Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

An efficient iodine pentoxide-triggered iodocarbocyclizations for the synthesis of iodooxindoles in water

Ming-Zhong Zhang,^{*a} Xin Wang,^a Ming-Ying Gong,^a Lin-Chen,^a Wen-Bing Shi,^{*a} Shu-Hua He,^a Yong Jiang^a and Tieqiao Chen^{*b}

^aSchool of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China

**E-mail: mingzhongzhang2010@126.com; wenbingshi@hotmail.com*

^bState Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570100, China

*chentieqiao@hnu.edu.cn

Table of Contents

General remarks	S2
Typical experimental procedure	S2-S3
Preliminary mechanistic studies	S3-S10
Characterization data of products	S11-S19
References	S19
Copies of NMR spectra	S20-S61

1. General remarks

All reagents used were obtained commercially and used without further purification unless indicated otherwise. Column chromatography was carried out on silica gel (300-400 grading). ¹H NMR and ¹³C NMR were recorded in CDCl₃ at room temperature on the Bruker spectrometer (400 MHz ¹H). The chemical-shifts scale is based on internal TMS. Multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quintet), m (multiplet) and coupling constants (*J*) are reported in hertz. HRMS was measured on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. Melting points were determined using XT-4 apparatus and are uncorrected.

2. Typical experimental procedure

2.1 Typical procedure for the preparation of substrates

All *N*-arylacrylamides **1** were synthesized from the corresponding aminobenzenes and acid chlorides, and the NMR spectroscopies are consistent with literature values.^{1,2} hydroxymethyl group substituted *N*-arylacrylamide was synthesized according to literature procedures:³

2.2 Typical procedure for iodine pentoxide-triggered iodocarbocyclization of alkenes

To a 35 mL Sealed tube were added *N*-arylacrylamide **1** (35 mg, 0.2 mmol), iodine pentoxide (I_2O_5 : 152 mg, 2.2 equiv), KI (41 mg, 1.2 equiv) and H_2O (1 mL). Then the tube was stirred at 80 °C for the indicated time until complete consumption of the starting material as monitored by TLC (usually 12 h). After the reaction was finished, ethyl acetate (EtOAc, 30 mL) was added, the reaction mixture was washed with sat. Na₂S₂O₃ and brine, the organic layers dried over Na₂SO₄, filtered, and concentrated in vacuum. The desired product was obtained after purification by flash column chromatography (dichloromethane or dichloromethane/ methanol).

2.3 Typical procedure for the 0.2 mmol scale iodocarbocyclization of *N*-arylacrylamide 1a for the synthesis of iodooxindoles

To a 100 mL Sealed tube were added *N*-arylacrylamide **1** (0.35 g, 2 mmol), iodine pentoxide (I₂O₅: 1.53 g, 2.2 equiv), KI (0. 41 g, 1.2 equiv) and H₂O (10.0 mL). Then the tube was stirred at 80 °C for 16 h. After the reaction was finished, ethyl acetate (EtOAc, 100 mL) was added, the reaction mixture was washed with sat. Na₂S₂O₃ and brine, and the organic layers dried over Na₂SO₄, filtered, and concentrated in vacuum. The resulting residue was purified by silica gel column chromatography (using dichloromethane as an eluent) to obtain the desired product **2a** in 83% (0.71 g) yield.

2.4 Typical procedure for the gram scale iodocarbocyclization of *N*-arylacrylamide 1a for the synthesis of iodooxindoles

To a 100 mL Sealed tube were added *N*-arylacrylamide **1** (1.0 g, 5.7 mmol), iodine pentoxide (I_2O_5 : 4.315 g, 2.2 equiv), KI (1.16 g, 1.2 equiv) and H_2O (15.0 mL). Then the tube was stirred at 80 °C for 24 h. After the reaction was finished, ethyl acetate (EtOAc, 150 mL) was added, the reaction mixture was washed with sat. Na₂S₂O₃ and brine, and the organic layers dried over Na₂SO₄, filtered, and concentrated in vacuum. The resulting residue was purified by silica gel column chromatography (using dichloromethane as an eluent) to obtain the desired product **2a** in 86% (2.1 g) yield.

