} 372.1617$, found $372.1629[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-(benzyloxy)-3-(cyclopropylmethoxy)phenyl)-6-ethoxy-3-methyl-5,6-dihydro-4H-1,2-oxazine 2-

 oxide (7b)

A solution of nitroalkene $\mathbf{4 b}(0.350 \mathrm{~g}, 1.03 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{ml})$ with $\mathrm{CaH}_{2}(0.05 \mathrm{~g})$ was cooled to $-94^{\circ} \mathrm{C}$ (acetone/liquid nitrogen) in a Schlenk flask under argon atmosphere. $\mathrm{SnCl}_{4}(0.135 \mathrm{ml}, 1.13 \mathrm{mmol})$ was added with intensive stirring. In 10 min a solution of ethyl vinyl ether $(0.400 \mathrm{ml}, 4.18 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ was added dropwise. The reaction mixture was intensively stirred at $-80^{\circ} \mathrm{C}$ for 50 min , then the resulting yellow-colored solution was poured into a mixture of EtOAc (50 ml) and saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{ml})$. The aqueous layer was back-extracted with EtOAc $(2 \times 30 \mathrm{ml})$. The combined organic layers were washed with water (50 ml) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1 \rightarrow 1: 1)$ to yield $0.382 \mathrm{~g}(93 \%)$ of nitronate $\mathbf{7 b}$. White solid, m.p. $=78-82^{\circ} \mathrm{C}$ (recrystallized from Hexanes $/ \mathrm{Et}_{2} \mathrm{O}=1: 1$). $\mathrm{R}_{\mathrm{f}}=0.32$ (Hexane/EtOAc $=1: 1$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.85(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.68(\mathrm{~s}, 1 \mathrm{H}, 11-$ $\mathrm{CH}), 6.67(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 5.34\left(\mathrm{dd}, \mathrm{br}, \mathrm{J}=2.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}\right), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, 16-\mathrm{CH}_{2}\right)$, $4.04(\mathrm{dq}, \mathrm{J}=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.84\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 3.81-3.63(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{CH}$ and $7-$ CH), $2.22\left(\mathrm{ddd}, \mathrm{J}=13.8,7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}\right.$), $2.08\left(\mathrm{ddd}, \mathrm{J}=13.8,11.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.84(\mathrm{~s}$, $3 \mathrm{H}, 9-\mathrm{CH}_{3}$), $1.26\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 1.37-1.16(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 0.62\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.34(\mathrm{~m}$, $2 \mathrm{H}, 19-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.91$ and 148.39 ($12-\mathrm{C}$ and $13-\mathrm{C}$), 137.25 (i-Ph), 133.23 ($10-\mathrm{C}$), 128.45 (m-Ph), 127.78 ($15-\mathrm{C}$), 127.21 (o-Ph), 123.52 (3-C), 120.80 (p-Ph), 115.49 (14-C), 113.97 (11-C), 100.97 ($6-\mathrm{C}$), 74.30 ($17-\mathrm{C}$), 71.39 ($16-\mathrm{C}$), 64.95 ($7-\mathrm{C}$), 40.18 ($4-\mathrm{C}$), 34.30 ($5-\mathrm{C}$), 17.48 ($9-\mathrm{C}$), 15.03 ($8-\mathrm{C}$), 10.36 (18-C), 3.27 (19-C).

HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{5}\right]^{+} 412.2118$, found $412.2114[\mathrm{M}+\mathrm{H}]^{+}$.
(4S,6S)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-3-methyl-6-(((1S,2S)-2-phenylcyclohexyl)oxy)-5,6-dihydro-4H-1,2-oxazine 2-oxide (7c)

A mixture of nitroalkene $\mathbf{4 a}(0.530 \mathrm{~g}, 1.77 \mathrm{mmol}),(+)-(1 \mathrm{R}, 2 \mathrm{~S})$-trans-phenylcyclohexanol vinyl ether $\mathbf{8}$ $(0.451 \mathrm{~g}, 2.22 \mathrm{mmol})$ and $\mathrm{CaH}_{2}(\mathrm{ca} .0 .1 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was cooled to $-94^{\circ} \mathrm{C}$ (acetone/liquid nitrogen) in a Schlenk flask under argon atmosphere. $\mathrm{SnCl}_{4}(0.210 \mathrm{ml}, 1.77 \mathrm{mmol})$ was added with intensive stirring. The reaction mixture was intensively stirred at $-94^{\circ} \mathrm{C}$ for 1 h , then the resulting dark red solution was poured into a mixture of $\mathrm{EtOAc}(200 \mathrm{ml})$ and saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(200$ $\mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{EtOAc}(2 \times 100 \mathrm{ml})$. The combined organic layers were washed with saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$, water $(100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered through Celite ${ }^{\circledR}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1 \rightarrow 1: 1)$ to yield $0.138 \mathrm{~g}(16 \%)$ of nitronate. The fraction with initial nitroalkene was collected and the recycled nitroalkene was subjected to the same procedure three more times to yield 0.168 g of nitronate $\mathbf{7 a}$. Overall yield of nitronate $\mathbf{7 c}$ (after 4 cycles): $0.379 \mathrm{~g}(24 \%)$. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.38($ Hexane $/ \mathrm{EtOAc}=1: 1)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{COSY}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.08(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.03(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{CH})$, $6.57(\mathrm{~s}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.56(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 19-\mathrm{CH}), 6.55\left(\mathrm{t}, \mathrm{J}=75.5 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CHF}_{2}\right), 5.53(\mathrm{~s}, 1 \mathrm{H}, 6-$ $\mathrm{CH}), 4.15\left(\mathrm{ddd}, \mathrm{J}=11.2,11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{\mathrm{ax}}\right), 3.77\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 21-\mathrm{CH}_{2}\right), 3.15(\mathrm{dd}, \mathrm{J}=11.4$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.58\left(\mathrm{ddd}, \mathrm{J}=11.2,11.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{\mathrm{ax}}\right), 2.34(\mathrm{dd}, \mathrm{J}=11.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH})$, $2.05-1.92\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 1.92-1.84\left(\mathrm{~m}, 3 \mathrm{H}, 9-\mathrm{CH}_{2}\right.$ and $\left.11-\mathrm{CH}\right), 1.82-1.71(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{CH}), 1.65-$ $1.47(\mathrm{~m}, 1 \mathrm{H}, 11-\mathrm{CH}), 1.48-1.36(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{CH}), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, 13-\mathrm{CH}_{3}\right), 1.33-1.15(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{CH}$ and $22-\mathrm{CH}), 0.62\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right), 0.32\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 151.08$ (16-C), 144.23 (i-Ph), 139.52 (17-C), 138.78 (14-C), 128.31 and $127.60(\mathrm{o}-\mathrm{Ph}$ and $\mathrm{m}-\mathrm{Ph}), 126.14(\mathrm{p}-\mathrm{Ph}), 123.12$ (19-C), 122.31 (3-C), 120.84 (18-C), 116.12 (t, J = $259.9 \mathrm{~Hz}, 20-\mathrm{C}$), 113.47 (15-C), 95.01 (6-C), 76.27 (7-C), 74.07 (21-C), 50.98 ($8-\mathrm{C}$), 39.84 (4-C), 34.14 (11-C), 33.99 (5-C), 30.12 (12-C), 26.10 (10-C), 24.51 ($9-\mathrm{C}), 17.22$ (13-C), 10.12 (22-C), 3.22 (23-C).
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-82.50(\mathrm{~d}, \mathrm{~J}=75.4 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{NO}_{5}\right]^{+} 502.2400$, found $502.2398[\mathrm{M}+\mathrm{H}]^{+}$.
Optical rotation: $[\alpha]^{20}{ }_{\mathrm{D}}=+206^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{C}=1 \mathrm{~g} / 100 \mathrm{ml}\right)$.
HPLC: e.e. $=96 \%$ (RT: $9.6 \mathrm{~min} ;$ Column: CHIRALPAK IA-3; Solvent: Hexane/i-PrOH $=95: 5$; Temperature: $40^{\circ} \mathrm{C}$; Flow rate: $1 \mathrm{ml} / \mathrm{min}$).

4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-6-ethoxy-3-methylene-2-((trimethylsilyl)oxy)-1,2-oxazinane (9a)

To a solution of nitronate $7 \mathbf{a}(0.106 \mathrm{~g}, 0.286 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ in Schlenk flask triethylamine ($0.060 \mathrm{ml}, 0.429 \mathrm{mmol}$) was added with intensive stirring under argon atmosphere. The reaction mixture was cooled to $-50^{\circ} \mathrm{C}$ and $\mathrm{Me}_{3} \mathrm{SiBr}(0.053 \mathrm{ml}, 0.400 \mathrm{mmol})$ was added. The mixture was intensively stirred for 30 min at $-50^{\circ} \mathrm{C}$ and then kept for 20 h at $-20^{\circ} \mathrm{C}$ without stirring. The resulting solution was poured into a mixture of hexane $(100 \mathrm{ml})$ and 0.25 M aqueous solution of $\mathrm{NaHSO}_{4}(100 \mathrm{ml})$. The aqueous layer was back-extracted with hexane ($2 \times 30 \mathrm{ml}$). The combined organic layers were washed with water $(50 \mathrm{ml})$ and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to yield $0.125 \mathrm{~g}(99 \%)$ of enamine silyl ether 9a. Colorless oil. The product was used on the next step without additional purification.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{COSY}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.90(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $11-\mathrm{CH}$), 6.86 ($\mathrm{dd}, \mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}$), $6.59\left(\mathrm{t}, \mathrm{J}=75.6 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CHF}_{2}\right.$), $5.04(\mathrm{dd}, \mathrm{J}=5.4,4.5$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 4.96(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{CH}), 4.10(\mathrm{~s}, 1 \mathrm{H}, 9-\mathrm{CH}), 4.04-3.88(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{CH}$ and $7-\mathrm{CH}), 3.84(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}$), 3.54 (dq, J = 14.5, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}$), 2.20 (ddd, J = 13.2, $9.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}$), 2.08 (dt, J = 13.2, $5.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}$), $1.23\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 1.31-1.12(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 0.61$ (m, 2H, 19-CH2), $0.32\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.24\left(\mathrm{~s}, 9 \mathrm{H}, 20-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 158.0$ (br, 3-C), 150.40 ($12-\mathrm{C}$), 139.79 and 139.41 ($10-\mathrm{C}$ and 13C), 122.53 ($15-\mathrm{C}$), 121.22 ($14-\mathrm{C}$), 116.39 (t, J = $259.2 \mathrm{~Hz}, 16-\mathrm{C}$), 115.20 (11-C), 99.27 (6-C), 97.94 (9C), 74.02 ($17-\mathrm{C}$), 64.15 (7 -C), 40.86 ($4-\mathrm{C}$), 36.48 ($5-\mathrm{C}$), 15.04 ($8-\mathrm{C}$), 10.25 ($18-\mathrm{C}$), 3.18 (19-C), - 0.78 (20-C).
${ }^{19}$ F NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.32(\mathrm{~d}, \mathrm{~J}=75.7 \mathrm{~Hz})$.
${ }^{29}$ Si NMR ($40 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.55(\mathrm{~s})$.
HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{NO}_{5} \mathrm{Si}^{+}\right]^{+} 444.2012$, found $444.2005[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4-(benzyloxy)-3-(cyclopropylmethoxy)phenyl)-6-ethoxy-3-methylene-2-((trimethylsilyl)oxy)-1,2oxazinane (9b)

To a solution of nitronate $\mathbf{7 b}(3.00 \mathrm{~g}, 0.286 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{ml})$ in Schlenk flask triethylamine $(1.52 \mathrm{ml}, 10.9 \mathrm{mmol})$ was added with intensive stirring under argon atmosphere. The reaction mixture was cooled to $-50^{\circ} \mathrm{C}$ and $\mathrm{Me}_{3} \mathrm{SiBr}(1.35 \mathrm{ml}, 10.21 \mathrm{mmol})$ was added. The mixture was intensively stirred for 80 min at $-50^{\circ} \mathrm{C}$ and then kept for 20 h at $-20^{\circ} \mathrm{C}$ without stirring. The resulting solution was poured into a mixture of hexane (200 ml) and 0.25 M aqueous solution of $\mathrm{NaHSO}_{4}(200 \mathrm{ml})$. The aqueous layer was back-extracted with hexane $(2 \times 100 \mathrm{ml})$. The combined organic layers were washed with water (100 $\mathrm{ml})$ and brine (100 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to yield $0.125 \mathrm{~g}(99 \%)$ of enamine silyl ether $9 \mathbf{b}$. Colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.88(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{CH}), 6.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 14-$ CH), 6.79 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}$), $5.14\left(\mathrm{~s}, 2 \mathrm{H}, 16-\mathrm{CH}_{2}\right), 5.07\left(\mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}\right.$), 4.93 (s , br, $1 \mathrm{H}, 9-\mathrm{CH}$), 4.07 (s, br, $1 \mathrm{H}, 9-\mathrm{CH}$), $4.03-3.89(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{CH}$ and $7-\mathrm{CH}$), $3.87(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 17-$ CH_{2}), $3.57(\mathrm{dq}, \mathrm{J}=9.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 2.22\left(\mathrm{ddd}, \mathrm{J}=13.4,9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}\right), 2.07(\mathrm{dt}, \mathrm{J}=$ $13.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}, 1.36-1.20(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 1.25\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 0.61(\mathrm{~m}, 2 \mathrm{H}, 19-$ CH_{2}), $0.34\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.25\left(\mathrm{~s}, \mathrm{~J}=3.2 \mathrm{~Hz}, 9 \mathrm{H}, 20-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

[^6]HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Si}\right]$ 484.2514, found $484.2511[\mathrm{M}+\mathrm{H}]^{+}$.
(4S,6S)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-3-methylene-6-(((1S,2R)-2-phenylcyclohexyl)oxy)-2-((trimethylsilyl)oxy)-1,2-oxazinane (9c)

To a stirred solution of nitronate $7 \mathrm{c}(0.362 \mathrm{~g}, 0.724 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{ml})$ in Schlenk flask triethylamine $(0.120 \mathrm{ml}, 0.870 \mathrm{mmol})$ was added under argon atmosphere. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{Me}_{3} \mathrm{SiBr}(0.105 \mathrm{ml}, 0.796 \mathrm{mmol})$ was added. The mixture was intensively stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then kept for 45 h at this temperature without stirring. The resulting solution was poured into a mixture of hexane $(100 \mathrm{ml})$ and 0.25 M aqueous solution of $\mathrm{NaHSO}_{4}(100 \mathrm{ml})$. The aqueous layer was back-extracted with hexane $(2 \times 50 \mathrm{ml})$. The combined organic layers were washed with water $(2 \times 50 \mathrm{ml})$ and brine $(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to yield $0.409 \mathrm{~g}(99 \%)$ of enamine silyl ether 9 c. Yellow oil. The product was used on the next step without additional purification.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{COSY}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.14(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.07(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{CH})$, $6.70(\mathrm{~s}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.69(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 19-\mathrm{CH}), 6.60\left(\mathrm{t}, \mathrm{J}=75.7 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CHF}_{2}\right), 5.38$ (t, br, J = $4.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}$), $4.77(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, 13-\mathrm{CH}), 4.06\left(\mathrm{ddd}, \mathrm{J}=10.6,10.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{\mathrm{ax}}\right), 3.86(\mathrm{~s}, \mathrm{br}$, $1 \mathrm{H}, 13-\mathrm{CH}), 3.82\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 21-\mathrm{CH}_{2}\right), 3.51(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.62(\mathrm{ddd}, \mathrm{J}=10.6,10.6,3.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 8-\mathrm{CH}_{\mathrm{ax}}\right), 2.35(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 2.06\left(\mathrm{ddd}, \mathrm{J}=10.5,10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 2.00-1.67$ $\left(\mathrm{m}, 5 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}, 9-\mathrm{CH}_{2}, 10-\mathrm{CH}\right.$ and $\left.11-\mathrm{CH}\right), 1.67-1.17(\mathrm{~m}, 4 \mathrm{H}, 10-\mathrm{CH}, 11-\mathrm{CH}, 12-\mathrm{CH}, 22-\mathrm{CH}), 0.64$ $\left(\mathrm{m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right), 0.28\left(\mathrm{~s}, 9 \mathrm{H}, 24-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 158.0$ (br, 13-C), 150.35 (16-C), 144.33, 139.59 and 139.24 (i-Ph, $14-\mathrm{C}$ and $17-\mathrm{C}$), 128.15 and 128.00 ($\mathrm{o}-\mathrm{Ph}$ and $\mathrm{m}-\mathrm{Ph}$), 125.93 ($\mathrm{p}-\mathrm{Ph}$), 122.55 (19-C), 121.33 (18-C), 116.41 (t, J = $259.1 \mathrm{~Hz}, 20-\mathrm{C}$), 115.32 (15-C), 97.63 (13-C), 93.88 (6-C), 76.26 (7-C), 74.03 (21-C), 50.38 ($8-\mathrm{C}$), 40.44 (4-C), 36.86 (11-C), 34.55 (5-C), 30.70 (12-C), 26.25 (10-C), 24.88 ($9-\mathrm{C}$), 10.30 ($22-$ C), 3.29 (23-C), -0.41 (24-C).
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-82.32(\mathrm{~d}, \mathrm{~J}=75.7 \mathrm{~Hz})$.
${ }^{29} \mathrm{Si}$ NMR (40 MHz, CDCl_{3}) $\delta 26.07$ (s).
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{NO}_{5} \mathrm{Si}\right] 574.2795$, found $574.2791[\mathrm{M}+\mathrm{H}]^{+}$.

