Scope of the 2(5H)-Furanone Helicity Rule: A Combined ECD, VCD, and DFT Investigation

Fernando M. dos Santos Jr.,^{a§} Keylla U. Bicalho,^{b§} Ítalo H. Calisto,^a Gabriel S. Scatena,^a João B. Fernandes,^a Quezia B. Cass,^a João M. Batista Jr.^{ac*}

^a Department of Chemistry, Federal University of São Carlos – UFSCar, São Carlos, SP 13565-905, Brazil

^b Institute of Chemistry, São Paulo State University – UNESP, Araraquara, SP 14800-060, Brazil

^c Institute of Science and Technology, Federal University of São Paulo – UNIFESP, São José dos Campos, SP 12231-280, Brazil

[§] These authors contributed equally to this work

Supplementary Information:

Contents:

Table S1: Comparison of ¹H-NMR (CDCl₃, 400 MHz) and ¹³C (CDCl₃, 100 MHz) data of the isolated compound with that reported for rolliniastatin-1 (PETIT *et al.*, 1987: CDCl₃, 300 MHz for ¹H NMR / 75 MHz for ¹³C NMR).

Table S2: Different levels of theory tested for geometry optmisation of the (SR)-lactone fragment (b).

Table S3: Analysis of the most relevant transitions calculated for the simple

 lactone fragment (a) at the CAM-B3LYP/PCM(ACN)/TZVP level.

Figure S1: ¹H NMR spectra of the isolated compound (400 MHz, CDCl₃).

Figure S2: ¹³C NMR spectra of the isolated compound (100 MHz, CDCl₃).

Figure S3: COSY spectra of the isolated compound (400 MHz, CDCl₃).

Figure S4: HSQC correlation map of the isolated compound (400 MHz, CDCl₃).

Figure S5: HMBC correlation map of the isolated compound (400 MHz, CDCl₃).

Figure S6: Structure of the 6 lowest-energy conformers of (*SR*)-lactone fragment (b) at the wB97XD/cc-pVTZ level.

Figure S7: Calculated ECD spectrum at the wB97XD/PCM(ACN)/TZVP level for the (*SR*)-lactone fragment (b).

Figure S8: Calculated ECD spectrum at the wB97XD/PCM(ACN)/aug-cc-pVTZ level for the (*SR*)-lactone fragment (b).

Figure S9: Calculated ECD spectrum at the CAM-B3LYP/PCM(ACN)/TZVP level for the (*RR*)-lactone fragment (c).

Figure S10: (Left) Experimental ECD spectrum of the synthetic simple lactone fragment (a) in ACN; (Right) Calculated ECD at the CAM-B3LYP/PCM(ACN)/TZVP//B3LYP/6-31G(d) level for (S)-simple lactone fragment (a).

Figure S11: Calculated ECD spectrum at the wB97XD/PCM(ACN)/aug-ccpVTZ//B3LYP/6-31G(d) level for (*S*)-simple lactone fragment (a).

Figure S12: Most relevant molecular orbitals of the simple lactone fragment (a) at the CAM-B3LYP/PCM(ACN)/TZVP level.

Figure S13: Simulated VCD spectra for conformers 1 (black) and 2 (red) of the (*SR*)-lactone fragment (b) at the B3LYP 6-31G(d) level.

Figure S14: Simulated VCD spectra for conformers 1 (black) and 2 (red) of the (*SR*)-lactone fragment (**b**) at the B3PW91/6-311G(d,p) level.

Figure S15: Displacement vectors of selected vibrational modes of conf. 2 of the (*SR*)-lactone fragment (b): band at 1080 cm⁻¹ (Left); band at 1317 cm⁻¹ (Right).

Figure S16: Displacement vectors of selected vibrational modes of the simple lactone fragment (a): band at 1108 cm⁻¹ (Left); band at 1323 cm⁻¹ (Right).