3. Preliminary mechanistic studies

3.1 Electrophilic process verification experiments

When *para*-fluorine-substituted *N*-arylacrylamide **3** was used as a substrate, the desired iodooxindole **4** was not obtained, whereas the iodohydroxylated product **5** was produced in 60% yield (Eq. S1).

¹H NMR Spectra of iodohydroxylated product (5)

¹³C NMR Spectra of iodohydroxylated product (5)

By addition of 2.0 equiv. ethene-1,1-diyldibenzene **6**, the reaction provided the iodohydroxylated product **7** in 29% isolated yield (Eq. S2).

¹H NMR Spectra of iodohydroxylated product (7)

¹³C NMR Spectra of iodohydroxylated product (7)

3.2 Figure S1. The formation of molecular iodine

Figure S1. Molecular iodine formation: (a) The color change of the reaction mixture; (b) Confirmation of the formation of molecular iodine in $I_2O_5/KI/H_2O$ system; (c) Confirmation of the formation of the formation of molecular iodine in I_2O_5/H_2O system.

3.3 Competition experiment using KBr and KI

When 0.6 equiv of both KBr and KI were used as the halide source in the presence of 2.2 equiv of I_2O_5 , the reaction gave a 95% yield of an inseparable mixture of diiodooxindole **2a** and iodobromooxindole **2b**, and the ratio of **2a/2b** was ca. 1:1.1 as determined by ¹H NMR analyse (Eq. S3).

$^1\mathrm{H}$ NMR Spectra of dihalooxindoles $\mathbf{2a}$ and $\mathbf{2b}$

¹³C NMR Spectra of dihalooxindoles 2a and 2b

4. Characterization data of products

5-Iodo-3-(iodomethyl)-1,3-dimethylindolin-2-one (2a): The product was isolated via the general procedure as a white solid in 92% yield (78.6 mg); flash chromatography (dichloromethane); mp 129-131 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 1H), 7.54 (s, 1H), 6.66 (d, *J* = 8.1 Hz, 1H), 3.49 (d, *J* = 9.9 Hz, 1H), 3.36 (d, *J* = 9.9 Hz, 1H), 3.21 (s, 3H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 143.0 137.5, 135.0, 131.5, 110.4, 85.2, 48.7, 26.4, 23.0, 9.9; HRMS *m/z* (ESI) calcd for C₁₁H₁₁I₂NO⁺[M⁺]: 426.8930; found 426.8931.

3-(Iodomethyl)-1,3-dimethylindolin-2-one (2a'): The product was isolated in a small amount from various reactions during initial survey of reaction conditions; flash chromatography (dichloromethane/methanol, 500:1); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 7.7 Hz, 1H), 7.27 (d, *J* = 7.1 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 7.7 Hz, 1H), 3.52 (d, *J* = 9.8 Hz, 1H), 3.43 (d, *J* = 9.7 Hz, 1H), 3.24 (s, 3H), 1.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 143.0, 132.5, 128.5, 122.6, 122.5, 108.2, 48.5, 26.2, 22.8, 10.7; HRMS *m/z* (ESI) calcd for C₁₁H₁₂INO⁺[M⁺]: 300.9964; found 300.9965.

5-Chloro-3-(iodomethyl)-1,3-dimethylindolin-2-one (2b): The product was isolated via the general procedure as a white solid in 76% yield (75 mg); flash chromatography (dichloromethane); mp 79–81 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.3 Hz, 1H), 7.25 (s, 1H), 6.80 (d, J = 8.2 Hz, 1H), 3.51 (d, J = 9.9 Hz, 1H), 3.39 (d, J = 9.9 Hz, 1H), 3.23 (s, 3H), 1.52 (s, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 177.4, 141.8, 134.2, 128.6, 128.1, 123.2, 109.1, 48.9, 26.4, 22.9, 9.8; HRMS *m/z* (ESI) calcd for C₁₁H₁₁ClINO⁺[M⁺]: 334.9574; found 334.9572.

5-Bromo-3-(iodomethyl)-1,3-dimethylindolin-2-one (2c): The product was isolated via the general procedure as a white solid in 82% yield (85.4 mg); flash chromatography (dichloromethane); mp 98–101 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.2 Hz, 1H), 7.38 (s, 1H), 6.75 (d, J = 8.2 Hz, 1H), 3.50 (d, J = 9.9 Hz, 1H), 3.38 (d, J = 9.9 Hz, 1H), 3.22 (s, 3H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.3, 142.3, 134.6, 131.5, 126.0, 115.4, 109.7, 48.9, 26.4, 22.9, 9.8; HRMS m/z (ESI) calcd for C₁₁H₁₁BrINO⁺[M⁺]: 378.9069; found 378.9070.