4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-6-ethoxy-5,6-dihydro-4H-1,2-oxazin-3yl)methyl nitrate (10a)

To a stirred solution of enamine silyl ether $9 \mathbf{9 a}(0.469 \mathrm{~g}, 1.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added a solution of chromium (III) nitrate nonahydrate ($0.849 \mathrm{~g}, 2.12 \mathrm{mmol}$) in THF (10 ml). The reaction mixture was intensively stirred at r.t. for 2 h , then poured into a mixture of EtOAc (50 ml) and 0.25 M aqueous solution of $\mathrm{NaHSO}_{4}(50 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{ml})$. The combined organic layers were washed with water (50 ml) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=1: 0 \rightarrow 20: 1 \rightarrow 10: 1 \rightarrow 5: 1 \rightarrow 3: 1)$ to yield $0.193 \mathrm{~g}(44 \%)$ of nitrate 10a. White solid, m.p. $=62-64^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.66(\mathrm{Hexane} / \mathrm{EtOAc}=1: 1)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \operatorname{COSY}, \operatorname{HSQC}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.79(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{CH}), 6.78$ $(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.61\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CHF}_{2}\right), 5.19\left(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}\right), 4.83(\mathrm{~d}, \mathrm{~J}$ $=13.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 4.73(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 4.16-3.74(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.85(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}, 17-\mathrm{CH}$), $3.76-3.47$ (m, 2H, 4-CH and 7-CH), 2.29 (ddd, J = 13.0, $7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}$), 2.08 (ddd, J = 13.0, 13.0, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}$), $1.26-1.24(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 1.23\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right.$), $0.65\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 153.76$ (3-C), 151.43 (12-C), 137.13 (10-C), 123.61 (15-C), 120.93 (14-C), 116.24 (t, J = $260.2 \mathrm{~Hz}, 16-\mathrm{C}$), 114.65 (11-C), 96.10 (6-C), 74.29 (17-C), 71.52 (9-C), 64.20 (7C), 34.89 ($4-\mathrm{C}$), 32.57 ($5-\mathrm{C}$), 15.05 ($8-\mathrm{C}$), 10.25 ($18-\mathrm{C}$), 3.30 ($19-\mathrm{C}$) ($13-\mathrm{C}$ not observed).
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.52(\mathrm{~d}, \mathrm{~J}=75.3 \mathrm{~Hz})$.
FT-IR (KBr, cm^{-1}, characteristic $\mathrm{O}-\mathrm{NO}_{2}$ bands): $1632,1286,847,758$.
HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+} 417.1468$, found $417.1461[\mathrm{M}+\mathrm{H}]^{+}$.

(4-(4-(benzyloxy)-3-(cyclopropylmethoxy)phenyl)-6-ethoxy-5,6-dihydro-4H-1,2-oxazin-3-yl)methyl nitrate (10b)

The crude enamine silyl ether $\mathbf{9 b}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{ml})$ was added a solution of chromium (III) nitrate nonahydrate ($5.63 \mathrm{~g}, 14.06 \mathrm{mmol}$) in THF (28 ml). The reaction mixture was intensively stirred at r.t. for 2.5 h , then poured into a mixture of $\mathrm{EtOAc}(100 \mathrm{ml})$ and 0.25 M aqueous solution of $\mathrm{NaHSO}_{4}(100$ $\mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{EtOAc}(2 \times 100 \mathrm{ml})$. The combined organic layers were washed with water $(100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=5: 1$) to yield $1.72 \mathrm{~g}(53 \%)$ of nitrate 10b. Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.74($ Hexane $/ E t O A c=1: 1)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.88(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.73(\mathrm{~s}, 1 \mathrm{H}, 11-$ $\mathrm{CH}), 6.71(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 5.19\left(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}\right), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, 16-\mathrm{CH}_{2}\right), 4.79(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\mathrm{CH}), 4.72(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 3.96-3.81(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.86\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$, $3.70-3.54\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{CH}\right.$ and $7-\mathrm{CH}$), 2.27 (ddd, $\mathrm{J}=13.1,7.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}$), $2.09(\mathrm{td}, \mathrm{J}=13.1,1.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.37-1.27(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 1.23\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 0.64\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.36$ (m, $2 \mathrm{H}, 19-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{JMOD}, \mathrm{CDCl}_{3}$) $\delta 154.35$ (3-C), 150.14 and 148.68 (12-C and 13-C), 137.31 and 131.42 (i-Ph and 10-C), 128.61 (m-Ph), 127.96 ($15-\mathrm{C}$), 127.37 (o-Ph), 121.09 (p-Ph), 115.94 (14-C), 114.55 (11-C), 96.24 (6-C), 74.42 (17-C), 71.55 ($9-\mathrm{C}$ and 16-C), 64.12 (7-C), 34.49 ($4-\mathrm{C}$), 32.37 (5-C), 15.10 (8-С), 10.49 (18-C), 3.42 (19-C).

HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+} 457.1969$, found $457.1962[\mathrm{M}+\mathrm{H}]^{+}$.
((4S,6S)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-6-(((1S,2R)-2-phenylcyclohexyl)oxy)-5,6-dihydro-4H-1,2-oxazin-3-yl)methyl nitrate (10c)

To a stirred solution of enamine silyl ether $9 \mathrm{c}(0.409 \mathrm{~g}, 0.715 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ was added a solution of chromium (III) nitrate nonahydrate ($0.573 \mathrm{~g}, 1.430 \mathrm{mmol}$) in THF (7 ml). The reaction mixture was intensively stirred at r.t. for 2 h , then poured into a mixture of $\mathrm{EtOAc}(80 \mathrm{ml})$ and 0.25 M aqueous solution of $\mathrm{NaHSO}_{4}(80 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{ml})$. The combined organic layers were washed with water (50 ml) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=20: 1 \rightarrow 10: 1 \rightarrow 5: 1)$ to yield $0.168 \mathrm{~g}(43 \%)$ of nitrate $\mathbf{1 0 c}$. Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.73$ $($ Hexane/EtOAc $=1: 1)$. Mixture of diastereomers (ratio 4,6-trans/4,6-cis $=4.5: 1$).

Major isomer (4,6-trans):
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \operatorname{COSY}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.11(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.08(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{CH}), 6.60(\mathrm{~s}$, $1 \mathrm{H}, 15-\mathrm{CH}), 6.60(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 19-\mathrm{CH}), 6.59\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CHF}_{2}\right), 5.39\left(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}\right)$, 4.33 (d, J = 13.3 Hz, 1H, 13-CH), $4.20(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 3.96$ (ddd, J = 11.2, 11.2, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.7-\mathrm{CH}_{\mathrm{ax}}\right), 3.81\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 21-\mathrm{CH}_{2}\right), 2.94\left(\mathrm{dd}, \mathrm{J}=12.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{ax}}\right), 2.58(\mathrm{ddd}, \mathrm{J}=11.2$, $\left.11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{\mathrm{ax}}\right), 2.42(\mathrm{ddd}, \mathrm{J}=26.5,13.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 2.21-1.71\left(\mathrm{~m}, 6 \mathrm{H}, 5-\mathrm{CH}_{2}, 9-\right.$ $\mathrm{CH}_{2}, 10-\mathrm{CH}$ and $\left.11-\mathrm{CH}\right), 1.67-1.19(\mathrm{~m}, 4 \mathrm{H}, 10-\mathrm{CH}, 11-\mathrm{CH}, 12-\mathrm{CH}$ and $22-\mathrm{CH}), 0.66\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right)$, $0.36\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.42$ (3-C), 151.04 (16-C), 144.55 (i-Ph), 139.86 (t, J = $3.7 \mathrm{~Hz}, 17-\mathrm{C}$) 136.71 (14-C), 128.16 and 127.98 (o-Ph and m-Ph), 125.97 (p-Ph), 123.24 (19-C), 121.02 (18-C), 116.16 (t, J = 260.0 Hz, 20-C), 114.00 (15-C), 90.90 (6-C), 76.45 (7-C), 74.01 (21-C), 70.64 (13-C), 50.93 (8-C), 34.54 (4-C), 34.08 (11-C), 34.02 (5-C), 30.56 (12-C), 26.15 (10-C), 24.69 ($9-\mathrm{C}), 10.13$ (22-C), 3.29 (23C).
${ }^{14} \mathrm{~N}$ NMR (22 MHz, CDCl_{3}) $\delta-45.55$.
${ }^{19}$ F NMR (188 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-81.49(\mathrm{~d}, \mathrm{~J}=75.4 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+} 547.2250$, found $547.2245[\mathrm{M}+\mathrm{H}]^{+}$.

Minor isomer (4,6-cis):

${ }^{1} \mathrm{H}$ NMR (300 MHz , characteristic signals, COSY, CDCl_{3}) $\delta 6.64\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CHF}_{2}\right), 4.86(\mathrm{~d}$, $\mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 4.71(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 3.87\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 21-\mathrm{CH}_{2}\right), 3.25(\mathrm{dd}, \mathrm{J}$ $=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH})$.

3-(azidomethyl)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-6-ethoxy-5,6-dihydro-4H-1,2-oxazine (11a)

To a stirred solution of nitrate $\mathbf{1 0 a}(0.193 \mathrm{~g}, 0.465 \mathrm{mmol})$ in DMF (5 ml) was added sodium azide (151 $\mathrm{mg}, 2.33 \mathrm{mmol})$. The mixture was intensively stirred at $60^{\circ} \mathrm{C}$ for 5 h , then poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}$ $(50 \mathrm{ml})$ and water $(50 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{ml})$. The combined organic layers were washed with brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=20: 1 \rightarrow$ 10:1 $\rightarrow 5: 1)$ to yield $0.178 \mathrm{~g}(97 \%)$ of azide 11a. Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.69$ (Hexane/EtOAc $=1: 1$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \operatorname{COSY}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.77(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $15-\mathrm{CH}$), 6.77 ($\mathrm{s}, 1 \mathrm{H}, 11-\mathrm{CH}$), $6.61\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CHF}_{2}\right), 5.18\left(\mathrm{dd}, \mathrm{J}=2.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{\text {eq }}\right)$, $3.93-3.85$ (m, 1H, 7-CH), 3.84 (d, J = $6.6 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}$), 3.83 (d, J = $13.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}$), 3.74 (dd, J $=12.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 3.64(\mathrm{dq}, \mathrm{J}=14.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.44(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 2.30$ (ddd, J = 13.4, 7.8, $1.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}$), $2.10\left(\mathrm{ddd}, \mathrm{J}=13.4,12.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.39-1.06(\mathrm{~m}$, $1 \mathrm{H}, 18-\mathrm{CH}), 1.24\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 0.64\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 156.62$ (3-C), 151.23 (12-C), 137.72 and 136.80 ($10-\mathrm{C}$ and $13-\mathrm{C}$), 123.54 ($15-\mathrm{C}$), 120.88 ($14-\mathrm{C}$), 116.23 (t, J = $255.6 \mathrm{~Hz}, 16-\mathrm{C}$), 114.26 (11-C), 95.86 ($6-\mathrm{C}$), 74.09 ($17-\mathrm{C}$), 64.06 (7-C), 52.61 (9-C), 34.69 (4-C), 32.79 (5-C), 15.08 (8-C), 10.18 (18-C), 3.32 (19-C).
${ }^{19}$ F NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.50(\mathrm{~d}, \mathrm{~J}=75.3 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 397.1682$, found $397.1673[\mathrm{M}+\mathrm{H}]^{+}$.

3-(azidomethyl)-4-(4-(benzyloxy)-3-(cyclopropylmethoxy)phenyl)-6-ethoxy-5,6-dihydro-4H-1,2oxazine (11b)

To a stirred solution of nitrate $\mathbf{1 0 b}(1.69 \mathrm{~g}, 3.70 \mathrm{mmol})$ in DMF (40 ml) was added sodium azide (1.20 g , $18.51 \mathrm{mmol})$. The mixture was intensively stirred at $60^{\circ} \mathrm{C}$ for 6 h , then poured into a mixture of MTBE $(200 \mathrm{ml})$ and water (200 ml). The aqueous layer was back-extracted with MTBE ($2 \times 100 \mathrm{ml}$). The combined organic layers were washed with brine (200 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=$ $5: 1)$ to yield $1.538 \mathrm{~g}(95 \%)$ of azide $\mathbf{1 1 b}$. Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.69($ Hexane $/ \mathrm{EtOAc}=1: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.88(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.73(\mathrm{~s}, 1 \mathrm{H}, 11-$ $\mathrm{CH}), 6.71(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 5.17\left(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}\right), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, 16-\mathrm{CH}_{2}\right), 3.97-3.80$ (m, 1H, 7-CH), $3.86\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 3.80(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 3.74-3.56(\mathrm{~m}, 2 \mathrm{H}, 4-$ CH and $7-\mathrm{CH}), 3.45(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 2.29\left(\mathrm{ddd}, \mathrm{J}=13.5,7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\text {eq }}\right), 2.11(\mathrm{td}, \mathrm{J}$ $\left.=13.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.37-1.17(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 1.25\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 0.63(\mathrm{~m}, 2 \mathrm{H}$, $\left.19-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{JMOD}, \mathrm{CDCl}_{3}$) $\delta 157.22$ (3-C), 150.06 and 148.59 (12-C and 13-C), 137.42 and 132.21 (i-Ph and 10-C), 128.59 (m-Ph), 127.92 (15-C), 127.37 (o-Ph), 121.19 (p-Ph), 115.94 (14-C), 114.72 (11-C), 96.05 (6-C), 74.41 (17-C), 71.59 (16-C), 63.98 (9-C), 52.61 (7-C), 34.51 (4-C), 32.84 (5C), 15.10 (8 -C), 10.52 (18-C), 3.39 (19-C).

HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 437.2183$, found $437.2178[\mathrm{M}+\mathrm{H}]^{+}$.

To a stirred solution of nitrate $10 \mathrm{c}(0.103 \mathrm{~g}, 0.189 \mathrm{mmol}, 4.5: 1$ mixture of isomers) in DMF (3 ml) was added sodium azide $(0.061 \mathrm{~g}, 0.945 \mathrm{mmol})$. The solution was intensively stirred at $60^{\circ} \mathrm{C}$ for 5.5 h , then poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{ml})$ and water $(75 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 30 \mathrm{ml})$. The combined organic layers were washed with brine $(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1$) to yield $0.090 \mathrm{~g}(91 \%)$ of azide 11c. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.71$ $($ Hexane $/ E t O A c=1: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \operatorname{COSY}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.11(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.07(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{CH}), 6.58(\mathrm{t}, \mathrm{J}$ $\left.=75.5 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CHF}_{2}\right), 6.57(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 19-\mathrm{CH}), 6.56(\mathrm{~s}, 1 \mathrm{H}, 15-\mathrm{CH}), 5.39(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{CH}), 3.93$ (td, J = 10.5, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{\mathrm{ax}}$), $3.81(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 21-\mathrm{CH}), 3.23(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH})$, $3.14(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 2.87\left(\mathrm{dd}, \mathrm{J}=12.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{ax}}\right), 2.58(\mathrm{td}, \mathrm{J}=12.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.8-\mathrm{CH}_{\mathrm{ax}}\right), 2.46-2.32(\mathrm{~m}, 1 \mathrm{H}, 12-\mathrm{CH}), 2.08-1.72\left(\mathrm{~m}, 6 \mathrm{H}, 5-\mathrm{CH}_{2}, 9-\mathrm{CH}_{2}, 10-\mathrm{CH}\right.$ and $\left.11-\mathrm{CH}\right), 1.67-1.17$ $(\mathrm{m}, 4 \mathrm{H}, 10-\mathrm{CH}, 11-\mathrm{CH}, 12-\mathrm{CH}$ and $22-\mathrm{CH}), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.21$ (3-C), 151.03 (16-C), 144.68 (i-Ph), 139.83 (t, J = $3.3 \mathrm{~Hz}, 17-\mathrm{C}$), 137.39 (14-C), 128.17 and 128.05 (o-Ph and m-Ph), 125.94 (p-Ph), 123.21 (19-C), 121.19 (18-C), 116.21 (t, J = $259.0 \mathrm{~Hz}, 20-\mathrm{C}$), 114.19 (15-C), 90.62 (6-C), 76.34 (7-C), 74.08 (21-C), 51.61 (13-C), 50.93 (8-C), 34.63 (4-C), 33.96 (11-C), 32.36 (5-C), 30.55 (12-C), 26.22 (10-C), 24.72 ($9-\mathrm{C}), 10.21$ (22-C), 3.31 (23C).
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.46(\mathrm{~d}, \mathrm{~J}=75.2 \mathrm{~Hz})$.
FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$, characteristic $\mathrm{CH}_{2}-\mathrm{N}_{3}$ bands): 2103 (asymmetric), 1272 (symmetric).
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 527.2464$, found $527.2463[\mathrm{M}+\mathrm{H}]^{+}$.

3-(azidomethyl)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-6-ethoxy-1,2-oxazinane (12a)

To a stirred solution of azide $11 \mathbf{a}(0.170 \mathrm{~g}, 0.429 \mathrm{mmol})$ in $\mathrm{AcOH}(6.25 \mathrm{ml})$ was added $\mathrm{NaBH}_{3} \mathrm{CN}(0.244$ $\mathrm{g}, 3.86 \mathrm{mmol}$). The reaction mixture was intensively stirred at r.t. for 2 h , then poured into a mixture of EtOAc (50 ml) and saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{EtOAc}(2 \times 20 \mathrm{ml})$. The combined organic layers were washed with water $(50 \mathrm{ml})$ and brine $(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1 \rightarrow 3: 1$) to yield $0.162 \mathrm{~g}(95 \%)$ of azide 12a. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.53$ (Hexane/EtOAc $=1: 1$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{COSY}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.78(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{CH}), 6.75$ $(\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.60\left(\mathrm{t}, \mathrm{J}=75.6 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CHF}_{2}\right), 5.65(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{NH}), 4.87\left(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}\right)$, $3.85\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 3.94-3.77(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.57(\mathrm{dq}, \mathrm{J}=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.37$ $-3.22(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{CH}$ and $9-\mathrm{CH}), 3.13(\mathrm{dd}, \mathrm{J}=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 3.08(\mathrm{ddd}, \mathrm{J}=10.8,10.8,5.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{ax}}\right), 2.11-1.94\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 1.40-1.21(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 1.30\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right)$, $0.64\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.34\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 151.02$ (12-C), 140.27 (10-C), 123.30 (15-C), 119.87 (14-C), 116.25 (t, J = $259.9 \mathrm{~Hz}, 16-\mathrm{C}$), 114.27 (11-C), 97.87 (6-C), 74.16 (17-C), 63.83 (7-C), 61.37 (3-C), 51.15 (9-C), 37.92 (4-C), 36.51 (5-C), 15.28 (8-C), 10.30 (18-C), 3.26 (19-C) (13-C not observed).
${ }^{19} \mathrm{~F}$ NMR ($\left.188 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-81.38(\mathrm{~d}, \mathrm{~J}=75.7 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 399.1838$, found $399.1836[\mathrm{M}+\mathrm{H}]^{+}$.

