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Structure of 7a determined by X-ray diffraction 
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Formula: C15H15N1O4

Unit Cell Parameters: a 6.2246(2) b 26.4216(12) c 8.1454(4) P21

Thermal ellipsoids at 50% probability, hydrogen atoms drawn as spheres of 0.15Å radius for clarity

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 

1832560). The data is available free of charge at www.ccdc.cam.uk/conts/retrieving.html



S-3

Synthesis of epoxy acetate 21' for NOESY analysis

In order to assess the stereochemistry of the epoxidation, acetate 21’ was obtained by esterification of 

compound 21:
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To a solution of epoxide 21 (8.0 mg, 0.02 mmol, 1 equiv) in Ac2O (0.20 mL, 2 mmol, 100 

equiv) was added pyridine (0.20 mL, 2.4 mmol, 120 equiv). The solution was stirred at r.t. for 72 h. 

Water (3 mL) was added slowly at 0 °C. The aqueous phase was extracted with CH2Cl2 (3 x 4 mL). 

The combined organic layers were then washed with aqueous 2M HCl (2 x 2 mL) and saturated 

aqueous NaHCO3 (2 mL), dried over Na2SO4, filtered and concentrated giving acetate 21’ (6 mg, 

0.015 mmol, 71 %) with analytical purity as yellowish oil.

Rf 0.19 (petroleum ether/ethyl acetate, 2:1).

IR (film) 2918, 1752, 1736, 1246, 1230, 1096, 1037 cm-1.

1H NMR (400 MHz, CDCl3)  ppm: 7.46-7.42 (m, 2H, H-Ph), 7.40-7.28 (m, 8H, H-Ph), 4.98 (d, J= 

11.3 Hz, 1H, PhCH2O), 4.74 (d, J= 15.3 Hz, 1H, PhCH2N), 4.53 (d, J= 11.3 Hz, 1H, PhCH2O), 4.52 

(d, J= 11.6 Hz, 1H, CH2OAc),  4.23-4.11 (m, 3H, PhCH2N, H-2, CH2OAc), 3.65 (d, J= 7.4 Hz, 1H, H-

1), 3.49 (d, J= 2.1 Hz, 1H, H-3), 3.06 (d, J= 2.0 Hz, 1H, H-4), 2.05 (s, 3H, CH3).

13C NMR (100 MHz, CDCl3) δ ppm: 170.2 (C=O), 163.6 (C-7), 137.6 (Cq-Ar), 136.6 (Cq-Ar), 129.0 

(CH-Ar), 128.7 (CH-Ar), 128.4 (2 CH-Ar), 128.2 (CH-Ar), 128.1 (CH-Ar), 75.0 (C-2), 73.0 

(PhCH2O), 68.3 (C-5), 62.2 (CH2OAc), 61.6 (C-1), 60.4 (C-3), 57.2 (C-4), 44.7 (PhCH2N), 20.7 

(CH3).

HRMS (ESI) m/z 394.163 ([M+H]+, calcd. for C23H24NO5: 394.165).

NOE interactions between H-4 and PhCH2N (see figure 22) probe that alkene epoxidation proceeded 

from the least hindered convex face.
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Inhibition assays protocol & results

The glycosidases α-Galactosidase (from green coffee beans), β-Galactosidase (from E. coli), α-

Glucosidase (from Saccharomyces cerevisiae), β-Glucosidase (from almonds), α-mannosidase (from 

Jack Bean) were purchased from Sigma Aldrich and their corresponding p-nitrophenyl α- or β-

glycopyranoside were purchased from Fluorochem. 

General procedure for inhibition assay 

Inhibitory potencies were determined by spectrophotometrically measuring the residual hydrolytic 

activities of the glycosidases against their respective p-nitrophenyl α- or β- glycopyranoside in the 

presence (at 1 mM) and absence of inhibitor. Kinetics were performed in appropriate buffer and were 

started by enzyme addition for a total well volume of 100 µL.  After 15 to 40 min incubation at given 

temperature, the reaction was quenched by addition of 100 µL of 1 M Na2CO3. The absorbance of the 

resulting solutions were determined at 405 nm. For sake of convenience and consistency, 100 mM 

mother solutions were prepared in DMSO and 10 mM solutions with 10% DMSO were prepared in the 

proper buffer and used directly for a final DMSO concentration of 1% in all wells. Previously, the 

stability of the enzymes in presence of various concentrations of DMSO was controlled and the 

enzyme activity was unaffected. 

Specific conditions for each enzyme are the following ones: -glucosidase (0.067 M phosphate buffer, 

pH 6.8, 37 °C, Km = 0.5 mM), -glucosidase (0.1 M acetate buffer, pH 5, 37 °C, Km = 3.9 mM), -

galactosidase (0.1 M phosphate buffer, pH 6.5, 26 °C Km = 1 mM), -galactosidase (0.05 M phosphate 

buffer with 1 mM MgCl2, pH 7.3, 30 °C, Km = 0.15 mM), -mannosidase (0.2 M acetate buffer, pH 5, 

25 °C, Km = 2.0 mM)
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Inhibition assays

Enzyme 20a 20b 27 28 GalafoldTM 1-deoxygulonojirimycin

α-Glucosidase 
(Saccharomyces 
cerevisiae)