3-(Iodomethyl)-1,3-dimethyl-5-(trifluoromethyl)indolin-2-one (2e): The product was isolated via the general procedure as a white solid in 68% yield (83.7 mg); flash chromatography (dichloromethane); mp 132–135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 1H), 7.50 (s, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 3.53 (d, *J* = 9.9 Hz, 1H), 3.42 (d, *J* = 9.9 Hz, 1H), 3.28 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 146.2, 133.2, 126.6, 126.6, 126.5, 126.5, 125.7, 125.2, 124.9, 123.0, 119.8, 119.8, 119.8, 119.7, 108.1, 48.7, 29.7, 26.5, 22.9, 9.5; HRMS *m/z* (ESI) calcd for C₁₂H₁₁F₃INO⁺[M⁺]: 368.9837; found 368.9840.

3-(Iodomethyl)-1,3-dimethyl-2-oxoindoline-5-carbonitrile (2f): The product was isolated via the general procedure as a white solid in 72% yield (72.2 mg); flash chromatography (dichloromethane); mp 139–141 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.1 Hz, 1H), 7.52 (s, 1H), 6.95 (d, J = 8.1 Hz, 1H), 3.51 (d, J = 10.0 Hz, 1H), 3.40 (d, J = 10.0 Hz, 1H), 3.27 (s, 3H),

1.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 147.0, 134.0, 133.6, 126.1, 119.0, 108.8, 105.
9, 48.5, 26.5, 22.8, 9.1; HRMS *m/z* (ESI) calcd for C₁₂H₁₁IN₂O⁺[M⁺]: 325.9916; found 325.9919.

3-(Iodomethyl)-1,3,5-trimethylindolin-2-one (2g): The product was isolated via the general procedure as a white solid in 97% yield (61.1 mg); flash chromatography (dichloromethane); mp 67–69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 7.8 Hz, 1H), 7.08 (s, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 3.51 (d, *J* = 9.7 Hz, 1H), 3.40 (d, *J* = 9.8 Hz, 1H), 3.21 (s, 3H), 2.36 (s, 3H), 1.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 140.7, 132.5, 132.2, 128.8, 123.4, 108.0, 48.6, 26.3, 22.9, 21.1, 10.9; HRMS *m/z* (ESI) calcd for C₁₂H₁₄INO⁺[M⁺]: 315.0120; found 315.0122.

6-Iodo-3-(iodomethyl)-5-methoxy-1,3-dimethylindolin-2-one (2h): The product was isolated via the general procedure as a white solid in 98% yield (89.5 mg); flash chromatography (dichloromethane); mp 103–105 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 6.86 (s, 1H), 3.90 (s, 3H), 3.49 (d, *J* = 9.9 Hz, 1H), 3.41 (d, *J* = 9.9 Hz, 1H), 3.20 (s, 3H), 1.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 154.7, 137.8, 134.2, 118.9, 107.1, 84.9, 57.3, 49.1, 29.7, 26.5, 23.1, 10.4; HRMS *m/z* (ESI) calcd for C₁₂H₁₃I₂NO₂⁺[M⁺]: 456.9036; found 456.9035.