To a stirred solution of azide $\mathbf{1 1 b}(1.493 \mathrm{~g}, 3.42 \mathrm{mmol})$ in $\mathrm{AcOH}(50 \mathrm{ml})$ was added $\mathrm{NaBH}_{3} \mathrm{CN}(1.94 \mathrm{~g}$, 30.9 mmol). The reaction mixture was intensively stirred at r.t. for 3.5 h , then diluted with saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$ and $\mathrm{EtOAc}(50 \mathrm{ml})$. The solution was poured into a mixture of EtOAc (150 ml) and saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{ml})$. The aqueous layer was backextracted with EtOAc $(2 \times 75 \mathrm{ml})$. The combined organic layers were washed with brine (200 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=3: 1 \rightarrow 1: 1$) to yield $1.33 \mathrm{~g}(89 \%)$ of azide 12b. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.60$ (Hexane/EtOAc = 1:1).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.76(\mathrm{~d}, \mathrm{~J}=2.2$ $\mathrm{Hz}, 1 \mathrm{H}, 11-\mathrm{CH}), 6.69$ (dd, J = 8.2, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}$), 5.63 (s, 1H, 2-NH), $5.13\left(\mathrm{~s}, 2 \mathrm{H}, 16-\mathrm{CH}_{2}\right), 4.87$ (d, $\mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}$), $3.87\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 3.85-3.77(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.57(\mathrm{dq}, \mathrm{J}=10.0$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.31(\mathrm{dd}, \mathrm{J}=12.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 3.27-3.19(\mathrm{~m}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}), 3.13$ $(\mathrm{dd}, \mathrm{J}=12.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 3.01\left(\mathrm{td}, \mathrm{J}=11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{ax}}\right), 2.11-1.94\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right)$, $1.38-1.24(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 1.30\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right), 0.63\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.35(\mathrm{~m}, 2 \mathrm{H}, 19-$ CH_{2}).

[^7]HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 439.2340$, found $439.2333[\mathrm{M}+\mathrm{H}]^{+}$.

To a stirred solution of azide $11 \mathrm{c}(0.025 \mathrm{~g}, 0.048 \mathrm{mmol})$ in $\mathrm{AcOH}(0.7 \mathrm{ml}) \mathrm{NaBH}_{3} \mathrm{CN}(0.027 \mathrm{~g}, 0.428$ mmol) was added. The reaction mixture was intensively stirred at r.t. for 1 h , then poured into a mixture of EtOAc (10 ml) and saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{ml})$. The aqueous layer was backextracted with $\operatorname{EtOAc}(2 \times 5 \mathrm{ml})$. The combined organic layers were washed with water $(15 \mathrm{ml})$ and brine $(15 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1 \rightarrow 3: 1$) to yield $0.017 \mathrm{~g}(67 \%)$ of azide 12c. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.62$ (Hexane/EtOAc $=1: 1$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{COSY}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.22(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 7.05(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{CH})$, $6.63(\mathrm{~s}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.62(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 19-\mathrm{CH}), 6.57\left(\mathrm{t}, \mathrm{J}=75.7 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{CHF}_{2}\right), 4.96(\mathrm{~s}, 1 \mathrm{H}, 6-$ $\mathrm{CH}), 4.10(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}), 3.83\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 21-\mathrm{CH}_{2}\right), 3.80-3.71(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.00$ (dddd, J = 11.8, $5.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}_{\mathrm{ax}}$), $2.77(\mathrm{dd}, \mathrm{J}=12.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}$), 2.66 (ddd, J = 10.6, $10.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}), 2.45(\mathrm{dd}, \mathrm{J}=12.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 2.44(\mathrm{ddd}, \mathrm{J}=11.8,11.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ $\mathrm{CH}_{\mathrm{ax}}$), $2.25-2.14(\mathrm{~m}, 1 \mathrm{H}, 12-\mathrm{CH}), 2.01-1.74\left(\mathrm{~m}, 6 \mathrm{H}, 5-\mathrm{CH}_{2}, 9-\mathrm{CH}_{2}, 10-\mathrm{CH}, 11-\mathrm{CH}\right), 1.73-1.54(\mathrm{~m}$, $1 \mathrm{H}, 11-\mathrm{CH}), 1.46-1.19(\mathrm{~m}, 3 \mathrm{H}, 10-\mathrm{CH}, 12-\mathrm{CH}, 22-\mathrm{CH}), 0.64\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 23-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 150.85$ (16-C), 144.63 (i-Ph), 140.31 (14-C), 139.44 (t, J = 3.0 Hz , $17-\mathrm{C}), 128.92$ and 128.13 (o-Ph and m-Ph), 126.85 (p-Ph), 123.10 (19-C), 119.99 (18-C), 118.04 (t, J = $259.7 \mathrm{~Hz}, 20-\mathrm{C}), 113.63$ (15-C), 93.32 (6-C), 77.82 (7-C), 74.09 (21-C), 61.15 (3-C), 51.01 (8-C), 50.34 (13-C), 37.75 ($4-\mathrm{C}$), 36.77 (11-C), 33.58 (5-C), 31.39 (12-C), 26.11 (10-C), 24.84 ($9-\mathrm{C}$), 10.28 (22-C), 3.28 (23-C).
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-82.37(\mathrm{~d}, \mathrm{~J}=75.1 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 529.2621$, found $529.2624[\mathrm{M}+\mathrm{H}]^{+}$.
Optical rotation: $[\alpha]^{20}{ }_{\mathrm{D}}=+206^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{C}=0.3 \mathrm{~g} / 100 \mathrm{ml}\right)$.

ethyl (E)-3-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)acrylate (14a)

To a stirred solution of aldehyde 6a ($0.518 \mathrm{~g}, 2.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added ethyl (triphenylphosphoranylidene) acetate ($0.785 \mathrm{~g}, 2.24 \mathrm{mmol}$) under argon atmosphere. The reaction mixture was intensively stirred at r.t. for 6 h and then evaporated under vacuum. A mixture of hexane $/ \mathrm{Et}_{2} \mathrm{O}=9: 1$ $(50 \mathrm{ml})$ was added to the residue, and the white precipitate was filtered out. The resulting solution was evaporated under vacuum and subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=4: 1)$ to yield $0.648 \mathrm{~g}(97 \%)$ of ester $\mathbf{1 4 a}$. For analytical purposes the product was recrystallized from pentane. White solid, m.p. $=48.5-50.5^{\circ} \mathrm{C}$ (recrystallized from pentane). $\mathrm{R}_{\mathrm{f}}=0.73$ (Hexane/EtOAc = 1:1).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}), 7.11(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{CH}), 7.05(\mathrm{~s}$, $1 \mathrm{H}, 7-\mathrm{CH}$), 7.04 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{CH}$), $6.64\left(\mathrm{t}, \mathrm{J}=75.3 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CHF}_{2}\right), 6.32(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{CH}), 4.22\left(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.86\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 1.30\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right)$, $1.35-1.18(\mathrm{~m}, 1 \mathrm{H}, 14-\mathrm{CH}), 0.62\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 0.33\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{JMOD}, \mathrm{CDCl}_{3}$) $\delta 166.65$ (1-C), 150.65 (8-C), 143.44 (5-C), 141.89 (9-C), 132.98 ($6-$ C), 122.58 ($10-\mathrm{C}$), 121.40 ($4-\mathrm{C}$), 118.63 ($11-\mathrm{C}$), 116.04 (t, J = $260.2 \mathrm{~Hz}, 12-\mathrm{C}$) 113.21 ($7-\mathrm{C}$), 73.94 ($13-$ C), 60.55 ($2-\mathrm{C}$), 14.26 (3-C), 10.08 ($14-\mathrm{C}$), 3.19 ($15-\mathrm{C}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-82.53(\mathrm{~d}, \mathrm{~J}=75.2 \mathrm{~Hz})$.
GC-MS (EI): m/z $312\left(\mathrm{M}^{+}\right)$.

ethyl 3-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-4-nitropentanoate (15a)

To a stirred solution of ester $\mathbf{1 4 a}(0.648 \mathrm{~g}, 2.07 \mathrm{mmol})$ in nitroethane $(1.5 \mathrm{ml})$ was added DBU $(0.310 \mathrm{ml}$, $2.07 \mathrm{mmol})$. The reaction mixture was stirred for 30 h , then 2 M aqueous solution of $\mathrm{HCl}(15 \mathrm{ml})$ was added. The mixture was poured into a mixture of MTBE (30 ml) and water (30 ml). The aqueous layer was back-extracted with MTBE $(2 \times 15 \mathrm{ml})$. The combined organic layers were washed with brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=9: 1 \rightarrow 6: 1$) to yield $0.729 \mathrm{~g}(91 \%)$ of nitro compound 15a as two isomers mixture. Isomers were separated for analytical purposes (isomer A: 0.293 g , isomer B: 0.280 g , mixed fraction: 0.156 g).

Isomer A: Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.45$ (Hexane/EtOAc $=3: 1$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{CH}), 6.76(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{CH}), 6.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H}, 11-\mathrm{CH}), 6.56\left(\mathrm{t}, \mathrm{J}=75.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CHF}_{2}\right), 4.73(\mathrm{dq}, \mathrm{J}=9.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH}), 3.91(\mathrm{q}, \mathrm{J}=7.1$, $2 \mathrm{H}, 2-\mathrm{CH}_{2}$), $3.81\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 3.59(\mathrm{ddd}, \mathrm{J}=9.7,9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}), 2.68(\mathrm{dd}, \mathrm{J}=$ $15.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}$), 2.58 (dd, J = 15.8, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}$), 1.28 (d, J = 6.6 Hz, 3H, 17-CH CH_{3}), 1.24 $1.12(\mathrm{~m}, 1 \mathrm{H}, 14-\mathrm{CH}), 1.02\left(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 0.56\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 0.28\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.21$ (1-C), 150.53 ($8-\mathrm{C}$), 139.87 ($9-\mathrm{C}$), 136.19 ($6-\mathrm{C}$), 122.65 ($10-\mathrm{C}$), 120.51 (11-C), 116.13 (t, J = $259.3 \mathrm{~Hz}, 12-\mathrm{C}$), 114.60 (7-C), 86.62 (16-C), 73.80 (13-C), 60.59 (2-C), 45.94 (5-C), 37.39 (4-C), 17.39 (17-C), 13.79 (3-C), 9.95 (14-C), 2.97 (15-C).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-87.79(\mathrm{~d}, \mathrm{~J}=75.3 \mathrm{~Hz})$.
Isomer B: Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.41$ (Hexane/EtOAc $=3: 1$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{CH}), 6.74(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{CH}), 6.72(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, $1 \mathrm{H}, 11-\mathrm{CH}), 6.56\left(\mathrm{t}, \mathrm{J}=75.5 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CHF}_{2}\right), 4.84(\mathrm{dq}, \mathrm{J}=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH}), 4.00(\mathrm{q}, \mathrm{J}=7.2$, $\left.2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.80\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 3.63(\mathrm{ddd}, \mathrm{J}=9.1,8.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}), 2.78(\mathrm{dd}, \mathrm{J}=$ $16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}$), 2.66 (dd, J = 16.0, $9.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}$), 1.52 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}, 17-\mathrm{CH}_{3}$), $1.27-$ $1.15(\mathrm{~m}, 1 \mathrm{H}, 14-\mathrm{CH}), 1.08\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 3-\mathrm{CH}_{3}\right), 0.58\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 0.30\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.74$ (1-C), 150.38 ($\left.8-\mathrm{C}\right), 139.93$ ($9-\mathrm{C}$), 136.61 ($\left.6-\mathrm{C}\right), 122.50$ ($10-\mathrm{C}$), 120.41 (11-C), 116.23 (t, J = $259.1 \mathrm{~Hz}, 12-\mathrm{C}$), 114.59 ($7-\mathrm{C}$), 86.55 (16-C), 73.91 (13-C), 60.91 (2-C), 45.62 (5-C), 36.31 (4-C), 16.93 (17-C), 13.93 (3-C), 10.04 (14-C), 3.09 (15-C).
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-82.34(\mathrm{~d}, \mathrm{~J}=75.3 \mathrm{~Hz})$.
MS (EI): m/z $387\left(\mathrm{M}^{+}\right)$.

3-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-4-nitropentan-1-ol (16a)

A solution of nitro ester $\mathbf{1 5 a}(0.280 \mathrm{~g}, 0.722 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{ml})$ in Schlenk flask under argon atmosphere was cooled to $-78^{\circ} \mathrm{C}$ and the 1.2 M solution of DIBAL-H in toluene $(2.4 \mathrm{ml})$ was added with intensive stirring. The reaction mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$ and then 16 h allowing to warm to r.t. The reaction mixture was again cooled to $-78^{\circ} \mathrm{C}$ and the 1.2 M solution of DIBAL-H in toluene (1.2 ml) was added, then the mixture was allowed to warm to r.t. and stirred for 8.5 h . The 1 M aqueous solution of $\mathrm{HCl}(10 \mathrm{ml})$ was added and the resulting solution was poured into a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and water $(50 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{ml})$. The combined organic layers were washed with water (50 ml) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc = $7: 1 \rightarrow 5: 1 \rightarrow 3: 1 \rightarrow 1: 1)$ to yield $0.139 \mathrm{~g}(56 \%)$ of alcohol $\mathbf{1 6 a}$.

Isomer A (obtained from isomer A of ester 15a): colorless oil. $\mathrm{R}_{\mathrm{f}}=0.45($ Hexane $/ \mathrm{EtOAc}=1: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{CH}), 6.75(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{CH}), 6.73(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}, 11-\mathrm{CH}), 6.62\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CHF}_{2}\right), 4.78-4.62(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{CH}), 3.86(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 13-$ CH_{2}), $3.51(\mathrm{dd}, \mathrm{J}=10.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}), 3.40-3.25\left(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right), 1.86(\mathrm{dd}, \mathrm{J}=13.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $2-\mathrm{CH}), 1.32\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.30-1.23(\mathrm{~m}, 1 \mathrm{H}, 14-\mathrm{CH}), 0.96(\mathrm{dd}, \mathrm{J}=13.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ $\mathrm{CH}), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right)(\mathrm{OH}$ not observed $)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{JMOD}, \mathrm{CDCl}_{3}$) $\delta 150.99$ (8-C), 139.36 (9-C), 136.85 (6-C), 123.22 (10-C), 120.80 (11-C), 114.80 (7-C), 87.96 (4-C), 74.21 (13-C), 59.84 (1-C), 46.73 (3-C), 35.33 (2-C), 18.04 (5-C), 10.23 (14-C), 3.30 (15-C) (C-12 not observed).
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.44(\mathrm{~d}, \mathrm{~J}=75.5 \mathrm{~Hz})$.
Isomer B (obtained from isomer B of ester 15a): colorless oil. $\mathrm{R}_{\mathrm{f}}=0.24($ Hexane/EtOAc $=1: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{CH}), 6.74(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{CH}), 6.74(\mathrm{~d}$, $\mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 6.59\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 12 \mathrm{CHF}_{2}\right), 4.78(\mathrm{dq}, \mathrm{J}=12.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 3.84(\mathrm{~d}$, $\left.\mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 3.57(\mathrm{ddd}, \mathrm{J}=12.0,6.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}), 3.35\left(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right), 2.10-1.95$ $(\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{CH}), 1.81(\mathrm{ddd}, \mathrm{J}=14.0,11.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}), 1.61\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{CH}_{3}\right), 1.29-1.15$ $(\mathrm{m}, 1 \mathrm{H}, 14-\mathrm{CH}), 0.63\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 0.34\left(\mathrm{~m}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right)(\mathrm{OH}$ not observed).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{JMOD}, \mathrm{CDCl}_{3}$) $\delta 150.70$ (8-C), 141.88 (9-C), 137.19 (6-C), 122.87 (10-C), 120.69 (11-C), 116.33 (t, J = $255.9 \mathrm{~Hz}, 12-\mathrm{C}$), 114.95 (7-C), 87.98 (4-C), 74.22 (13-C), 59.91 (1-C), 46.52 (3-C), 33.67 (2-C), 17.58 (5-C), 10.24 (14-C), 3.30 (15-C).
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-82.27(\mathrm{~d}, \mathrm{~J}=75.7 \mathrm{~Hz})$.
MS (EI): m/z $345\left(\mathrm{M}^{+}\right)$. oxide (18a)

A solution of nitro alcohol $\mathbf{1 6 a}(0.244 \mathrm{~g}, 0.707 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{ml})$ in Schlenk flask under argon atmosphere was cooled to $0^{\circ} \mathrm{C}$. Triethylamine ($0.160 \mathrm{ml}, 1.13 \mathrm{mmol}$) and methanesulfonyl chloride $(0.070 \mathrm{ml}, 0.905 \mathrm{mmol})$ were added. The reaction mixture was intensively stirred at $0^{\circ} \mathrm{C}$ for 15 min and then kept without stirring at this temperature for 5.5 h . The solution was diluted with water (10 ml) and poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{ml})$. The combined organic layers were washed saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$ and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum.

The 1 M solution of NaI in acetone (1.2 ml) was added and the mixture was kept at r.t. for 64 h . The solution was diluted with EtOAc (10 ml) and poured into a mixture of EtOAc (30 ml) and water (30 ml). The aqueous layer was back-extracted with EtOAc ($3 \times 30 \mathrm{ml}$). The combined organic layers were washed with water (50 ml) and brine $(2 \times 40 \mathrm{ml})$ and brine $(40 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to give crude iodide 17 a .