Table S1: Comparison of ¹H-NMR (CDCl₃, 400 MHz) and ¹³C (CDCl₃, 100 MHz) data of the isolated compound with that reported for rolliniastatin-1 (PETIT *et al.*, 1987: CDCl₃, 300 MHz for ¹H NMR / 75 MHz for ¹³C NMR).

	δ _н (рр	δ _c (ppm)			
H/C	Isolated Compound	PETIT <i>et al.,</i> 1987	lsolated Compound	PETIT e <i>t al.,</i> 1987	
1	-	-	174.6	174.5	
2	-	-	131.1	131.1	
3α	2.49 (<i>ddt</i> , 1.6; 3.3; 15.3)	2.50 (<i>dddd</i> , 1.6; 3.5; 15.1)	22.2	22.0	
3β	2.37 (<i>ddt</i> , 1.6; 8.3; 15.3)	2.36 (dddd, 1.4; 8.1; 15.1)	33.2	33.2	
4	3.82 (<i>m</i>)	3.85 (<i>m</i>)	69.9	69.9	
5	1.23-1.47 (<i>m</i>)	1.45 (<i>m</i>)	37.3	37.4	
6	1.23-1.47 (<i>m</i>)	1.25 (<i>m</i>)	26.0	26.0	
7-12	1.23-1.47 (<i>m</i>)	1.25 (<i>m</i>)	29.3-29.6	29.3-29.6	
13	1.23-1.47 (<i>m</i>)	1.25 (<i>m</i>)	25.7	25.7	
14	1.23-1.47 (<i>m</i>)	1.50 (<i>m</i>)	34.1	34.1	
15	3.38 (<i>m</i>)	3.38 (<i>m</i>)	73.9	74.0	
16	3.88 (<i>m</i>)	3.85 (<i>m</i>)	83.0	83.0	
17	1.71-1.93 (<i>m</i>)	1.7-1.9 (<i>m</i>)	28.6	28.7	
18	1.71-1.93 (<i>m</i>)	1.7-1.9 (<i>m</i>)	23.7	27.8	
19	3.87 (<i>m</i>)	3.85 (<i>m</i>)	81.1	81.1	
20	3.84 (<i>m</i>)	3.85 (<i>m</i>)	81.0	81.0	
21	1.71-1.93 (<i>m</i>)	1.7-1.9 (<i>m</i>)	27.8	27.8	
22	1.71-1.93 (<i>m</i>)	1.7-1.9 (<i>m</i>)	28.3	28.4	
23	3.88 (<i>m</i>)	3.85 (<i>m</i>)	83.0	83.0	
24	3.84 (<i>m</i>)	3.85 (<i>m</i>)	71.7	71.8	

25	1.23-1.47 (<i>m</i>)	1.45 (<i>m</i>)	32.7	32.8
26	1.23-1.47 (<i>m</i>)	1.25 (<i>m</i>)	25.5	25.5
27-31	1.23-1.47 (<i>m</i>)	1.25 (<i>m</i>)	29.3-29.6	29.3-29.6
32	1.23-1.47 (<i>m</i>)	1.25 (<i>m</i>)	31.8	31.9
33	1.23-1.47 (<i>m</i>)	1.25 (<i>m</i>)	22.6	22.6
34	0.84 (<i>t</i> , 6.7)	0.85 (<i>t</i>)	14.0	14.1
35	7.17 (q _{dist} , 1.4)	7.16 (<i>ddd</i> , 1.5)	151.7	151.7
36	5.03 (<i>dq</i> , 1.4 e 6.8)	5.02 (dddq, 1.5)	77.9	77.9
37	1.40 (<i>d,</i> 6.8)	1.41 (<i>d</i>)	19.0	19.1

Table S2: Different levels of theory tested for geometry optimisation of the (SR)-lactone fragment (**b**).