5-Iodo-3-(iodomethyl)-1,3,6-trimethylindolin-2-one (2i) and 5-Iodo-3-(iodomethyl)-1,3,4trimethylindolin-2-one (2i'): The product was isolated via the general procedure as a colorless oil in 93% yield (82 mg); flash chromatography (dichloromethane); ¹H NMR (2i, 400 MHz, CDCl₃) δ 7.62 (s, 1H), 6.78 (s, 1H), 3.47 (d, J = 9.6 Hz, 1H), 3.35 (d, J = 9.6 Hz, 1H), 3.20 (s, 3H), 2.46 (s, 3H), 1.47 (s, 3H); ¹H NMR (2i', 400 MHz, CDCl₃) δ 7.79 (d, J = 8.1 Hz, 1H), 6.48 (d, J = 8.1 Hz, 1H), 3.63 (d, J = 9.6 Hz, 1H), 3.57 (d, J = 10.0 Hz, 1H), 3.20 (s, 3H), 2.40 (s, 3H), 1.57 (s, 3H); ¹³C NMR (**2i**, 100 MHz, CDCl₃) δ 177.4, 143.6, 139.0, 132.5, 132.0, 109.8, 91.8, 48.3, 28.7, 26.3, 22.9, 10.3; ¹³C NMR (**2i**', 100 MHz, CDCl₃) δ 177.5, 143.7, 141.7, 137.0, 130.7, 108.0, 94.8, 50.7, 26.3, 23.4, 21.1, 8.0; HRMS *m/z* (ESI) calcd for C₁₂H₁₃I₂NO⁺[M⁺]: 440.9087; found 440.9088.

5-Iodo-3-(iodomethyl)-1,3,7-trimethylindolin-2-one (2j): The product was isolated via the general procedure as a white solid in 61% yield (53.8 mg); flash chromatography (dichloromethane); mp 158–159 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.34 (s, 1H), 3.50 (d, *J* = 7.6 Hz, 1H), 3.49 (s, 3H), 3.32 (d, *J* = 9.8 Hz, 1H), 2.54 (s, 3H), 1.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 141.0, 140.8, 135.5, 129.3, 122.4, 85.3, 48.1, 29.7, 23.2, 18.7, 10.2; HRMS *m/z* (ESI) calcd for C₁₂H₁₃I₂NO⁺[M⁺]: 440.9087; found 440.9089.

1-(Iodomethyl)-1,3-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-one (2k): The product was isolated via the general procedure as a white solid in 97% yield (68.1 mg); flash chromatography (dichloromethane); mp 125–128 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (t, *J* = 7.2 Hz, 2H), 7.76 (t, *J* = 11.4 Hz, 1H), 7.52 (dd, *J* = 14.3, 6.8 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.23 (d, *J* = 8.6 Hz, 1H), 3.88 (d, *J* = 9.7 Hz, 1H), 3.81 (d, *J* = 10.1 Hz, 1H), 3.36 (s, 3H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 141.0, 130.5, 130.0, 130.0, 129.3, 127.5, 123.9, 123.7, 120.9, 109.6, 50.7, 26.5, 22.3, 9.5; HRMS *m/z* (ESI) calcd for C₁₅H₁₄INO⁺[M⁺]: 351.0120; found 351.0119.

5-Iodo-3-(iodomethyl)-1,3-dimethyl-1,3-dihydro-2H-benzo[g]indol-2-one (21) : The product was isolated via the general procedure as a white solid in 90% yield (86.3 mg); flash

chromatography (dichloromethane); mp 140–142 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.94 (s, 1H), 7.60-7.53 (m, 2H), 3.84 (s, 3H), 3.59 (d, J = 9.9 Hz, 1H), 3.43 (d, J = 9.8 Hz, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.2, 139.7, 134.7, 134.0, 131.2, 129.7, 127.6, 126.8, 122.3, 122.2, 91.8, 48.5, 31.1, 23.0, 9.7; HRMS *m/z* (ESI) calcd for C₁₅H₁₃I₂NO⁺[M⁺]: 476.9087; found 476.9088.

5-Iodo-3-(iodomethyl)-3-methyl-1-phenylindolin-2-one (2n): The product was isolated via the general procedure as a white solid in 98% yield (95.8 mg); flash chromatography (dichloromethane); mp 155–156 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.51 (m, 4H), 7.42 (t, *J* = 8.9 Hz, 3H), 6.62 (d, *J* = 8.2 Hz, 1H), 3.64 (d, *J* = 9.8 Hz, 1H), 3.43 (d, *J* = 9.8 Hz, 1H), 1.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 143.1, 137.4, 134.7, 133.9, 131.6, 129.7, 128.5, 126.5, 111.6, 85.7, 48.7, 23.0, 10.2; HRMS *m/z* (ESI) calcd for C₁₆H₁₃I₂NO⁺[M⁺]: 488.9087; found 488.9085.