The crude product was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{ml})$ and $\mathrm{DBU}(0.085 \mathrm{ml}, 0.571 \mathrm{mmol})$ was added. The reaction mixture was stirred at r.t. for 3.5 h , then diluted with EtOAc (40 ml) and poured into a 0.25 M solution of $\mathrm{NaHSO}_{4}(40 \mathrm{ml})$. The aqueous layer was back-extracted with EtOAc $(2 \times 20 \mathrm{ml})$. The combined organic layers were washed with brine (40 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=$ $1: 1 \rightarrow 0: 1)$ to yield $0.146 \mathrm{~g}(63 \%)$ of nitronate 18a. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.05(\mathrm{Hexane} / \mathrm{EtOAc}=1: 1)$.
${ }^{1}{ }^{1} \mathrm{H}$ NR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 6.73(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 6.70(\mathrm{~s}$, $1 \mathrm{H}, 9-\mathrm{CH}), 6.60\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CHF}_{2}\right), 4.41\left(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 3.83\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right)$, $3.80-3.60(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.36\left(\mathrm{dt}, \mathrm{J}=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\text {eq }}\right.$), $2.01(\mathrm{ddd}, \mathrm{J}=13.5,11.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{CH}_{\mathrm{ax}}$), $1.89\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right), 1.43-1.07(\mathrm{~m}, 1 \mathrm{H}, 16-\mathrm{CH}), 0.64\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 0.34\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{JMOD}, \mathrm{CDCl}_{3}$) $\delta 150.95$ (10-C), 139.54 (8-C), 123.36 (12-C), 122.24 (3-C), 120.64 ($13-\mathrm{C}$), 115.85 ($\mathrm{t}, \mathrm{J}=255.5 \mathrm{~Hz}, 14-\mathrm{C}$), 113.64 ($9-\mathrm{C}$), 74.24 ($15-\mathrm{C}$), 69.27 ($6-\mathrm{C}), 43.65$ ($4-\mathrm{C}$), 30.38 ($5-\mathrm{C}$), 18.23 (7-C), 10.20 (16-C), 3.28 (17-C) (11-C not observed).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-82.51(\mathrm{~d}, \mathrm{~J}=75.4 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{4}\right]^{+} 328.1355$, found $328.1350[\mathrm{M}+\mathrm{H}]^{+}$.

4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-3,6,6-trimethyl-5,6-dihydro-4H-1,2-oxazine 2-oxide (18b)

A solution of nitroalkene $4 \mathbf{a}(0.628 \mathrm{~g}, 2.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{ml})$ with $\mathrm{CaH}_{2}(\mathrm{ca} .0 .05 \mathrm{~g})$ was cooled to $-78^{\circ} \mathrm{C}$ (acetone/dry ice) in a Schlenk flask under argon atmosphere. $\mathrm{SnCl}_{4}(0.270 \mathrm{ml}, 2.31$ mmol) was added with intensive stirring. In 5 min a solution of 2-methylpropene (excess, ca. 1 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{ml})$ was added dropwise. The reaction mixture was intensively stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then the resulting orange-colored solution was poured into a mixture of $\mathrm{EtOAc}(70 \mathrm{ml})$ and saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(70 \mathrm{ml})$. The aqueous layer was back-extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{ml})$. The combined organic layers were washed with water $(100 \mathrm{ml})$ and brine $(100 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=1: 1 \rightarrow 0: 1)$ to yield $0.584 \mathrm{~g}(78 \%)$ of nitronate $\mathbf{1 8 b}$. For analytical purposes the product was recrystallized from hexane $/ \mathrm{Et}_{2} \mathrm{O}=1: 1$ mixture. White solid, m.p. $=104-108^{\circ} \mathrm{C}$ (recrystallized from hexane $/ \mathrm{Et}_{2} \mathrm{O}=1: 1$). $\mathrm{R}_{\mathrm{f}}=0.12$ (Hexane/ $\mathrm{EtOAc}=1: 1$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.74(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.69(\mathrm{~s}$, $1 \mathrm{H}, 11-\mathrm{CH}$), $6.62\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CHF}_{2}\right), 3.84\left(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 3.66(\mathrm{dd}, \mathrm{J}=10.4,8.0$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{ax}}$), $2.11\left(\mathrm{dd}, \mathrm{J}=13.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}\right), 1.97-1.84\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.88(\mathrm{~s}, 3 \mathrm{H}, 9-$ $\left.\mathrm{CH}_{3}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$ or $\left.8-\mathrm{CH}_{3}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$ or $\left.8-\mathrm{CH}_{3}\right), 1.33-1.18(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 0.66(\mathrm{~m}$, $\left.2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.36$ (12-C), 139.92 (13-C), 139.06 (10-C), 123.37 (14-C), 121.45 (3-C), 120.77 (15-C), 116.19 (t, J = $260.0 \mathrm{~Hz}, 16-\mathrm{C}$), 113.57 (11-C), 81.39 (6-C), 74.26 (17-C), 43.22 (5-C), 41.76 (4-C), 27.89 and 22.21 (7-C and 8-C), 17.35 ($9-C$), 10.22 (18-C), 3.31 (19-C).
${ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-82.53(\mathrm{~d}, \mathrm{~J}=75.4 \mathrm{~Hz})$.

HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{NO}_{4}\right]^{+} 356.1668$, found $356.1658[\mathrm{M}+\mathrm{H}]^{+}$.

3-(azidomethyl)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-5,6-dihydro-4H-1,2oxazine (21a)

To a stirred solution of nitronate $\mathbf{1 8 a}(0.146 \mathrm{~g}, 0.446 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{ml})$ in Schlenk flask was added triethylamine $(0.095 \mathrm{ml}, 0.699 \mathrm{mmol})$ under argon atmosphere. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{Me}_{3} \mathrm{SiBr}(0.082 \mathrm{ml}, 0.624 \mathrm{mmol})$ was added. The mixture was intensively stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then kept for 28 h at $-20^{\circ} \mathrm{C}$ without stirring. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ (ice water bath), and the solution of $\mathrm{CoBr}_{2}(0.195 \mathrm{~g}, 0.891 \mathrm{mmol})$ in THF (2 ml) was added. The reaction mixture was stirred for 45 min at $0^{\circ} \mathrm{C}$, then 72 h at r.t., then the resulting solution was poured into a mixture of $\mathrm{EtOAc}(40 \mathrm{ml})$ and 0.25 M aqueous solution of $\mathrm{NaHSO}_{4}(40 \mathrm{ml})$. The aqueous layer was backextracted with $\mathrm{EtOAc}(2 \times 30 \mathrm{ml})$. The combined organic layers were washed with water (50 ml) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to give bromide 20a.

The crude product was dissolved in DMF (6 ml) and sodium azide ($0.145 \mathrm{~g}, 2.23 \mathrm{mmol}$) was added. The mixture was intensively stirred at $60^{\circ} \mathrm{C}$ for 4.5 h and then poured into a mixture of MTBE (40 ml) and water (40 ml). The aqueous layer was back-extracted with MTBE $(2 \times 30 \mathrm{ml})$. The combined organic layers were washed with water (50 ml) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=$ $10: 1 \rightarrow 5: 1$) to yield $0.119 \mathrm{~g}(76 \%)$ of azide 21a. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.56($ Hexane/EtOAc $=1: 1)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13$ (d, J = $\left.7.7 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}\right), 6.74$ (s, 1H, $9-\mathrm{CH}$), 6.73 (d, J = 7.7 Hz , $1 \mathrm{H}, 13-\mathrm{CH}), 6.60\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CHF}_{2}\right), 4.06\left(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 3.88(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}$, $7-\mathrm{CH}), 3.84\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 3.62(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.55(\mathrm{dd}, \mathrm{J}=10.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}$, $4-\mathrm{CH}_{\mathrm{ax}}$), $2.30\left(\mathrm{dd}, \mathrm{J}=13.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}\right.$), 1.98 (ddd, J = 13.2, 10.2, $\left.5.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.35-$ $1.14(\mathrm{~m}, 1 \mathrm{H}, 16-\mathrm{CH}), 0.63\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 0.34\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.22$ (3-C), 151.11 (10-C), 139.77 and 138.68 (8-C and 11-C), 123.28 (12-C), 120.77 (13-C), 116.14 (t, J = $260.1 \mathrm{~Hz}, 14-\mathrm{C}$), 114.18 (9-C), 74.06 (15-C), 64.02 (6-C), 52.99 (7C), 36.77 (4-C), 28.36 (5-C), 10.13 (16-C), 3.22 (17-C).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-82.47(\mathrm{~d}, \mathrm{~J}=75.4 \mathrm{~Hz})$.
HRMS (ESI): m / z calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+} 353.1420$, found $353.1414[\mathrm{M}+\mathrm{H}]^{+}$.

3-(azidomethyl)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-6,6-dimethyl-5,6-dihydro-4H-1,2-oxazine (21b)

To a stirred solution of nitronate $\mathbf{1 8 b}(0.552 \mathrm{~g}, 1.56 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in Schlenk flask (9 ml) was added triethylamine ($0.324 \mathrm{ml}, 2.33 \mathrm{mmol}$) under argon atmosphere. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{Me}_{3} \mathrm{SiBr}(0.290 \mathrm{ml}, 2.18 \mathrm{mmol})$ was added. The mixture was intensively stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then kept for 48 h at $-20^{\circ} \mathrm{C}$ without stirring. The mixture was allowed to warm to $0^{\circ} \mathrm{C}$ (ice water bath), and the solution of $\mathrm{CoBr}_{2}(0.688 \mathrm{~g}, 3.14 \mathrm{mmol})$ in dry THF $(6 \mathrm{ml})$ was added. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 5 h at r.t., then the resulting solution was poured into a mixture of EtOAc (50 ml) and 0.25 M aqueous solution of $\mathrm{NaHSO}_{4}(50 \mathrm{ml})$. The aqueous layer was back-extracted with EtOAc $(2 \times 25 \mathrm{ml})$. The combined organic layers were washed with water $(50 \mathrm{ml})$ and brine $(50 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to give bromide 20b .

The crude product was dissolved in DMF (20 ml) and sodium azide ($0.505 \mathrm{~g}, 7.78 \mathrm{mmol}$) was added. The mixture was intensively stirred at $60^{\circ} \mathrm{C}$ for 5.5 h and then poured into a mixture of MTBE (70 ml) and water $(70 \mathrm{ml})$. The aqueous layer was back-extracted with MTBE $(3 \times 30 \mathrm{ml})$. The combined organic layers were washed with water (60 ml) and brine (60 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=$ $1: 0 \rightarrow 10: 1 \rightarrow 5: 1)$ to yield $0.488 \mathrm{~g}(83 \%)$ of azide 21b. Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.76($ Hexane $/ \mathrm{EtOAc}=1: 1)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.76(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.74(\mathrm{~s}$, $1 \mathrm{H}, 11-\mathrm{CH}), 6.62\left(\mathrm{t}, \mathrm{J}=75.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CHF}_{2}\right), 3.89(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 3.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.17-\mathrm{CH}_{2}\right), 3.55\left(\mathrm{dd}, \mathrm{J}=12.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{ax}}\right), 3.52(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 2.11(\mathrm{dd}, \mathrm{J}=13.6,7.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}\right), 1.90\left(\mathrm{dd}, \mathrm{J}=13.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$ or $\left.8-\mathrm{CH}_{3}\right), 1.31(\mathrm{~s}, 3 \mathrm{H}, 7-$ CH_{3} or $\left.8-\mathrm{CH}_{3}\right), 1.29-1.19(\mathrm{~m}, 1 \mathrm{H}, 18-\mathrm{CH}), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{JMOD}, \mathrm{CDCl}_{3}$) $\delta 154.13$ (3-C), 151.31 (12-C), 139.62 and 137.97 (10-C and 13-C), 123.53 (14-C), 119.98 (15-C), 117.89 (t, J = $260.0 \mathrm{~Hz}, 16-\mathrm{C}$), 114.15 (11-C), 75.25 (6-C), 74.20 (17-C), 52.85 (9-C), 40.15 (5-C), 37.67 (4-C), 28.46 and 22.54 ($7-\mathrm{C}$ and $8-\mathrm{C}$), 10.24 (18-C), 3.33 (19-C).
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.49(\mathrm{~d}, \mathrm{~J}=75.4 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+} 381.1733$, found $381.1729[\mathrm{M}+\mathrm{H}]^{+}$.

3-(azidomethyl)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-1,2-oxazinane (22a)

To a stirred solution of azide 21a ($0.109 \mathrm{~g}, 0.309 \mathrm{mmol}$) in $\mathrm{AcOH}(2.7 \mathrm{ml}) \mathrm{NaBH}_{3} \mathrm{CN}(0.175 \mathrm{~g}, 2.78$ mmol) was added. The reaction mixture was intensively stirred at r.t. for 1 h , then saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{ml})$ was added into the flask. The mixture was poured into a mixture of EtOAc $(30 \mathrm{ml})$ and saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(30 \mathrm{ml})$. The aqueous layer was back-extracted with $\operatorname{EtOAc}(2 \times 20 \mathrm{ml})$. The combined organic layers were washed with water (50 ml) and brine (50 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1 \rightarrow 1: 1$) to yield $0.098 \mathrm{~g}(89 \%)$ of azide 22a as a mixture of diastereomers (ratio 3,4-trans/3,4-cis $=6.5: 1$). Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.43($ Hexane/EtOAc $=$ 1:1).

Major isomer:

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{COSY}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{CH}), 6.79(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ $\mathrm{CH}), 6.77(\mathrm{dd}, \mathrm{J}=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{CH}), 6.61\left(\mathrm{t}, \mathrm{J}=75.6 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CHF}_{2}\right), 5.49(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, 2-\mathrm{NH})$, $4.12\left(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{ax}}\right), 3.87\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{CH}_{2}\right), 3.83\left(\mathrm{ddd}, \mathrm{J}=11.8,2.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}_{\mathrm{eq}}\right)$, $3.35-3.25(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{CH}), 3.30(\mathrm{dd}, \mathrm{J}=13.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 3.10(\mathrm{dd}, \mathrm{J}=13.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH})$, $2.67\left(\mathrm{ddd}, \mathrm{J}=11.8,10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{ax}}\right), 2.02-1.89\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{ax}}\right), 1.84(\mathrm{dddd}, \mathrm{J}=13.5,4.5,2.6$, $\left.2.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{\mathrm{eq}}\right), 1.34-1.20(\mathrm{~m}, 1 \mathrm{H}, 16-\mathrm{CH}), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{HSQC}, \mathrm{CDCl}_{3}$) $\delta 150.95$ (10-C), 140.22 and 139.57 (8-C and 11-C), 123.24 (12-C), 120.19 (13-C), 116.31 (t, J = $259.7 \mathrm{~Hz}, 14-\mathrm{C}$), 113.89 (9-C), 74.11 (15-C), 70.85 (6-C), 61.92 (3-C), 51.50 (7-C), 44.23 (4-C), 33.53 (5-C), 10.28 (16-C), 3.29 (17-C).
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-81.59(\mathrm{~d}, \mathrm{~J}=75.6 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+} 355.1576$, found $355.1571[\mathrm{M}+\mathrm{H}]^{+}$.

Minor isomer:
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{COSY}, \mathrm{HSQC}$, characteristic signals, CDCl_{3}) $\delta 4.23-4.19(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{CH}), 3.95$ (dd, $\mathrm{J}=11.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}), 3.36(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{CH}), 2.95(\mathrm{dd}, \mathrm{J}=12.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 2.15-2.12(\mathrm{~m}$, $1 \mathrm{H}, 5-\mathrm{CH}), 1.76-1.71$ (m, 1H, 5-CH).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{HSQC}$, characteristic signals, CDCl_{3}) $\delta 69.93$ (6-C), 60.92 (3-C), 47.89 (7-C), 41.35 (4-C), 26.01 (5-C).

3-(azidomethyl)-4-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-6,6-dimethyl-1,2-oxazinane

 (22b)

To a stirred solution of azide $\mathbf{2 1 b}(0.293 \mathrm{~g}, 0.771 \mathrm{mmol})$ in $\mathrm{AcOH}(2.5 \mathrm{ml}) \mathrm{NaBH}_{3} \mathrm{CN}(0.435 \mathrm{~g}, 6.94$ mmol) was added. The reaction mixture was intensively stirred at r.t. for 4 h and then saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (excess) was added into the flask. The mixture was poured into a mixture of EtOAc $(60 \mathrm{ml})$ and saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(60 \mathrm{ml})$. The aqueous layer was back-extracted with $\operatorname{EtOAc}(2 \times 40 \mathrm{ml})$. The combined organic layers were washed with water (70 ml) and brine (70 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: Hexane/EtOAc $=10: 1 \rightarrow 5: 1 \rightarrow 3: 1$) to yield $0.180 \mathrm{~g}(61 \%)$ of azide 22b. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.39$ (Hexane/EtOAc $=3: 1$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{CH}), 6.77(\mathrm{~s}, 1 \mathrm{H}, 11-\mathrm{CH}), 6.76(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, 15-\mathrm{CH}), 6.61\left(\mathrm{t}, \mathrm{J}=75.6 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CHF}_{2}\right), 5.33(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, 2-\mathrm{NH}), 3.87\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 17-\mathrm{CH}_{2}\right)$, $3.32(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 3.21-3.06(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{CH}), 3.13(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{CH}), 2.83(\mathrm{td}, \mathrm{J}=$ $\left.10.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{\mathrm{ax}}\right), 1.78-1.68\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$ or $\left.8-\mathrm{CH}_{3}\right), 1.33-1.20(\mathrm{~m}, 1 \mathrm{H}$, $18-\mathrm{CH}), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$ or $\left.8-\mathrm{CH}_{3}\right), 0.65\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right), 0.36\left(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.51$ (12-C), 140.44 and 139.45 (10-C and 13-C), 123.22 (14-C), 120.21 (15-C), 115.36 (t, J = $256.9 \mathrm{~Hz}, 16-\mathrm{C}$), 113.92 (11-C), 74.84 (6-C), 74.12 (17-C), 61.51 (3-C), 51.38 (9C), 43.85 (5-C), 40.93 (4-C), 29.29 and 22.07 (7-C and 8-C), 10.31 (18-C), 3.31 (19-C).
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-82.39(\mathrm{~d}, \mathrm{~J}=75.6 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right]^{+} 383.1889$, found $383.1877[\mathrm{M}+\mathrm{H}]^{+}$.