	Conformation - Boltzmann distribution (%)/relative energy (kcal ⁻¹)					
Level of theory	C1	C2	C3	C4	C5	C6
wB97XD/aug-cc-pVTZ	35 / 0.0	21 / 0.3	18 / 0.4	11 / 0.7	8 / 0.9	7 / 1.0
B3LYP/6-31G(d)	6 / 1.0	18 / 0.5	14 / 0.6	39 / 0.0	11/0.7	11 / 0.7
B3PW91/6-311G(dp)	4 / 1.1	15 / 0.4	12 / 0.5	30 / 0.0	10 / 0.6	28 / 0.3
MP2/6-31G(d)	10 / 0.8	9 / 0.8	13 / 0.6	37 / 0.0	10 / 0.8	21 / 0.3

Table S3: Analysis of the most relevant transitions calculated for the simple lactone fragment (**a**) at the CAM-B3LYP/PCM(ACN)/TZVP level.

	Excited State	λ/nm	R/10 ⁻⁴⁰ cgs ^a	Excitations ^b (MO)	Coeficients ^b
Simple Lactone	1 (n-π*)	229.07	-0.64	25 → 27	0.67
fragment	2 (π-π*)	193.71	29.90	26 → 27	0.69

^aRotational strengths calculated through dipole lenght formalism.

_

^bOnly single excitations with coefficients larger than 0.2 (absolute value) were listed.

Figure S1: ¹H NMR spectra of the isolated compound (400 MHz, CDCl₃).

Figure S2: ¹³C NMR spectra of the isolated compound (100 MHz, CDCl₃).

Figure S3: COSY spectra of the isolated compound (400 MHz, CDCl₃).

Figure S5: HMBC correlation map of the isolated compound (400 MHz, CDCl₃).

Figure S6: Structure of the 6 lowest-energy conformers of the (*SR*)-lactone fragment (**b**) at the wB97XD/cc-pVTZ level.

Conf. 1, 0.0 kcal⁻¹ (35%)

Conf. 2, +0.3 kcal⁻¹ (21%)

Conf. 3, +0.4 kcal⁻¹ (18%)

Conf. 4, +0.7 kcal⁻¹ (11%)

Conf. 5, +0.9 kcal⁻¹ (8%)

Conf. 6, +1.0 kcal⁻¹(7%)

Figure S7: Calculated ECD spectrum at the wB97XD/PCM(ACN)/TZVP level for the (*SR*)-lactone fragment (**b**).

Figure S8: Calculated ECD spectrum at the wB97XD/PCM(ACN)/aug-cc-pVTZ level for the (*SR*)-lactone fragment (**b**).

Figure S9: Calculated ECD spectrum at the CAM-B3LYP/PCM(ACN)/TZVP level for the (RR)-lactone fragment (**c**).

Figure S10: (Left) Experimental ECD spectrum of the synthetic simple lactone (**a**, α , β -unsaturated butenolide) in ACN; (Right) Calculated ECD at the CAM-B3LYP/PCM(ACN)/TZVP//B3LYP/6-31G(d) level for the (*S*)-simple lactone fragment (**a**).

Figure S11: Calculated ECD spectrum at the wB97XD/PCM(ACN)/aug-cc-pVTZ//B3LYP/6-31G(d) level for the (*S*)-simple lactone fragment (**a**).

Figure S12: Most relevant molecular orbitals of the (*S*)-simple lactone fragment (a) at the CAM-B3LYP/PCM(ACN)/TZVP level.

MO 26 (HOMO)

MO 27 (LUMO)

Figure S13: Simulated VCD spectra of conformers 1 (black) and 2 (red) of the (SR)-lactone fragment (**b**) at the B3LYP/6-31G(d) level.

Figure S15: Displacement vectors of selected vibrational modes for Conf. 2 of (*SR*)-lactone fragment (b): band at 1080 cm⁻¹ (Left); band at 1317 cm⁻¹ (Right).

Figure S16: Displacement vectors of selected vibrational modes for the (*S*)-simple lactone fragment (**a**): band at 1108 cm⁻¹ (Left); band at 1323 cm⁻¹ (Right).