3-(Iodomethyl)-3,5-dimethyl-1-phenylindolin-2-one (2o) and 3-(Iodomethyl)-1-(4-iodophenyl)-3,5-dimethylindolin-2-one (2o'): The product was isolated via the general procedure as a colorless oil in 97% yield (determined by TLC analyse); flash chromatography (dichloromethane); ¹H NMR (2o + 2o', 400 MHz, CDCl₃) δ 7.51 (t, J = 7.5 Hz, 2H), 7.46-7.38 (m, 3H), 7.32-7.23 (m, 2 + 0.37H), 7.15-7.11 (m, 1 + 0.38H), 7.05 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 0.36H), 6.74 (d, J = 8.0 Hz, 1H), 3.66 (d, J = 9.6 Hz, 1 + 0.37H), 3.47 (t, J = 8.0 Hz, 1 + 0.39H), 2.42 (s, 1H), 2.38 (s, 3H), 1.63 (s, 3 + 1H); ¹³C NMR (2o, 100 MHz, CDCl₃) δ 177.4, 140.9, 134.5, 132.7, 130.2, 129.5, 128.0, 126.5, 123.5, 122.7, 109.3, 48.7, 23.0, 21.2, 11.2; ¹³C NMR (2o', 100 MHz, CDCl₃) δ 177.5, 143.9, 138.2, 132.3, 131.6, 128.8, 128.5, 126.5, 123.0, 122.7, 109.5, 48.6, 23.0, 21.2, 11.2; HRMS m/z (ESI) calcd for C₁₇H₁₆INO⁺[M⁺]: 377.0277; found 377.0276; HRMS m/z (ESI) calcd for C₁₇H₁₅I₂NO⁺[M⁺]: 502.9243; found 502.9242.

3-(Iodomethyl)-1-(4-iodophenyl)-3,5-dimethylindolin-2-one (20'): The product was isolated in a small amount from a mixture of products **20** and **20'**; flash chromatography (dichloromethane/methanol, 500:1); white solid; mp 159–161 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.5 Hz, 2H), 7.36-7.27 (m, 4H), 6.59 (d, J = 8.3 Hz, 1H), 3.63 (d, J = 9.7 Hz, 1H), 3.42 (d, J = 9.7 Hz, 1H), 2.42 (s, 3H), 1.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 143.4, 138.6, 137.4, 134.7, 131.6, 131.2, 130.4, 126.4, 111.6, 85.5, 48.7, 23.0, 21.3, 10.3; HRMS *m/z* (ESI) calcd for C₁₇H₁₅I₂NO⁺[M⁺]: 502.9243; found 502.9242.

1-Benzyl-5-iodo-3-(iodomethyl)-3-methylindolin-2-one (2p): The product was isolated via the general procedure as a white solid in 92% yield (92.6 mg); flash chromatography (dichloromethane); mp 170–171 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.50 (m, 2H), 7.32-7.25 (m, 5H), 6.51 (d, *J* = 8.2 Hz, 1H), 4.98 (d, *J* = 15.7 Hz, 1H), 4.84 (d, *J* = 15.7 Hz, 1H), 3.58 (d, *J* = 9.9 Hz, 1H), 3.42 (d, *J* = 9.9 Hz, 1H), 1.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 142.0, 137.4, 135.1, 135.0, 131.5, 128.8, 127.8, 127.4, 111.5, 85.3, 48.8, 44.0, 23.6, 9.4; HRMS *m/z* (ESI) calcd for C₁₇H₁₅I₂NO⁺[M⁺]: 502.9243; found 502.9244.

I-Ethyl-5-iodo-3-(iodomethyl)-3-methylindolin-2-one (2q): The product was isolated via the

general procedure as a white solid in 94% yield (82.9 mg); flash chromatography (dichloromethane); mp 90–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 1H), 7.53 (s, 1H), 6.68 (d, *J* = 8.2 Hz, 1H), 3.86 (dq, *J* = 14.3, 7.2 Hz, 1H), 3.66 (dq, *J* = 14.2, 7.1 Hz, 1H), 3.52 (d, *J* = 9.8 Hz, 1H), 3.36 (d, *J* = 9.8 Hz, 1H), 1.50 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 142.1, 137.4, 135.2, 131.6, 110.5, 84.9, 48.5, 35.0, 22.9, 12.6, 9.8; HRMS *m/z* (ESI) calcd for C₁₂H₁₃I₂NO⁺[M⁺]: 440.9087; found 440.9090.