Rel-(R)-4-((S)-(1-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-3-hydroxy-3-
methylbutyl)imidazolidin-2-one (24b)

To a solution of $\mathbf{2 b}(0.078 \mathrm{~g}, 0.204 \mathrm{mmol})$ in methanol $(2 \mathrm{ml})$ in a vial equipped with a magnetic stirrer was added a suspension of Raney ${ }^{\circledR}$ nickel (ca. 50 mg , washed with methanol) in methanol (1 ml). The vial was placed to a steel autoclave which was flushed and filled with H_{2} to a pressure of 40 bar. The mixture was stirred at $70^{\circ} \mathrm{C}$ for 5.5 h . Then the autoclave was cooled to r.t. and slowly evacuated, and then the catalyst was removed. The solvent was evaporated under vacuum. The residue was subjected to a column chromatography on silica gel (eluent: $\mathrm{EtOAc} / \mathrm{MeOH}=1: 0 \rightarrow 10: 1 \rightarrow 3: 1$) to yield $0.068 \mathrm{~g}(87 \%)$ of alcohol 3b. Colorless oil. $\mathrm{R}_{\mathrm{f}}=0.55(\mathrm{EtOAc} / \mathrm{MeOH}=3: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.08(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{CH}), 6.75(\mathrm{~s}, 1 \mathrm{H}, 12-\mathrm{CH})$, $6.71(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{CH}), 6.59\left(\mathrm{t}, \mathrm{J}=75.5 \mathrm{~Hz}, 1 \mathrm{H}, 17-\mathrm{CHF}_{2}\right), 4.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.85(\mathrm{~d}, \mathrm{~J}=6.7$ $\mathrm{Hz}, 2 \mathrm{H}, 18-\mathrm{CH}_{2}$), $3.10(\mathrm{dd}, \mathrm{J}=8.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 3.00(\mathrm{t}, \mathrm{J}=8.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{CH}), 2.96-2.82$ $(\mathrm{m}, 2 \mathrm{H}, 8-\mathrm{CH}$ and $8 \mathrm{a}-\mathrm{CH}), 1.99(\mathrm{dd}, \mathrm{J}=14.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}), 1.87(\mathrm{dd}, \mathrm{J}=14.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH})$, $1.32-1.22(\mathrm{~m}, 1 \mathrm{H}, 19-\mathrm{CH}), 1.25(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.19\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right.$ or $\left.10-\mathrm{CH}_{3}\right), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right.$ or $10-$ CH_{3}), $0.64\left(\mathrm{~m}, 2 \mathrm{H}, 20-\mathrm{CH}_{2}\right), 0.35\left(\mathrm{~m}, 2 \mathrm{H}, 20-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.38$ (3-C), 150.78 (13-C), 141.81 (14-C), 139.37 (t, J = $2.9 \mathrm{~Hz}, 11-\mathrm{C}$), 123.05 ($15-\mathrm{C}$), 120.65 ($16-\mathrm{C}$), 116.32 (t, J = $259.6 \mathrm{~Hz}, 17-\mathrm{C}$), 114.54 (12-C), 74.17 (18-C), 70.64 (6-C), 58.87 ($8 \mathrm{a}-\mathrm{C}$), 47.81 (7-C), 47.02 (1-C), 45.61 ($8-\mathrm{C}$), 31.90 and 28.36 ($9-\mathrm{C}$ and $10-\mathrm{C}$), 10.29 (19-C), 3.30 (20-C).
${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-82.36(\mathrm{~d}, \mathrm{~J}=75.5 \mathrm{~Hz})$.
HRMS (ESI): m/z calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+} 385.1933$, found $385.1925[\mathrm{M}+\mathrm{H}]^{+}$.

3. Biological studies: primary data

In vitro enzymatic assay for recombinant human PDE4B1

Compounds

Compound I.D.	Stock Concentration	Dissolving Solvent	Test Range $(\mu \mathrm{M})$	Intermediate Dilution
rac-1a	10 mM	DMSO	$0.0003-3$	10% DMSO in PDE Assay Buffer
(7S,7aR)-1a	10 mM	DMSO	$0.001-10$	10% DMSO in PDE Assay Buffer
rac-1b	10 mM	DMSO	$0.001-10$	10% DMSO in PDE Assay Buffer
rac-1c	10 mM	DMSO	$0.001-10$	10% DMSO in PDE Assay Buffer
rac-1d	10 mM	DMSO	$0.0003-3$	10% DMSO in PDE Assay Buffer
rac-1e	10 mM	DMSO	$0.0003-3$	10% DMSO in PDE Assay Buffer
rac-2a	10 mM	DMSO	$0.001-10$	10% DMSO in PDE Assay Buffer
rac-2b	10 mM	DMSO	$0.0003-3$	10% DMSO in PDE Assay Buffer
rac-24b	10 mM	DMSO	$0.0003-3$	10% DMSO in PDE Assay Buffer
Apremilast*	10 mM	DMSO	$0.001-10$ for	10% DMSO in PDE Assay Buffer
Ren				

*Reference compound.

Enzymes and Substrates

Assay	BPS Catalog	Enzyme Lot \#	Enzyme Used $(\mathrm{ng}) /$ Reaction	Substrate
PDE-4B1	60041	90520	0.05	100 nM FAM-cAMP

Data for the effect of each compound on PDE4B1 activity is presented below. The IC_{50} of all compounds against PDEs are summarized in Table 1 in the manuscript.

Data for the Effect of rac-1a on PDE4B1 Activity

rac-1a $[\mu \mathrm{M}]$	PDE Activity $[($ Fluorescent Polarization (mp)]		$\%$ Activity	
	Repeat1	Repeat2	Repeat1	Repeat2
No Compound	161	165	99	101
0.0003	159	163	97	100
0.001	150	155	91	94
0.003	141	140	84	84
0.01	109	112	62	64
0.03	74	74	37	38
0.1	44	45	16	17
0.3	28	30	5	6
1	23	24	2	3
3	22	22	1	1
Background	21	21	0	0

PDE4B1 Activity

Substrate Conc. $=100 \mathrm{nM}$ (cAMP)

Data for the Effect of (-)-(7S,7aR)-1a on PDE4B1 Activity

$(-)-(7 \mathrm{~S}, 7 \mathrm{aR})-\mathbf{1 a}$ $[\mu \mathrm{M}]$	PDE Activity $[($ Fluorescent Polarization $(\mathrm{mp})]$		$\%$ Activity	
	Repeat1	Repeat2	Repeat1	Repeat2
No Compound	155	153	101	99
0.001	149	148	97	95
0.003	136	135	87	86
0.01	100	99	60	58
0.03	72	70	38	37
0.1	41	42	15	16
0.3	31	28	7	5
1	26	25	4	3
3	25	26	3	4
10	22	21	1	-1
Background	21	21		

PDE4B1 Activity

Substrate Conc. $=100 \mathrm{nM}$ (cAMP)

Data for the Effect of rac-1b on PDE4B1 Activity

rac-1b $[\mu \mathrm{M}]$	PDE Activity (Fluorescent Polarization $(\mathrm{mp})]$		\% Activity	

PDE4B1 Activity

Substrate Conc. $=100 \mathrm{nM}$ (cAMP)

Data for the Effect of rac-1c on PDE4B1 Activity

rac-1c $[\mu \mathrm{M}]$	PDE Activity [(Fluorescent Polarization $(\mathrm{mp})]$		\% Activity	
	Repeat 1 Repeat 2	Repeat 1	Repeat 2	
No Compound	129	127	101	99
0.001	124	122	96	94
0.003	127	129	98	101
0.01	123	125	95	97
0.03	127	126	99	98
0.1	128	123	100	95
0.3	128	123	99	95
1	116	111	88	84
3	89	92	63	66
10	64	61	40	37
Background	21	23		

PDE4B1 Activity

Substrate Conc. $=100 \mathrm{nM}$ (cAMP)

Data for the Effect of rac-1d on PDE4B1 Activity

rac-1d $[\mu \mathrm{M}]$	PDE Activity $[($ Fluorescent Polarization $(\mathrm{mp})]$		\% Activity	
	Repeat1	Repeat2	Repeat1	Repeat2
No Compound	166	165	100	100
0.0003	166	159	100	96
0.001	161	161	97	97
0.003	151	152	90	91
0.01	120	123	69	70
0.03	84	83	44	43
0.1	50	53	20	22
0.3	33	35	8	9
1	28	29	5	5
3	25	24	2	2
Background	22	21	0	0

PDE4B1 Activity

Substrate Conc. $=100 \mathrm{nM}$ (cAMP)

Data for the Effect of rac-1e on PDE4B1 Activity

rac-1e $[\mu \mathrm{M}]$	PDE Activity $[($ Fluorescent Polarization $(\mathrm{mp})]$		$\%$ Activity	
	Repeat1	Repeat2	Repeat1	Repeat2
No Compound	163	162	100	100
0.0003	163	159	100	97
0.001	158	160	97	98
0.003	156	153	95	94
0.01	139	138	84	83
0.03	114	113	65	65
0.1	78	75	40	38
0.3	44	41	16	14
1	29	29	6	5
3	22	23	0	1
Background	21	22	0	0

PDE4B1 Activity

Substrate Conc. $=100 \mathrm{nM}$ (cAMP)

Data for the Effect of rac-2a on PDE4B1 Activity

rac-2a $[\mu \mathrm{M}]$	PDE Activity $[($ Fluorescent Polarization (mp)]		$\%$ Activity	
	Repeat1	Repeat2	Repeat1	Repeat2
No Compound	162	157	102	98
0.001	156	152	97	95
0.003	147	141	91	86
0.01	122	127	73	76
0.03	100	96	57	54
0.1	67	69	33	34
0.3	36	42	11	15
1	28	27	5	4
3	21	22	0	1
10	22	23	0	1
Background	21	22		

PDE4B1 Activity

Substrate Conc. $=100 \mathrm{nM}$ (cAMP)

Data for the Effect of rac-2b on PDE4B1 Activity

rac-2b $[\mu \mathrm{M}]$	PDE Activity $[($ Fluorescent Polarization (mp)]		\% Activity	
	Repeat1	Repeat2	Repeat1	Repeat2
No Compound	165	168	99	101
0.0003	165	163	99	98
0.001	164	167	98	100
0.003	163	163	97	97
0.01	163	161	98	96
0.03	162	163	97	98
0.1	154	155	92	92
0.3	126	130	72	75
1	98	98	53	53
3	56	59	24	26
Background	21	23	-1	1

PDE4B1 Activity

Substrate Conc. $=100 \mathrm{nM}$ (cAMP)

Data for the Effect of rac-3b on PDE4B1 Activity

rac-3b $[\mu \mathrm{M}]$	PDE Activity $[($ Fluorescent Polarization $(\mathrm{mp})]$		\% Activity	
	Repeat1	Repeat2	Repeat1	Repeat2
No Compound	156	152	102	98
0.001	157	152	102	98
0.003	151	154	98	100
0.01	154	151	100	98
0.03	154	153	100	99
0.1	152	153	98	99
0.3	148	153	96	100
1	150	147	97	95
3	146	137	94	87
10	132	126	83	79
Background	20	21		

PDE4B1 Activity

In vitro selectivity enzymatic assay for a series of PDE4 isotypes

Compounds

Compound I.D.	Stock Concentration	Dissolving Solvent	Test Range $(\mu \mathrm{M})$	Intermediate Dilution
(7S,7aR)-1a	10 mM	DMSO	0.1	10% DMSO in PDE Assay Buffer
rac-1d	10mM	DMSO	0.1	10% DMSO in PDE Assay Buffer
rac-1e	10mM	DMSO	0.1	10% DMSO in PDE Assay Buffer
$r a c-2 a$	10 mM	DMSO	0.1	10% DMSO in PDE Assay Buffer
Apremilast*	10 mM	DMSO	10	10% DMSO in PDE Assay Buffer

*Reference compound.

Enzymes and Substrates

Assay	Catalog \#	Enzyme Lot \#	Enzyme Used (ng) / Reaction	Substrate
PDE4A1A	60040	$160926-\mathrm{G}$	0.1	100 nM FAM-cAMP
PDE4A4B	60039	110411	0.06	100 nM FAM-cAMP
PDE4A10	60038	$110428-\mathrm{GC}$	0.128	100 nM FAM-cAMP
PDE4B2	60042	$121218-\mathrm{G1}$	0.025	100 nM FAM-cAMP
PDE4C1	60044	90812	0.24	100 nM FAM-cAMP
PDE4D2	60048	$130102-\mathrm{GC}$	0.03	100 nM FAM-cAMP
PDE4D3	60046	121011	0.025	100 nM FAM-cAMP
PDE4D7	60047	101101	0.045	100 nM FAM-cAMP

The values of percentage activity were plotted on a bar graph below.

PDE4A1A

Data for the Effect of the Compounds on PDE4A1A Activity

Compounds	PDE4A1A Activity [Fluorescent Polarization (mp)]		\% Activity	
	Repeat 1	Repeat 2	Repeat 1	Repeat 2
No Compound	107	101	104	96
$(7 \mathrm{~S}, 7 \mathrm{aR})-$ CMPI, $0.1 \mu \mathrm{M}$	29	30	10	11
rac-1e, $0.1 \mu \mathrm{M}$	46	44	30	28
rac-1d, $0.1 \mu \mathrm{M}$	30	32	11	13
Apremilast, $0.001 \mu \mathrm{M}$	89	90	82	83
Apremilast, $0.01 \mu \mathrm{M}$	58	61	45	48
Apremilast, $0.1 \mu \mathrm{M}$	27	30	7	11
Blank	20	22		

Compound $0.1 \mu \mathrm{M}$	PDE Activity (Fluorescent Polarization $(\mathrm{mp})]$			$\%$ Activity	

PDE4A1A Activity

PDE4A4B

Data for the Effect of the Compounds on PDE4A4B Activity

Compounds	PDE4A4B Activity [Fluorescent Polarization (mp)]		\% Activity	
	Repeat 1	Repeat 2	Repeat 1	Repeat 2
No Compound	150	151	100	100
$(7 \mathrm{~S}, 7 \mathrm{aR})-\mathbf{C M P I}, 0.1 \mu \mathrm{M}$	46	46	20	19
rac-1e, $0.1 \mu \mathrm{M}$	65	65	34	34
rac-1d, $0.1 \mu \mathrm{M}$	43	42	17	16
Apremilast, $0.001 \mu \mathrm{M}$	129	138	84	90
Apremilast, $0.01 \mu \mathrm{M}$	80	84	46	49
Apremilast, $0.1 \mu \mathrm{M}$	31	32	8	8
Blank	20	21		

Compound $0.1 \mu \mathrm{M}$	PDE Activity [(Fluorescent Polarization $(\mathrm{mp})]$			\% Activity	

PDE4A4B Activity

PDE4A10

Data for the Effect of the Compounds on PDE4A10 Activity

Compounds	PDE4A10 Activity [Fluorescent Polarization (mp)]		\% Activity	
	Repeat 1	Repeat 2	Repeat 1	Repeat 2
No Compound	136	138	100	100
$(7 \mathrm{~S}, 7 \mathrm{aR})-\mathrm{CMPI}, 0.1 \mu \mathrm{M}$	46	40	21	15
rac-1e, $0.1 \mu \mathrm{M}$	62	63	34	35
rac-1d, $0.1 \mu \mathrm{M}$	35	34	11	10
Apremilast, $0.001 \mu \mathrm{M}$	124	124	88	89
Apremilast, $0.01 \mu \mathrm{M}$	75	71	46	42
Apremilast, $0.1 \mu \mathrm{M}$	38	36	13	11
Blank	22	23		

Compound $0.1 \mu \mathrm{M}$	PDE Activity [(Fluorescent Polarization $(\mathrm{mp})]$			$\%$ Activity	

PDE4A10 Activity

PDE4B2

Data for the Effect of the Compounds on PDE4B2 Activity

Compounds	PDE4B2 Activity [Fluorescent Polarization (mp)]		\% Activity	
	Repeat 1	Repeat 2	Repeat 1	Repeat 2
No Compound	138	138	100	100
$(7 \mathrm{~S}, 7 \mathrm{aR})-\mathbf{C M P I}, 0.1 \mu \mathrm{M}$	37	36	12	12
rac-1e, $0.1 \mu \mathrm{M}$	54	51	27	25
rac-1d, $0.1 \mu \mathrm{M}$	30	32	7	8
Apremilast, $0.001 \mu \mathrm{M}$	122	119	86	84
Apremilast, $0.01 \mu \mathrm{M}$	78	78	48	48
Apremilast, $0.1 \mu \mathrm{M}$	33	34	9	10
Blank	22	23		

Compound $0.1 \mu \mathrm{M}$	PDE Activity [(Fluorescent Polarization $(\mathrm{mp})]$		\% Activity	

PDE4B2 Activity

PDE4C1

Data for the Effect of the Compounds on PDE4C1 Activity

Compounds	PDE4C1 Activity [Fluorescent Polarization (mp)]		\% Activity	
	Repeat 1	Repeat 2	Repeat 1	Repeat 2
No Compound	146	139	103	97
$(7 \mathrm{~S}, 7 \mathrm{aR})-\mathbf{C M P I}, 0.1 \mu \mathrm{M}$	98	100	63	65
rac-1e, $0.1 \mu \mathrm{M}$	122	117	84	79
rac-1d, $0.1 \mu \mathrm{M}$	102	102	67	67
Apremilast, $0.001 \mu \mathrm{M}$	136	133	95	92
Apremilast, $0.01 \mu \mathrm{M}$	100	104	65	68
Apremilast, $0.1 \mu \mathrm{M}$	49	51	23	25
Blank	19	21		

Compound $0.1 \mu \mathrm{M}$	PDE Activity (Fluorescent Polarization $(\mathrm{mp})]$		\% Activity	

PDE4C1 Activity

PDE4D2

Compounds	PDE4D2 Activity [Fluorescent Polarization (mp)]		\% Activity	
	Repeat 1	Repeat 2	Repeat 1	Repeat 2
No Compound	103	105	98	102
$(7 \mathrm{~S}, 7 \mathrm{aR})-\mathbf{C M P I}, 0.1 \mu \mathrm{M}$	35	36	16	17
rac-1e, $0.1 \mu \mathrm{M}$	45	42	28	24
rac-1d, $0.1 \mu \mathrm{M}$	28	30	8	9
Apremilast, $0.001 \mu \mathrm{M}$	91	93	84	87
Apremilast, $0.01 \mu \mathrm{M}$	59	59	45	46
Apremilast, $0.1 \mu \mathrm{M}$	31	30	11	9
Blank	22	22		