31 ± 7 46 ±13 32 ± 10 66 ± 4 unknown unknown

β-Glucosidase 
(almonds) 27 ± 14 28 ± 6 8 ± 5 25 ± 3 Ki = 540 µM[1] < 50[2]

α-Galactosidase 
(green coffee 
beans)

46 ± 9 21 ± 2 19 ± 3  -16 ± 9 Ki = 0.013 µM[3]

 Ki = 0.0016 µM[1]
IC50 = 160µM[2] 
IC50 = 400 µM[4] 

β-Galactosidase
(E. coli)  -8 ± 0.5  -15 ± 2 n.a.  -16 ± 3 Ki = 13 µM[3],

Ki = 12.5 µM[1] unknown

α-mannosidase 
(Jack Bean) n.a. n.a. 14 ± 5 n.a. < 50[2] < 50[2]

Table 1. Inhibitory activity of compounds 20, 27, 28, Galafold and 1-deoxygulonojirimycin. 

Percentage (%) of inhibition at 1 mM of inhibitor except noted otherwise. n.a. : no activity. 

[1] G. Legler, S. Pohl, Carbohydr. Res. 1986, 155, 119–129.

[2] A. Kato, N. Kato, E. Kano, I. Adachi, K. Ikeda, L. Yu, T. Okamoto, Y. Banba, H. Ouchi, H. 
Takahata, et al., J. Med. Chem. 2005, 48, 2036–2044.

[3] G. Schitter, E. Scheucher, A. J. Steiner, A. E. Stütz, M. Thonhofer, C. A. Tarling, S. G. 
Withers, J. Wicki, K. Fantur, E. Paschke, et al., Beilstein J. Org. Chem. 2010, 6, 21.

[4] N. Asano, S. Ishii, H. Kizu, K. Ikeda, K. Yasuda, A. Kato, O. R. Martin, J. Fan, Eur. J. 
Biochem. 2000, 267, 4179–4186.
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Fig 1. 1H NMR (400 MHz, CDCl3) and 13C (100MHz, CDCl3) spectra of compound 5.
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Fig 2. 1H NMR (300 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 6.
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Fig 3. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 7a.
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Fig 4. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 7b.
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Fig 5. 1H NMR (300 MHz, CD3OD) and 13C (75 MHz, CD3OD) spectra of compound 8.
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Fig 6. 1H NMR (300 MHz, CD3OD) and 13C (75 MHz, CD3OD) spectra of compound 9.
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Fig 7. 1H NMR (400 MHz, CD3OD) and 13C (100 MHz, CD3OD) spectra of compound 10.
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Fig 8. 1H NMR (400 MHz, CD3OD) and 13C (100 MHz, CD3OD) spectra of compound 11.
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Fig 9. 1H NMR (400 MHz, D2O) and 13C (100 MHz, D2O) spectra of compound 12.
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Fig 10. 1H NMR (300 MHz, CD3OD) and 13C (75MHz, CD3OD) spectra of compound 13.
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Fig 11. 1H NMR (300 MHz, D2O) and 13C (75MHz, D2O) spectra of compound 14.
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 Fig 12. 1H NMR (300 MHz, CDCl3) and 13C (75 MHz, CDCl3) spectra of compound 15.
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Fig 13. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 16.
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Fig 14. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 17.
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Fig 15. 1H NMR (400 MHz, CD3OD) and 13C (100 MHz, CD3OD) spectra of compound 18.
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Fig 15. 2D NOESY NMR spectrum of compound of compound 18.
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Fig 16. 1H NMR (500 MHz, CDCl3) and 13C (125 MHz, CDCl3) spectra of compound 19.
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 Fig 17. 1H NMR (400 MHz, CD3OD) and 13C (125 MHz, CD3OD) spectra of compound 20a.

N
Bn

OBn

OBn
OBn

OBn

6

N
Bn

OBn

OBn
OBn

OBn

6

OH

OH
OH

OH

HN

20a

1
2

3

45

7

5'

OH

OH
OH

OH

HN

20a

1
2

3

45

7

5'



S-24

Fig 18. 1H NMR (400 MHz, D2O) and 2D NOESY NMR spectra of compound 20a.
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Fig 19. 1H NMR (400 MHz, D2O) and 13C (100 MHz, D2O) spectra of compound 20b.
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Fig 20. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 21
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Fig 21. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 21’.
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Fig 22. 2D NOESY NMR spectrum of compound 21’.
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Fig 23. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 22.
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Fig 24. 1H NMR (400 MHz, CD3OD) and 13C (100 MHz, CD3OD) spectra of compound 23.

N

OH

OH

O

Bn

23

1 2

3

4

5

5'

N

OH

OH

O

Bn

23

1 2

3

4

5

5'



S-31

 

Fig 25. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 24.
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Fig 26. 1H NMR (400 MHz, CDCl3) and 13C (100 MHz, CDCl3) spectra of compound 25.
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Fig 22. 2D NOESY NMR spectrum of compound 25.
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Fig 23. 1H NMR (400 MHz, CD3OD) and 13C (100 MHz, CD3OD) spectra of compound 26.
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Fig 24. 1H NMR (400 MHz, CD3OD) and 13C (100 MHz, CD3OD) spectra of compound 27.
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Fig 25. 1H NMR (400 MHz, CD3OD) and 13C (100 MHz, CD3OD) spectra of compound 28. 
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