1-Butyl-5-iodo-3-(iodomethyl)-3-methylindolin-2-one (*2r*): The product was isolated via the general procedure as a white solid in 96% yield (90 mg); flash chromatography (dichloromethane); mp 108–111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.1 Hz, 1H), 7.53 (s, 1H), 6.67 (d, *J* = 8.1 Hz, 1H), 3.77 (dt, *J* = 14.2, 7.2 Hz, 1H), 3.62 (dt, *J* = 13.8, 7.0 Hz, 1H), 3.51 (d, *J* = 9.8 Hz, 1H), 3.37 (d, *J* = 9.8 Hz, 1H), 1.67 (dd, *J* = 14.1, 6.8 Hz, 2H), 1.50 (s, 3H), 1.43-1.38 (m, 2H), 0.95 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.1, 142.5, 137.4, 135.2, 131.6, 110.7, 84.9, 48.6, 40.1, 29.5, 23.2, 20.3, 13.8, 9.8; HRMS *m/z* (ESI) calcd for C₁₄H₁₇I₂NO⁺[M⁺]: 468.9400; found 468.9405.

5-Iodo-3-(iodomethyl)-1-isopropyl-3-methylindolin-2-one (2s): The product was isolated via the general procedure as a white solid in 90% yield (82 mg); flash chromatography (dichloromethane); mp 99–102 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.1 Hz, 1H), 7.50 (s, 1H), 6.82 (d, *J* = 8.2 Hz, 1H), 3.52 (d, *J* = 9.7 Hz, 1H), 3.33 (d, *J* = 9.7 Hz, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 141.8, 137.2, 135.6, 131.7, 112.1, 84.8, 77.3, 48.3, 44.3, 22.9, 19.4, 19.38, 10.1; HRMS *m/z* (ESI) calcd for C₁₃H₁₅I₂NO⁺[M⁺]: 454.9243; found 454.9240.

8-Iodo-1-(iodomethyl)-1-methyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2(1H)-one (2t): The product was isolated via the general procedure as a white solid in 85% yield (77 mg); flash chromatography (dichloromethane); mp 110–112 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.41 (s, 1H), 3.79-3.65 (m, 2H), 3.48 (d, *J* = 9.8 Hz, 1H), 3.38 (d, *J* = 9.9 Hz, 1H), 2.83-2.71 (m, 2H), 2.02-1.97 (m, 2H), 1.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 138.7, 136.2, 133.4, 129.4, 122.8, 84.7, 49.9, 38.8, 24.3, 22.7, 20. 9, 10.3; HRMS *m/z* (ESI) calcd for C₁₃H₁₃I₂NO⁺[M⁺]: 452.9087; found 452.9085.

3-(*Hydroxymethyl*)-5-iodo-3-(iodomethyl)-1-methylindolin-2-one (2u): The product was isolated via the general procedure as a white solid in 72% yield (63.8 mg); flash chromatography (dichloromethane/methanol, 300:1); mp 110–112 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 1H), 7.61 (s, 1H), 6.69 (d, J = 8.1 Hz, 1H), 3.87 (q, J = 11.1 Hz, 2H), 3.63 (d, J = 12.0 Hz, 1H), 3.49 (d, J = 12.0 Hz, 1H), 3.23 (s, 3H), 2.46 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 143.7, 138.1, 132.1, 131.4, 110. 6, 85.5, 66.1, 54.4, 29.7, 26.4; HRMS *m/z* (ESI) calcd for C₁₁H₁₁I₂NO₂+[M⁺]: 442.8879; found 442.8880.

N-(4-Fluorophenyl)-3-hydroxy-2-iodo-2-methylpropanamide (5): The product was isolated via the general procedure as a colorless oil in 64% yield (41.4 mg); flash chromatography (dichloromethane); ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.53 (dd, *J* = 7.4, 5.0 Hz, 2H), 7.04 (t, *J* = 8.1 Hz, 2H), 3.86 (d, *J* = 10.3 Hz, 1H), 3.48 (d, *J* = 10.3 Hz, 1H), 2.78 (s, 1H), 1.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 159.6 (d, *J* = 243.0 Hz), 133.0 (d, *J* = 3.0 Hz), 121.7 (d, *J* = 8.0 Hz), 115.7 (d, *J* = 23.0 Hz), 74.8, 25.5, 18.0; HRMS *m/z* (ESI) calcd for

C₁₀H₁₁FINO₂⁺[M⁺]: 322.9818; found 322.9815.