Compound $0.1 \mu \mathrm{M}$	PDE Activity [(Fluorescent Polarization $(\mathrm{mp})]$		\% Activity	

PDE4D2 Activity

PDE4D3

Data for the Effect of the Compounds on PDE4D3 Activity

Compounds	PDE4D3 Activity [Fluorescent Polarization (mp)]		\% Activity	
	Repeat 1	Repeat 2	Repeat 1	Repeat 2
No Compound	126	124	101	99
$(7 \mathrm{~S}, 7 \mathrm{aR})-$ CMPI, $0.1 \mu \mathrm{M}$	37	35	15	14
rac-1e, $0.1 \mu \mathrm{M}$	51	55	29	32
rac-1d, $0.1 \mu \mathrm{M}$	25	27	4	6
Apremilast, $0.001 \mu \mathrm{M}$	112	116	88	91
Apremilast, $0.01 \mu \mathrm{M}$	70	67	47	44
Apremilast, $0.1 \mu \mathrm{M}$	30	26	9	4
Blank	21	22		

Compound $0.1 \mu \mathrm{M}$	PDE Activity [(Fluorescent Polarization $(\mathrm{mp})]$		\% Activity	

PDE4D3 Activity

PDE4D7

Data for the Effect of the Compounds on PDE4D7 Activity

Compounds	PDE4D7 Activity [Fluorescent Polarization (mp)]		\% Activity	
	Repeat 1	Repeat 2	Repeat 1	Repeat 2
No Compound	103	102	101	99
$(7 \mathrm{~S}, 7 \mathrm{aR})-$ CMPI, $0.1 \mu \mathrm{M}$	32	33	14	15
rac-1e, $0.1 \mu \mathrm{M}$	45	47	30	32
rac-1d, $0.1 \mu \mathrm{M}$	29	26	9	7
Apremilast, $0.001 \mu \mathrm{M}$	88	89	82	83
Apremilast, $0.01 \mu \mathrm{M}$	56	55	43	42
Apremilast, $0.1 \mu \mathrm{M}$	25	23	5	2
Blank	21	21		

Compound $0.1 \mu \mathrm{M}$	PDE Activity [(Fluorescent Polarization $(\mathrm{mp})]$		$\%$ Activity	

PDE4D7 Activity

PDE4B Cell Signaling Pathway Assay

Compounds

Compound I.D.	Dissolving Solvent	Stock Concentration	Test Range (uM)	Intermediate Dilution
(7S,7aR)-1a	DMSO	10 mM	$10-0.0002$	0.1% DMSO in assay medium
rac-2a	DMSO	10 mM	$10-0.0002$	0.1% DMSO in assay medium
Apremilast	DMSO	10 mM	$10-0.0002$	0.1% DMSO in assay medium

Apremilast, an inhibitor for the PDE4 signaling pathway, was used as a positive control.

Data for the effect of each compound on PDE4B activity is presented below.

Raw Data for the Effect of (7S,7aR)-1a on PDE4B activity

$\begin{gathered} (7 \mathrm{~S}, 7 \mathrm{aR})-\mathbf{1 a} \\ (\mathrm{uM}) \end{gathered}$	Luminescence intensity			Fold Induction		
	Repeat 1	Repeat2	Repeat 3	Repeat 1	Repeat2	Repeat 3
No Cpd	2262	2782	3447	0.8	0.9	1.2
0.0002	1199	1622	1334	0.4	0.5	0.4
0.0005	1693	1662	1998	0.6	0.5	0.7
0.002	1035	1627	1552	0.3	0.5	0.5
0.005	1562	1992	1754	0.5	0.7	0.6
0.013	1513	2408	2084	0.5	0.8	0.7
0.04	1959	3254	2544	0.6	1.1	0.9
0.12	2987	3617	4095	1.0	1.2	1.4
0.4	4465	5193	5279	1.5	1.8	1.8
1.1	5064	8562	7884	1.7	3.0	2.7
3.3	9818	15846	14956	3.4	5.6	5.2
10	13511	18308	11673	4.7	6.4	4.1
Background	98	167	120			

Raw Data for the Effect of rac-2a on PDE4B activity

$\begin{gathered} \text { rac-2a } \\ (\mathrm{uM}) \end{gathered}$	Luminescence intensity			Fold Induction		
	Repeat 1	Repeat2	Repeat3	Repeat 1	Repeat2	Repeat3
No Cpd	2575	1919	2184	1.1	0.8	0.9
0.0002	1643	1214	1636	0.7	0.5	0.7
0.0005	1723	2085	1860	0.7	0.9	0.8
0.002	1856	1896	2451	0.8	0.8	1.0
0.005	1885	1624	2291	0.8	0.7	1.0
0.013	1885	1643	1674	0.8	0.7	0.7
0.04	1703	1717	2504	0.7	0.7	1.1
0.12	2642	2794	2924	1.1	1.2	1.3
0.4	3779	2779	3383	1.6	1.2	1.5
1.1	5711	4684	4211	2.5	2.0	1.8
3.3	9901	8709	9890	4.4	3.9	4.4
10	18938	16405	15746	8.5	7.3	7.0
Background	98	167	120			

Raw Data for the Effect of Apremilast on PDE4B activity

Apremilast (uM)	Luminescence intensity			Fold Induction		
	Repeat 1	Repeat2	Repeat3	Repeat1	Repeat2	Repeat 3
No Cpd	1700	2115	2286	0.8	1.0	1.1
0.0002	1338	1172	2039	0.6	0.6	1.0
0.0005	1364	1253	1440	0.6	0.6	0.7
0.002	1325	1276	1996	0.6	0.6	0.9
0.005	1334	1691	1164	0.6	0.8	0.6
0.013	1696	1077	1966	0.8	0.5	0.9
0.04	1699	1540	1895	0.8	0.7	0.9
0.12	2047	2583	2497	1.0	1.2	1.2
0.4	3233	3061	3451	1.5	1.5	1.6
1.1	3520	4120	3984	1.7	2.0	1.9
3.3	5346	5206	9264*	2.5	2.5	
10	6698	6646	11983*	3.2	3.2	
Background	131	44	92			

* Data points were excluded from the analysis

4. Quantum-chemical calculations

Complex [CX-1] ${ }^{+}$

O	0.60960300	-0.03691100	-0.50793100
O	0.41341500	0.15396400	2.51880300
H	1.36768500	-0.01513700	2.47508400
H	1.32643700	-0.64253500	-0.76434300
H	-1.10968000	-2.25282100	3.28998900
H	-1.94568300	1.26415300	1.72104800
O	-3.09263700	-4.27688800	1.61476800
O	0.97754900	-2.29755700	1.25947000
C	0.94301200	-3.55704900	1.33660100
O	-1.85817800	-1.95538800	-0.24902800
H	1.85566800	-4.05090100	1.75796100
O	-1.91483200	0.73261100	0.91037400
O	-1.71379900	-1.87037500	2.63426700
O	-0.00200800	-4.30906100	0.99140700
O	-2.76756800	-3.59589200	-2.57988400
H	-4.74622100	-3.61868400	-3.01519900
H	-3.40608800	-4.10561500	0.70353200
N	0.31527200	-3.16441400	-2.16019600
C	0.11487200	-2.23239900	-3.08536600
C	1.68721500	-3.25598100	-1.99724200
N	-1.58489100	-5.95420600	-0.94660000
C	-1.41971100	-6.91616000	0.03975400
C	-2.15664900	-6.57684300	-1.97324900
C	-3.97064000	-3.75231100	-2.21338900
H	1.40303900	-1.02603200	-4.24601800
N	-2.35033800	-7.88152000	-1.69244800
H	-1.94692800	-9.10518100	0.04146200
O	-4.37464700	-4.03738900	-1.06217300
H	-2.76356500	-8.56532300	-2.32182900
C	-1.89148900	-8.12069700	-0.41349100
H	-0.97529000	-6.67353400	1.00146800
H	-2.43291000	-6.12341500	-2.92225600
H	-0.85365300	-1.89474600	-3.45104900
H	3.35532400	-2.15490400	-3.03974600
C	2.30949700	-2.37850100	-2.84993400
H	2.12967100	-3.95375200	-1.28810300

N	1.29176000	-1.74450900	-3.53444000
Mg	-0.62043200	-0.98390700	1.00810500
Zn	-1.32864400	-3.81506700	-0.86662500
H	0.33553700	1.11708400	2.43618500
H	-2.82972800	0.43698500	0.78115600
H	0.11641000	0.10729100	-1.33212700
H	-1.97425000	-1.49515300	-1.09416200
H	-2.24513700	-2.63108400	2.32013900
H	-2.18679000	-4.60050000	1.47761500

DFT MN15L, solvent water, smd model		
Sum of electronic and zero-point Energies $=$	-3267.484408	$\mathrm{E}_{0}+\mathrm{E}_{\text {ZPE }}$
Sum of electronic and thermal Energies $=$	-3267.448982	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies $=$	-3267.448038	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies $=$	-3267.543325	$\mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$
Zero-point correction (unscaled $)=$	0.335499	

Complex [CX-2] ${ }^{+}$

O	0.46296500	0.42553200	0.02775400
O	2.39390000	-0.40284800	2.06197500
H	3.00268700	-0.40707300	1.30618300
H	0.96530800	0.16077500	-0.76063900
H	1.70756500	-3.07067800	2.86376900
H	0.06805100	0.04463700	3.75345000
O	1.53034500	-2.36428100	0.05954900
C	1.45752600	-3.62558100	-0.09818300
O	-1.35675400	-1.87052800	0.95249100
H	2.25769100	-4.07039000	-0.74793600
O	-0.34523100	0.15896900	2.88251000
O	0.86934500	-2.61925700	3.05414300
O	0.60373800	-4.39499700	0.38785400
O	-3.78911600	-2.10250000	-1.06960700
H	-5.36586700	-0.96809800	-0.50019200
N	-0.94365200	-2.82692300	-2.17943600
C	-0.73063000	-1.55068300	-2.48185600
C	0.00135800	-3.55393000	-2.88268400
N	-2.90248200	-5.04340100	0.06673200
C	-2.33532600	-6.25226500	0.43792000
C	-4.22052900	-5.22115600	0.09904800
C	-4.56130700	-1.67108300	-0.15530900
H	0.64072600	-0.56114600	-3.74724700
N	-4.51577300	-6.48412900	0.46593100
H	-3.31451700	-8.20215200	0.99458100
O	-4.51101300	-1.95282800	1.06114000
H	-5.45369900	-6.86766400	0.55815900
C	-3.33166100	-7.16052600	0.68823400
H	-1.25732600	-6.37951400	0.50109600
H	-4.97434200	-4.47364300	-0.14007700
H	-1.30819100	-0.70650900	-2.10556400
H	1.60872400	-2.86141000	-4.30018000
C	0.77941900	-2.69811100	-3.61817100
H	0.06332300	-4.63685500	-2.79741900
N	0.29432600	-1.43217200	-3.35149000
Mg	0.48061200	-1.23824000	1.45000500
Zn	-2.04157900	-3.19175200	-0.37300500
H	2.29983400	0.53756000	2.28208000
H	-1.28347800	-0.03678500	3.04107500
H	-0.44144500	0.54119700	-0.30534000
H	-2.14370900	-1.53806300	1.40571300
H	0.20422500	-3.34153200	3.06554400

O	-1.23933200	-4.58287500	3.14561700
C	-2.31159400	-4.01255000	3.44075700
N	-3.50805600	-4.68247300	3.29927700
C	-2.45552200	-2.67452300	3.96782400
N	-4.75252200	-4.22645600	3.51118200
H	-3.46306400	-5.64456800	2.94911900
C	-3.70246900	-2.17919300	4.21541300
H	-1.54383500	-2.10098000	4.16018700
C	-4.86160500	-2.98731400	3.95282900
H	-3.83003700	-1.17634000	4.63315700
C	-6.23887500	-2.46570300	4.14579600
C	-7.28671200	-3.32363700	4.51678400
C	-6.48498200	-1.09378300	3.93166700
C	-8.57824900	-2.81044800	4.67511900
H	-7.08860300	-4.38308200	4.69481800
C	-7.77693100	-0.57672100	4.09225900
H	-5.66913400	-0.44331400	3.60922700
C	-8.81396100	-1.45571400	4.47089300
H	-9.41553800	-3.44866000	4.97267800
O	-8.13587600	0.71931700	3.90772800
O	-10.09104800	-0.92921700	4.68902400
C	-7.10170500	1.62930700	3.53004200
C	-10.81734100	-0.77399200	3.52478700
H	-6.65680000	1.34025900	2.56102300
H	-6.31230000	1.66881200	4.30173900
H	-7.58554200	2.61092500	3.44013000
F	-11.88531500	-0.03302000	3.84813100
F	-11.28594400	-1.98145400	3.11776300
H	-10.24997400	-0.31137200	2.69663900

DFT MN15L, solvent water, smd model		
Sum of electronic and zero-point Energies $=$	-4188.620483	$\mathrm{E}_{0}+\mathrm{E}_{\text {ZPE }}$
Sum of electronic and thermal Energies $=$	-4188.569889	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies $=$	-4188.568945	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies $=$	-4188.700166	$\mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$
Zero-point correction (unscaled $)=$	0.522772	

Complex [CX-3] ${ }^{+}$

O	0.20352100	-0.02014600	-0.51362700
H	0.97205900	-0.55780700	-0.77254700
H	-1.34877000	-2.30739500	3.34600400
H	-2.68673700	0.88729000	1.74755700
O	-3.00653400	-4.62339200	1.52987600
O	0.79081400	-2.28766200	1.22444000
C	0.87471300	-3.54701800	1.26662900
O	-2.02073200	-2.14370200	-0.26039800
H	1.85178300	-3.96104500	1.62733400
O	-2.38305100	0.51064700	0.90501300
O	-1.94562700	-2.04273200	2.62845000
O	-0.01244000	-4.37568200	0.94717600
O	-2.83933600	-3.75789600	-2.68628800
H	-4.82054900	-3.91199800	-3.07605000
H	-3.34637600	-4.47036100	0.62598100
N	0.26128300	-3.16786500	-2.20712500
C	0.03333800	-2.22967800	-3.12028000
C	1.63213800	-3.19241000	-2.01276800
N	-1.51839600	-6.07484500	-1.06742300
C	-1.25173100	-7.03289800	-0.09938100
C	-2.07197200	-6.72783200	-2.08494200
C	-4.02007600	-4.00340900	-2.29314900
H	1.28347700	-0.93662900	-4.22680900
N	-2.16064100	-8.04647400	-1.81537200
H	-1.61454200	-9.25449900	-0.10917900
O	-4.37573000	-4.33292800	-1.13892400
H	-2.54309000	-8.75228400	-2.43972000
C	-1.64656400	-8.26417600	-0.55370800
H	-0.79894400	-6.76973600	0.85265000
H	-2.40845600	-6.28716400	-3.02046100
H	-0.94365500	-1.93659600	-3.50223400
H	3.26289400	-1.98521000	-2.99300700
C	2.22608700	-2.26654000	-2.83321500
H	2.09465100	-3.88136000	-1.30815800
N	1.19267600	-1.67155800	-3.52931600
Mg	-0.89115200	-1.07422400	1.02707800

Zn	-1.37142800	-3.91246600	-1.00975200
H	-3.18793700	0.14391500	0.50519500
H	-0.32756200	0.03677800	-1.32534800
H	-2.20621900	-1.65354600	-1.07636500
H	-2.35848300	-2.87623600	2.32412600
H	-2.05515200	-4.76600400	1.38441000
O	0.00815900	0.12060900	2.52388900
C	0.03477100	1.35805000	2.69104000
N	-0.39217100	1.99497300	3.84364200
N	0.49002800	2.26793300	1.80134800
C	-0.52633300	3.43707600	3.50952500
C	-1.66288200	1.51768300	4.44788100
C	0.47790400	3.61480600	2.36300300
H	1.07881700	1.97662400	1.02564200
C	-2.00950400	3.54981600	3.14208100
H	-0.28291700	4.06312400	4.38329900
C	-2.67179600	2.67258900	4.21648300
H	-1.96391000	0.57948600	3.95000000
H	-1.52236200	1.30183300	5.51820500
H	0.14059600	4.36024100	1.62564400
H	1.47665900	3.90313300	2.73615200
H	-2.15395900	3.11457400	2.13322200
H	-2.37715400	4.58723700	3.13364700
H	-3.66072000	2.29334300	3.91529400
H	-2.79884400	3.25462300	5.14526800

DFT MN15L, solvent water, smd model		
Sum of electronic and zero-point Energies $=$	-3610.162714	$\mathrm{E}_{0}+\mathrm{E}_{\text {ZPE }}$
Sum of electronic and thermal Energies $=$	-3610.121165	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies $=$	-3610.120221	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies $=$	-3610.230046	$\mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$
Zero-point correction (unscaled $)=$	0.475390	

Complex [CX-4] ${ }^{+}$

O	0.16911400	0.12966300	-0.55767900
O	1.00147000	0.15359500	2.32810400
H	1.89068200	0.15507700	1.94041400
H	0.91204500	-0.29219900	-1.02415300
H	0.21655000	-2.50235100	3.32433100
H	-1.62471600	0.89257900	2.47330300
O	1.44888600	-2.14586200	0.78055400
C	1.58519000	-3.40515800	0.79696300
O	-1.74153600	-2.16387400	0.19551200
H	2.64253000	-3.77886800	0.81569100
O	-1.84738000	0.31731000	1.72478300
O	-0.63493000	-2.20712500	2.96474900
O	0.67168000	-4.26108400	0.79337100
O	-2.93318200	-3.78166800	-2.22497800
H	-4.94553200	-3.77557500	-2.45500900
N	0.06366300	-3.10621000	-2.25716000
C	-0.41776700	-2.12886600	-3.01868100
C	1.43521200	-3.09310100	-2.44613000
N	-1.49337100	-6.03632300	-0.48803600
C	-1.01966200	-6.87335400	0.51248100
C	-2.37891800	-6.75235200	-1.17659300
C	-4.09611700	-3.90012000	-1.72983400
H	0.45965700	-0.73383800	-4.34062400
N	-2.47808700	-7.99932000	-0.67379700
H	-1.53112800	-9.01386800	0.98335800
O	-4.37972200	-4.14093500	-0.53587100
H	-3.07990200	-8.73499200	-1.03587200
C	-1.62474600	-8.09822200	0.40692800
H	-0.28936500	-6.53157700	1.23992800
H	-2.94407200	-6.41243400	-2.04144000
H	-1.46542600	-1.84608200	-3.10523000
H	2.71902500	-1.78295200	-3.75592800
C	1.76964700	-2.10492500	-3.33780200
H	2.08709400	-3.80167900	-1.93829200
N	0.57573200	-1.50909900	-3.69253200
Mg	-0.31429400	-1.10936700	1.15586500
Zn	-1.30287500	-3.93664900	-0.68833900
H	0.75059000	1.08978600	2.35862600