2-Iodo-1,1-diphenylethan-1-ol (7): The product was isolated as a yellow oil in 28% yield (36.3 mg); flash chromatography (dichloromethane/methanol, 500:1); ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.25 (m, 10H), 4.01 (s, 2H), 2.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 128.4, 127.6, 126.1, 76.6, 22.4; HRMS *m/z* (ESI) calcd for C₁₄H₁₃IO⁺[M⁺]: 324.0011; found 324.0009.

5-Iodo-3-(iodomethyl)-1,3-dimethylindolin-2-one (2a) and 5-Bromo-3-(iodomethyl)-1,3dimethylindolin-2-one (2b): The product was isolated as a white solid in 95% yield (determined by TLC analyse); flash chromatography (dichloromethane); mp 106-108 °C; ¹H NMR (2a, 400 MHz, CDCl₃) δ 7.64 (d, J = 8.2 Hz, 1H), 7.54 (s, 1H), 6.65 (d, J = 8.0 Hz, 1H), 3.49 (d, J = 9.8 Hz, 1H), 3.37 (d, J = 13.6 Hz, 1H), 3.21 (s, 3H), 1.50 (s, 3H); ¹H NMR (2b, 400 MHz, CDCl₃) δ ¹H NMR (2b, 400 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 1H), 7.38 (s, 1H), 6.75 (d, J = 8.0 Hz, 1H), 3.49 (d, J= 9.8 Hz, 1H), 3.37 (d, J = 10.0 Hz, 1H), 3.22 (s, 3H), 1.50 (s, 3H); ¹³C NMR (2a, 100 MHz, CDCl₃) δ 177.1, 142.2, 137.5, 134.9, 131.4, 110.3, 85.1, 48.6, 26.3, 22.9, 9.9; ¹³C NMR (2b, 100 MHz, CDCl₃) δ 177.3, 142.9, 134.6, 131.5, 125.9, 115.3, 109.7, 48.8, 26.4, 22.9, 9.8; HRMS m/z(ESI) calcd for C₁₁H₁₁I₂NO⁺[M⁺]: 426.8930; found 426.8933; HRMS m/z (ESI) calcd for C₁₁H₁₁BrINO⁺[M⁺]: 378.9069; found 378.9066.

5. References

- (1) Wei, H.-L.; Piou, T.; Dufour, J.; Neuville, L.; Zhu, J. P. Org. Lett. 2011, 13, 2244.
- (2) Fabry, D. C.; Stodulski, M.; Hoerner, S.; Gulder, T. Chem. Eur. J. 2012, 18, 10834.
- (3) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.

6. Copies of NMR spectra

¹H NMR Spectra for **2a**

¹³C NMR Spectra for **2a**

¹H NMR Spectra for **2a**'

¹³C NMR Spectra for **2a'**

¹H NMR Spectra for **2b**

¹³C NMR Spectra for **2b**

¹H NMR Spectra for **2c**

¹³C NMR Spectra for **2c**

¹H NMR Spectra for 2e

¹³C NMR Spectra for **2e**

¹H NMR Spectra for **2f**

¹³C NMR Spectra for **2f**

¹H NMR Spectra for **2g**

¹³C NMR Spectra for **2g**

¹H NMR Spectra for **2h**

¹³C NMR Spectra for **2h**

¹H NMR Spectra for 2i and 2i'

¹³C NMR Spectra for 2i and 2i'

¹H NMR Spectra for 2j

¹³C NMR Spectra for **2j**

¹H NMR Spectra for **2k**

¹³C NMR Spectra for **2k**

¹H NMR Spectra for 2l

¹³C NMR Spectra for **2**I

¹H NMR Spectra for **2n**

¹³C NMR Spectra for **2n**

¹H NMR Spectra for **20** and **20'**

¹³C NMR Spectra for **20** and **20'**

¹H NMR Spectra for **20'**

¹H NMR Spectra for **2p**

¹H NMR Spectra for 2q

¹H NMR Spectra for 2s

¹H NMR Spectra for 2t

¹H NMR Spectra for **2u**