H	-2.62261300	-0.18301900	2.02876100		
H	-0.55018200	0.11912200	-1.21063600		
H	-2.10531300	-1.66075200	-0.54963800		
H	-1.10685400	-3.03773300	2.73312300		
O	-2.28451000	-4.42132300	2.30239600		
C	-3.40787500	-4.20616800	2.78560700		
N	-4.30886400	-5.19982200	3.14217200		
N	-3.94546600	-2.98041900	3.05179600		
C	-5.60462600	-4.54739100	3.45259600		
C	-4.52456500	-6.28906300	2.15219000		
C	-5.18817700	-3.11264200	3.81031100		
H	-3.31624100	-2.18758700	3.17853400		
C	-6.40308300	-4.72792200	2.15897700		
H	-6.10008400	-5.05547700	4.29678500		
C	-6.01026500	-6.15271000	1.73501900		
H	-3.83617400	-6.13795100	1.30367900		
H	-4.30717700	-7.27408400	2.59675000		
H	-5.93950100	-2.37180800	3.49342600		
H	-5.01026800	-3.00127000	4.89471700		
H	-6.05119300	-3.98474700	1.42100500		
H	-7.48720400	-4.59943600	2.30213500		
H	-6.14278000	-6.33471600	0.65626200		
H	-6.62596500	-6.88670900	2.28325700		
DFT MN15L, solvent water, smd model					
Sum of electronic and zero-point Energies=				-3610.163951	$\mathrm{E}_{0}+\mathrm{E}_{\mathrm{ZPE}}$
Sum of electronic and thermal Energies=				-3610.122519	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies=				-3610.121575	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies=				-3610.229437	$\mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$
Zero-point correction (unscaled) $=$				0.474904	

Complex [CX-5] ${ }^{+}$

O	0.59136200	-0.14229500	-0.32619800
H	1.34929300	-0.67425900	-0.62654400
H	-1.05173000	-2.59816400	3.43080300
H	-2.32080100	0.55330600	2.06410200
O	-2.94359600	-4.55005000	1.47832000
O	1.06280300	-2.62111400	1.25955500
C	1.02448700	-3.88172300	1.19309600
O	-1.71679300	-2.16469100	-0.17677200
H	1.93267100	-4.42037900	1.56586500
O	-1.91469000	0.39993800	1.19382000
O	-1.59774400	-2.22399100	2.72200200
O	0.08429700	-4.59099500	0.75505100
O	-2.62014800	-3.53417600	-2.69103200
H	-4.59073400	-3.37436600	-3.12584700
H	-3.24398700	-4.24196900	0.60040700
N	0.42771200	-3.20766300	-2.22234300
C	0.23566200	-2.19405500	-3.06050500
C	1.79817400	-3.30663700	-2.04796900
N	-1.71404000	-6.07562500	-1.17783800
C	-1.48309900	-7.09567400	-0.26571400
C	-2.40267900	-6.62443700	-2.17296200
C	-3.83418500	-3.61273000	-2.33002200
H	1.53220400	-0.88010100	-4.08519400
N	-2.61298400	-7.93734700	-1.94202700
H	-2.07877400	-9.26624400	-0.32422200
O	-4.26541200	-3.92614100	-1.19798300
H	-3.10776800	-8.57428300	-2.56162500
C	-2.03722900	-8.25995100	-0.73054300
H	-0.93787400	-6.91922300	0.65796400
H	-2.75229100	-6.11537700	-3.06810900
H	-0.72893300	-1.82859700	-3.40844500
H	3.47409400	-2.10564800	-2.95822700
C	2.42703200	-2.35101800	-2.80607300
H	2.23621100	-4.06495800	-1.40142800
N	1.41555400	-1.66052600	-3.44313100
Mg	-0.50519400	-1.26557400	1.14605400
Zn	-1.21725600	-3.94794600	-1.03669000
H	-2.65909300	0.10867800	0.64118900
H	0.04355000	-0.04250300	-1.12330700
		3	

H	-1.87058400	-1.61971600	-0.96411500
H	-2.09870700	-2.98637900	2.36266600
H	-2.03877700	-4.85773500	1.29845300
C	0.24199800	1.64935700	2.86399100
N	-0.51226700	2.36089000	3.72379000
N	0.48932600	2.38800500	1.75137600
C	-1.04956000	3.58033600	3.06597700
C	-1.46901800	1.78418800	4.68799800
C	-0.51327100	3.46225000	1.62459400
H	0.79289400	1.87025100	0.92633700
C	-2.55295100	3.44774000	3.31709400
H	-0.65081200	4.47730900	3.57462600
C	-2.57337600	2.85369100	4.73588000
H	-1.84624400	0.81910400	4.29493900
H	-0.99582300	1.59620400	5.66466100
H	-1.31010800	3.16520800	0.91660800
H	-0.05117200	4.39458900	1.27093200
H	-2.97524400	2.72557800	2.59120400
H	-3.09436800	4.40157400	3.22939600
H	-3.54504300	2.42645000	5.02378700
H	-2.30592200	3.63603400	5.46812100
S	0.83289700	0.08655500	3.14583500

DFT MN15L, solvent water, smd model		
Sum of electronic and zero-point Energies $=$	-3933.104508	$\mathrm{E}_{0}+\mathrm{E}_{\text {ZPE }}$
Sum of electronic and thermal Energies $=$	-3933.062596	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies $=$	-3933.061652	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies $=$	-3933.173148	$\mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$
Zero-point correction (unscaled $)=$	0.473184	

Complex [CX-6] ${ }^{+}$

O	-0.63322200	-0.05931400	-0.35871500
O	0.26113500	-0.05641100	2.51654700
H	1.18200100	0.09666600	2.25252600
H	0.14362600	-0.27976500	-0.90225400
H	0.50214700	-2.94409600	3.18789700
H	-2.52773600	-0.53649000	2.95831700
O	1.25678100	-2.02966300	0.65587900
C	1.71783900	-3.19736100	0.50564300
O	-1.80729400	-2.86848900	0.27848000
H	2.83468600	-3.28681600	0.49816100
O	-2.48014200	-0.60090200	1.99044400
O	-0.43426300	-2.86015500	2.94614800
O	1.05898400	-4.25556200	0.36255700
O	-2.65198800	-4.42468800	-2.35873300
H	-4.62318800	-4.82053400	-2.59294300
N	0.00555400	-3.03487500	-2.37561100
C	-0.73821500	-2.15221200	-3.03528800
C	1.32216300	-2.69545400	-2.64011800
N	-0.81911200	-6.38414100	-0.70410300
C	-0.18166500	-7.12021500	0.28407700
C	-1.51142800	-7.25883400	-1.42730800
C	-3.76407300	-4.78328600	-1.86736100
H	-0.29629400	-0.51617400	-4.29418000
N	-1.33696400	-8.50921600	-0.95474200
H	-0.20916800	-9.33318900	0.69485200
O	-3.99816600	-5.09682000	-0.67876800
H	-1.75406600	-9.35034200	-1.34637600
C	-0.49501000	-8.44591400	0.13775500
H	0.44439800	-6.64218400	1.03267700
H	-2.12846200	-7.02857500	-2.29270800
H	-1.82555100	-2.11245400	-3.03935400
H	2.17831800	-1.05100700	-3.92006400
C	1.35888000	-1.60590300	-3.47261200
H	2.15155300	-3.26567100	-2.22624700
N	0.03876500	-1.28116800	-3.71375000
Mg	-0.67769800	-1.52870500	1.25140100
Zn	-0.94401600	-4.28295500	-0.87096500
H	-0.16171700	0.81182600	2.42430200
H	-3.23646600	-1.16485400	1.75395400
H	-1.38352300	-0.19701100	-0.96021400

H	-2.58802500	-2.57231800	-0.21176400
H	-0.72026400	-3.77611700	2.75029600
C	-3.58051700	-4.60580300	3.38670400
N	-4.93914800	-4.85346200	3.41540100
N	-3.36055000	-3.33816900	3.78187900
C	-5.62490100	-3.52853900	3.43432200
C	-5.56851000	-5.68704200	2.35889400
C	-4.58813400	-2.61445100	4.08739200
H	-2.42604100	-2.97539400	3.94827100
C	-5.92425700	-3.32222000	1.94761900
H	-6.56082800	-3.58935400	4.01412800
C	-6.48390900	-4.70581700	1.58460800
H	-4.77781200	-6.11593100	1.72502600
H	-6.13660600	-6.51397300	2.81304400
H	-4.58034000	-1.60083700	3.65281400
H	-4.74075500	-2.53329400	5.17878700
H	-4.96266100	-3.13092900	1.41840600
H	-6.61945100	-2.49249700	1.74802300
H	-6.48854700	-4.91796300	0.50543200
H	-7.52145400	-4.78189900	1.95501200
S	-2.37846300	-5.70942300	2.96380500

DFT MN15L, solvent water, smd model		
Sum of electronic and zero-point Energies $=$	-3933.113535	$\mathrm{E}_{0}+\mathrm{E}_{\text {ZPE }}$
Sum of electronic and thermal Energies $=$	-3933.071348	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies $=$	-3933.070404	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies $=$	-3933.180677	$\mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$
Zero-point correction (unscaled $)=$	0.471709	

$\mathrm{H}_{2} \mathrm{O}$

O	-2.94274200	-4.54929400	1.47338700
H	-3.24179900	-4.24387400	0.60525500
H	-2.04181900	-4.85658600	1.29853800

DFT MN15L, solvent water, smd model		
Sum of electronic and zero-point Energies $=$	-76.367044	$\mathrm{E}_{0}+\mathrm{E}_{\text {ZPE }}$
Sum of electronic and thermal Energies $=$	-76.364209	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies $=$	-76.363265	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies $=$	-76.378555	$\mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$
Zero-point correction (unscaled $)=$	0.021399	

Zardaverine

F	0.02728000	11.81373100	10.09223100
O	3.69855600	6.23068000	0.56384700
O	-0.19068000	10.93410500	8.11519600
F	1.36001200	12.49365300	8.52677800
C	3.15168400	6.69853100	1.57875300
N	3.26970200	8.04597400	1.87103200
C	1.17461300	10.17209700	4.77110700
C	0.64028700	10.88556400	5.84815400
C	2.35678800	5.97273800	2.54410300
O	0.42708200	8.35626300	8.45381400
C	1.47175300	8.80622900	4.91617200
C	1.22865900	8.15681600	6.14423000
N	2.76412900	8.72582500	2.90855500
C	1.82214300	6.62988200	3.61358100
C	0.69278500	8.86946800	7.22525300
C	2.04522800	8.04005000	3.77884200
C	0.39918000	10.23864900	7.05466200
C	0.73185800	11.40054300	9.03047700
C	0.70727600	6.96994100	8.65277200
H	1.48518800	7.10243900	6.26118900
H	1.49162100	10.65365500	9.32511300
H	1.19941500	6.09443600	4.33577500
H	2.19912800	4.90480000	2.37482800
H	1.78316100	6.76111100	8.51541000
H	1.34646800	10.66951000	3.81425000
H	3.82326900	8.61355700	1.22414800
H	0.11792000	6.34583700	7.95759000
H	0.38965900	11.94712800	5.76293700
H	0.41497300	6.75215500	9.68862800

DFT MN15L, solvent water, smd model		
Sum of electronic and zero-point Energies $=$	-997.484386	$\mathrm{E}_{0}+\mathrm{E}_{\text {ZPE }}$
Sum of electronic and thermal Energies $=$	-997.468369	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies $=$	-997.467425	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies $=$	$-997.522766 \mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$	
Zero-point correction (unscaled $)=$	0.212569	

Ligand 1a'

Ligand 1e'

C	0.26426800	1.64414100	2.87507900
N	-0.52542700	2.35061600	3.71757400
N	0.52995800	2.42173400	1.77701300
C	-1.05049300	3.57245100	3.06123600
C	-1.48849500	1.77161600	4.66663300
C	-0.53189000	3.43276000	1.61898100
H	0.87239000	1.92568500	0.95661500
C	-2.55320000	3.47149300	3.32952400
H	-0.62796400	4.46813600	3.55576200
C	-2.57073800	2.86185000	4.74230600
H	-1.88610400	0.82551400	4.25323000
H	-1.01898100	1.55246400	5.63933200
H	-1.32675300	3.06592900	0.94078000
H	-0.13009000	4.37469900	1.21951400
H	-2.99930000	2.76522200	2.60355200
H	-3.07567900	4.43735800	3.25823800
H	-3.54863300	2.45291800	5.03667400
H	-2.27860800	3.62997900	5.48058500
S	0.85767600	0.10074800	3.14451700

DFT MN15L, solvent water, smd model		
Sum of electronic and zero-point Energies $=$	-741.984631	$\mathrm{E}_{0}+\mathrm{E}_{\text {ZPE }}$
Sum of electronic and thermal Energies $=$	-741.976734	$\mathrm{E}_{0}+\mathrm{E}_{\text {tot }}$
Sum of electronic and thermal Enthalpies $=$	-741.975789	$\mathrm{E}_{0}+\mathrm{H}_{\text {corr }}$
Sum of electronic and thermal Free Energies $=$	-742.011017	$\mathrm{E}_{0}+\mathrm{G}_{\text {corr }}$
Zero-point correction $($ unscaled $)=$	0.161445	

5. Molecular docking

Structures used in docking and binding energies of ligand in a top scored pose are shown below:
Variation of catechol ring C :

 Roflumilast $-9.5 \mathrm{kcal} / \mathrm{mol}$	 CMPI $-9.7 \mathrm{kcal} / \mathrm{mol}$	(7S,7aR)-1a $-10.7 \mathrm{kcal} / \mathrm{mol}$	 1c $-8.9 \mathrm{kcal} / \mathrm{mol}$
 -10.1 kcal/mol	 $-9.3 \mathrm{kcal} / \mathrm{mol}$	 $-8.7 \mathrm{kcal} / \mathrm{mol}$	
		 $-9.7 \mathrm{kcal} / \mathrm{mol}$	 $-9.5 \mathrm{kcal} / \mathrm{mol}$
 1b $-9.7 \mathrm{kcal} / \mathrm{mol}$		 $-9.8 \mathrm{kcal} / \mathrm{mol}$	 -9.6 kcal/mo

Variation of ring B :

 (7S,7aR)-1a $-10.7 \mathrm{kcal} / \mathrm{mol}$	 $2 a$ $-10.1 \mathrm{kcal} / \mathrm{mol}$	 $-9.6 \mathrm{kcal} / \mathrm{mol}$	 $-9.9 \mathrm{kcal} / \mathrm{mol}$
 $-9.4 \mathrm{kcal} / \mathrm{mol}$	 $-9.7 \mathrm{kcal} / \mathrm{mol}$	 $-9.6 \mathrm{kcal} / \mathrm{mol}$	 $-9.1 \mathrm{kcal} / \mathrm{mol}$
 $-9.5 \mathrm{kcal} / \mathrm{mol}$	 $-9.8 \mathrm{kcal} / \mathrm{mol}$	 $-9.4 \mathrm{kcal} / \mathrm{mol}$	 $-9.5 \mathrm{kcal} / \mathrm{mol}$
 $-10.0 \mathrm{kcal} / \mathrm{mol}$	 $-8.4 \mathrm{kcal} / \mathrm{mol}$	 $-9.0 \mathrm{kcal} / \mathrm{mol}$	

Variations in ring A :

 (7S,7aR)-1a $-10.7 \mathrm{kcal} / \mathrm{mol}$	 1d $-9.7 \mathrm{kcal} / \mathrm{mol}$	 $-9.9 \mathrm{kcal} / \mathrm{mol}$	
		 1e $-9.9 \mathrm{kcal} / \mathrm{mol}$	
			 $-9.3 \mathrm{kcal} / \mathrm{mol}$
 $-9.7 \mathrm{kcal} / \mathrm{mol}$		 $-9.6 \mathrm{kcal} / \mathrm{mol}$	

Binding modes of Roflumilast (crystal structure 1XMU)

Residues in Q pocket of PDE4B interacting with Roflumilast.

Close view on the difluoromethyl group making hydrogen bond with THR407 and multipolar interaction with TRP332.

Residues in Q and M pockets of PDE4B interacting with CMPI and the resulting binding energy.

Residues in Q and M pockets of PDE4B interacting with $1 \mathbf{a}$ and the resulting binding energy.

Metalloprotein-ligand interactions for PDE4 inhibitors

Docking of 1a into the catalytic site of PDE4B (close view on the interactions in M pocket).

Interaction of Zardaverine with the Zn^{2+} ion in M pocket of PDE4D (crystal structure 1XOR).

	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1
≥ 0	210	200	190	180	170	160	150	140	130	120	$\begin{aligned} & 110 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\qquad NM \qquad mn \qquad arn
\qquad

HSQC NMR

NOESY NMR

	1	1	1	1	1	1	1	T		1	1	1	1	1	1	1		1	1	1	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	c
											m)										

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\cong	\%	$\mathfrak{\sim}$					
$\stackrel{\infty}{\infty}$	in	$\stackrel{\sim}{\mathrm{m}} \mathrm{m}$					
\|		\|		\|			

1 e

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1		1	1	1	1	1	
;0	-55	-60	-65	-70	$\begin{aligned} & \text { f1 } 75 \\ & (\mathrm{ppm}) \end{aligned}$	-80	-85	-90	-95	-11
					$\begin{gathered} \text { f1 (ppm) } \\ \text { s103 } \end{gathered}$					

${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2a

	1	T	1	,	1	1	1	1	1
;0	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1(\mathrm{ppm}) \\ \mathrm{s} 106 \end{gathered}$	-80	-85	-90	-95

NOESY NMR

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{N}{N}$
$\stackrel{-}{\infty} \stackrel{8}{\sim}$
tc:01-

${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(282} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2b

	1	1	1	1	1	1	1	1	1	,
;0	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1 \begin{array}{c} \text { (ppm) } \\ \mathrm{s} 112 \end{array} \end{gathered}$	-80	-85	-90	-95	-11

 $\stackrel{\circ}{\infty}$ | $\stackrel{\circ}{\circ}$ | $\stackrel{\circ}{0}$ |
| :--- | :--- |
| $\stackrel{1}{1}$ | |
| 1 | |

24b

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \\ & \mathrm{S} 114 \end{aligned}$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

24b

「	1	1	1	1	1	1	1	1	1	
;	-55	-60	-65	-70	$\begin{gathered} -75 \\ \text { f1 (ppm) } \\ \text { S1155 } \end{gathered}$	-80	-85	-90	-95	-11

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \xlongequal[\text { in }]{\stackrel{\infty}{5}}$

$\stackrel{\underset{\sim}{i}}{\stackrel{~}{i}}$
$\stackrel{\text { N }}{\text { No }}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$4 a$

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
≥ 0	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \\ \mathrm{S} 117 \end{gathered}$	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$4 a$

\ulcorner	1	1	1	1	1	1	1	1	1
;	-55	-60	-65	-70	-75	-80	-85	-90	-95
					$\begin{gathered} \text { f1 (ppm) } \\ \text { S118 } \end{gathered}$				

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4b

Γ	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	\checkmark
≥ 0	210	200	190	180	170	160	150	140	130	120		100	90	80	70	60	50	40	30	20	10	c
											$\begin{aligned} & \text { f1 (ppm) } \\ & \text { S120 } \end{aligned}$											

${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\circ}{\circ}$
$\stackrel{1}{-}$
i

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	1	1	1
-55	-60	-65	-70	$\begin{aligned} & -75 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	-80	-85	-90	-95

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 f

7c

n

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7c

\ulcorner	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \\ \mathrm{S} 131 \end{gathered}$	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7c

	1	1	1	1	1	1	1	1	1	,
; 0	-55	-60	-65	-70	$\stackrel{-75}{\mathrm{f} 1} \text { (ppm) }$	-80	-85	-90	-95	-11
					S132					

/s
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1	1	1	1
;0	-55	-60	-65	-70	$\stackrel{-75}{\mathrm{f} 1(\mathrm{ppm})}$	-80	-85	-90	-95

${ }^{29}$ Si NMR ($40 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1		T	1	1	1		1			1	1	1	1		1	1		
5	90	85	80	75	70	65	60	55			40	35	30	25	20	15	10	5	

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

9c

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9c
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9c

	1	1	1	1	1	1	1	1	1	\checkmark
;0	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1(\mathrm{ppm}) \\ \mathrm{s} 145 \end{gathered}$	-80	-85	-90	-95	-11

${ }^{29} \mathrm{Si}$ NMR $\left(40 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

				75	70			5			1		1						
5	90	85	80	75	70	65	60	55			40	35	30	25	20	15	10	5	

	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	$\stackrel{110}{\mathrm{f} 1} \begin{aligned} & (\mathrm{ppm}) \end{aligned}$	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Page 1/1

${ }^{14} \mathrm{~N}$ NMR (22 MHz, $\left.\mathrm{CDCl}_{3}\right)$

10c
10c'
(minor 4,6-cis isomer)
d.r. 4.5: 1

${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10c
10c'
(minor 4,6-cis isomer)
d.r. 4.5: 1

	1	1	1	1	1	1	1	1	1
;	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1 \begin{array}{c} \text { (ppm) } \\ \mathrm{S} 160 \end{array} \end{gathered}$	-80	-85	-90	-95

${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\circ}{9}$

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	$\begin{aligned} & 110 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F}$ NMR ($188 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	T	1	T	1	1	1	1	1
; 0	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1(\mathrm{ppm}) \\ \mathrm{S} 164 \end{gathered}$	-80	-85	-90	-95

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{9}{m}$
$\stackrel{\infty}{\infty}$

$\begin{array}{lcc}0 & 0 \\ 0 & m \\ i & m \\ i & i & j\end{array}$

11c

						$\frac{T}{\top}$	$\begin{aligned} & 1 \\ & 1 \\ & \text { f } \\ & \text { m } \end{aligned}$							$\stackrel{\text { T }}{\text { No }}$	$\stackrel{+}{\square}$	$\begin{aligned} & \square \\ & \underset{\square}{\square} \\ & \underset{\sim}{\square} \end{aligned}$	$\stackrel{1}{\underset{\sim}{~}}$	$\stackrel{+}{\infty}$		
\ulcorner	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1
1.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \\ & \mathrm{s} 169 \end{aligned}$	4.5	4.0	3.5	3.0		2.5	2.0	1.5	1.0	0.5

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

11c

\ulcorner	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
≥ 0	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \\ \mathrm{S} 170 \end{gathered}$	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

11c

「	1	1	1	1	1	1	1	1	1	
;	-55	-60	-65	-70	$\begin{gathered} -75 \\ \text { f1 (ppm) } \\ \text { S171 } \end{gathered}$	-80	-85	-90	-95	-11

Page 1/1

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(188 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

W.

Γ	1	T	1	1	1	1	1	1	1
;0	-55	-60	-65	-70	$\begin{aligned} & -75 \\ & \mathrm{f} 1 \mathrm{ppm}) \\ & \mathrm{s} 176 \end{aligned}$	-80	-85	-90	-95

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3})

$\stackrel{\cong}{i}$

$\stackrel{\sim}{m}$
范

							$\begin{aligned} & 1 \\ & \stackrel{1}{\circ} \\ & \underset{\sim}{i} \end{aligned}$		$\begin{aligned} & \uparrow \\ & \stackrel{\circ}{\circ} \\ & \circ \end{aligned}$	$\begin{array}{ll} T & T \\ \stackrel{N}{n} & 8 \\ \underset{\sim}{8} & - \end{array}$			$\begin{aligned} & \underset{\sigma}{\top} \\ & \hline \end{aligned}$	$\begin{aligned} & \Gamma_{-}^{\infty} \\ & \stackrel{\infty}{-} \end{aligned}$			$\stackrel{1}{\stackrel{1}{\mathrm{~N}}}$		$\begin{aligned} & 1 \\ & \substack{n \\ \sim \\ \sim} \end{aligned}$		$\begin{array}{ll} \Gamma & T \\ \stackrel{N}{N} & \stackrel{n}{i} \\ \underset{i}{\prime} & \end{array}$	
\ulcorner	1	1	1	1	1	1	1	1		1	1	1		1	1	1	1	1		1	1	
1.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \\ & \mathrm{S} 179 \end{aligned}$	4.5	4.0		3.5	3.0	2.5	2.0	1.5		1.0	0.5	0.

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12c

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ゅ	¢0\%	\%
앙	$\ddagger{ }^{\text {¢ }}$	
	$1\rangle$	い11V1

	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1
$\underline{2}$	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \text { f1 (ppm) } \\ \text { S182 } \end{gathered}$	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

12c

,	1	1	1	1	1	1	1	1	1	\checkmark
;	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1 \begin{array}{c} \text { (ppm) } \\ \text { S183 } \end{array} \end{gathered}$	-80	-85	-90	-95	-11

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

No

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1		1	1	1	1	1	
;0	-55	-60	-65	-70	$\stackrel{-75}{\mathrm{f} 1}{ }_{(\mathrm{ppm})}$	-80	-85	-90	-95	-11

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1	1	1	1	,
;0	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f1}(\mathrm{ppm}) \\ \mathrm{S} 191 \end{gathered}$	-80	-85	-90	-95	-11

	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1
20	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \text { f1 (ppm) } \\ \mathrm{S} 193 \end{gathered}$	100	90	80	70	60	50	40	30	20	10

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1	1	1	1	,
;0	-55	-60	-65	-70	$\stackrel{-75}{\mathrm{f} 1} \text { (ppm) }$	-80	-85	-90	-95	-11
					S194					

${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

16a-A

	1	1	1	1	1	1	1	1	1	,
;0	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1(\mathrm{ppm}) \\ \mathrm{S} 197 \end{gathered}$	-80	-85	-90	-95	-11

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

16a-B

\ulcorner	1	1	1		1	1	1	1	1	
;0	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1(\mathrm{ppm}) \\ \mathrm{S} 200 \end{gathered}$	-80	-85	-90	-95	-11

${ }^{3} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

18a

			1	1		T	1			T	T		T	1	T	1	1	1	1	1	T
20	210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20	10

$\left.{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(282} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1	1	1	1	1	1	1	1	1	
;	-55	-60	-65	-70	-75	-80	-85	-90	-95	-11
					$\begin{gathered} \text { f1 (ppm) } \\ \text { S203 } \end{gathered}$					

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

						$\begin{aligned} & 1 \\ & 8 \\ & \hline \end{aligned}$	1 0 0 i					$$								ワ ワ ¢
\ulcorner	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1 T
1.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \\ & \mathrm{S} 204 \end{aligned}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5		1.0	0.5

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

18b

	1	1	1	1	1	1	1	1	1	\checkmark
;	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1 \text { (ppm) } \\ \mathrm{S} 206 \end{gathered}$	-80	-85	-90	-95	-11

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\bar{m}}{\sim} \stackrel{\infty}{\sim} \underset{\sim}{\sim}$
io

\iiint

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
ํㅡํํํํ

-	$\widetilde{\sim}$	\%	N	$\stackrel{\square}{8}$	n
N过	¢	in	$\stackrel{\sim}{0}$	$\stackrel{\infty}{\sim}$	\bigcirc
lrl	\|				

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	,	1	1	I	1	T	1	1	
;0	-55	-60	-65	-70	$\begin{aligned} & -75 \\ & \mathrm{f} 1 \\ & (\mathrm{ppm}) \end{aligned}$	-80	-85	-90	-95	-11
					S209					

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(

 $\underbrace{\text { Noje }}$

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

21b

Γ	1	T	1	1	1	1	1	1	1	\checkmark
;0	-55	-60	-65	-70	${ }_{\text {f1 }}^{-75}$	-80	-85	-90	-95	-11
					$\begin{aligned} & \mathrm{f} 1 \text { (ppm) } \\ & \mathrm{S} 212 \end{aligned}$					

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

22a
22a'
(minor 3,4-cis isomer)
d.r. 6.5 : 1

${ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl_{3})

d.r. 6.5 : 1

	1	1	1	1	1	1	1	1	1
;0	-55	-60	-65	-70	$\begin{aligned} & -75 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	-80	-85	-90	-95
					$\begin{gathered} \text { f1 (ppm) } \\ \text { S215 } \end{gathered}$				

COSY NMR

$$
\mathrm{f} 1 \text { (ppm) }
$$

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	1	1	1	1	,
; 0	-55	-60	-65	-70	$\begin{gathered} -75 \\ \mathrm{f} 1 \begin{array}{c} (\mathrm{ppm}) \\ \mathrm{sp20} \end{array} \end{gathered}$	-80	-85	-90	-95	-11

<Sample Information>
$\begin{array}{ll}\text { Sample Name } & \text { : VAD157 rac } \\ \text { Sample ID } & \text { VAD157-rac } \\ \text { Data Filename } & \text { VAD15.Icd } \\ \text { Method Filename } & \text { : multiwave.Icm }\end{array}$
Batch Filename
Vial \# $\quad \vdots 1$-100
Injection Volume : 3 uL
$\begin{array}{ll}\text { Date Acquired } & : 20.02 .2016 \\ \text { 15:19:39 }\end{array}$
<Chromatogram>
mAU

<Peak Table>

PDA Ch6 274nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	11,964	596933	30452	49,928
2	20,088	598644	17514	50,072
Total		1195576	47966	100,000

<Sample Information>

Sample Name : VAD183_chir
 Sample ID \quad VAD183_chir

Data Filename VAD160.Icd
Method Filename : multiwave.Icm
Vial \# \quad : 1 -10
Injection Volume : 10 uL
Date Acquired $: 20.02 .2016$ 16:40:00
<Chromatogram>
mAU

<Peak Table>

PDA Ch5 274nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	11,912	29655	1321	1,839
2	20,211	1582470	42511	98,161
Total		1612125	43831	100,000

<Sample Information>
$\begin{array}{ll}\text { Sample Name } & \text { VAD108_5 } \\ \text { Sample ID } & \text { VAD108_5 }\end{array}$
$\begin{array}{ll}\text { Sample ID } & \text { VAD108_-5 } \\ \text { Data Filename } & \text { VAD108 } \\ \text { V_mod.Icd }\end{array}$
$\begin{array}{lll}\text { Data Filename } & \text { VAD108_5_m } \\ \text { Method Filename } & \text { 231014.Icm }\end{array}$
Metch Filename
Bat
Batch

Injection Volume	$\begin{array}{l}\text { 1-16 } \\ 104 \\ \text { uL } \\ \text { Date Acquired }\end{array}$
10.04 .2015 16:52:40	

$\begin{array}{l:l}\text { Date Acquired } & 10.04 .2015 \\ \text { 16:52:40 } \\ \text { Date Processed }\end{array}$
<Chromatogram>
mAU

<Peak Table>

PDA Ch2 274nm				
Peak\#	et. Time	Area	Height	Area\%
1	9,735	2034034	186760	50,758
2	10,551	1973297	101385	49,242
Total		4007332	288145	100,000

<Sample Information>

Sample Name	VAD_169_1
Sample ID	VAD-169-1
Data Filename	VAD169_1_mod.lcd
Method Filename	231014.1cm
Batch Filename	
Vial \#	1-20
Injection Volume	5 uL
Date Acquired	24.11.2015 19:12:54
Date Processed	29.10.2010 17:37:56

Sample Type
Acquired by Acquired by
Processed by : PZ
<Chromatogram>
mAU

<Peak Table>

PDA Ch2 274nm				
Peak\#	Ret. Time	Area	Height	Area\%
1	9,626	983095	71810	99,008
2	10,622	9850	676	0,992
Total		992945	72486	100,000

[^0]: ${ }^{1}$ O. Trott and A. J. Olson, J. Comput. Chem., 2010, 31, 455.
 ${ }^{2}$ G. L. Card, B. P. England, Y. Suzuki, D. Fong, B. Powell, B. Lee, C. Luu, M. Tabrizizad, S. Gillette, P. N. Ibrahim, D. R. Artis, G. Bollag, M. V. Milburn, S.-H. Kim, J. Schlessinger and K. Y. J. Zhang, Structure 2004, 12, 2233-2247.

[^1]: ${ }^{3}$ Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
 ${ }^{4}$ R. L. Martin, P. J. Hay, L.R. Pratt, J. Phys. Chem. A, 1998, 102 (20), pp 3565-3573.
 ${ }^{5}$ For detailed description of all keywords, basis sets and functionals please refer to Gaussian 16 manual or http://www.gaussian.com/keywords.

[^2]: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \operatorname{HSQC}, \mathrm{CDCl}_{3}$) $\delta 165.96$ (3-C), 150.84 ($10-\mathrm{C}$), 139.52 (t, J = $4.2 \mathrm{~Hz}, 11-\mathrm{C}$), 138.27 ($8-\mathrm{C}$), 123.11 ($12-\mathrm{C}$), 120.04 ($13-\mathrm{C}$), 116.27 (t, J = $259.5 \mathrm{~Hz}, 14-\mathrm{C}$), 113.97 ($9-\mathrm{C}$), 74.11 ($15-\mathrm{C}$), 66.15 (7a-C), 48.76 (7-C), 45.26 (5-C), 41.37 (1-C), 34.59 (6-C), 10.25 (16-C), 3.26 (17-C).

[^3]: ${ }^{6}$ S. J. Williams, S. C. Zammit, A. J. Cox, D. M. Shackleford, J. Morizzi, Y. Zhang, A. K. Powell, R. E. Gilbert, H. Krum and D. J. Kelly, Bioorganic \& Medicinal Chemistry Letters, 2013, 23, 6868-6873.

[^4]: ${ }^{7}$ J. Jian, J. Fan, H. Yang, P. Lan, M. Li, P. Liu, H. Gao and P. Sun, Journal of Natural Products, 2018, 81, 371-377.

[^5]: ${ }^{8}$ Y. Lin, P. Huang, S. Liu, L. Sima, L. Chen and D. Wang, Research on Chemical Intermediates, 2013, 39, 21072113.

[^6]: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{JMOD}, \mathrm{CDCl}_{3}$) $\delta 149.44$ and 148.08 ($12-\mathrm{C}$ and $13-\mathrm{C}$), 137.73 and 136.55 (i-Ph and $10-\mathrm{C}$), 128.55 (m-Ph), 127.83 ($15-\mathrm{C}$), 127.43 (o-Ph), 121.41 (p-Ph), 115.98 (14-C), 115.51 (11-C), 99.41 (6-C), 83.31 ($9-\mathrm{C}$), 74.52 (17-C), 71.71 ($16-\mathrm{C}$), 64.22 (7-C), 40.65 ($4-\mathrm{C}$), 36.75 (5-C), 15.15 (8-C), 10.65 ($18-\mathrm{C}$), 3.36 ($19-\mathrm{C}$), $-0.65(20-\mathrm{C})\left(9-\mathrm{CH}_{2}\right.$ not observed).

[^7]: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.79$ and 148.17 (12-C and 13-C), 137.74 (i-Ph), 134.89 (10-C), 128.58 (m-Ph), 127.89 (15-C), 127.40 (o-Ph), 120.01 (p-Ph), 115.96 (14-C), 114.57 (11-C), 98.09 (6-C), 74.44 (17-C), 71.69 (16-C), 63.78 (9-C), 61.61 (3-C), 51.18 (7-C), 37.62 (4-C), 36.54 (5-C), 15.33 ($8-\mathrm{C}), 10.60$ (18-C), 3.39 (19-C).

