Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Total synthesis and structural revision of an isopanepoxydone

analog isolated from *Lentinus strigellus*

Yi Man,^a Shaomin Fu, *^a Juan Chen,^b and Bo Liu*^a

^aKey Laboratory of Green Chemistry & Technology of the Ministry of Education, College of

Chemistry, Sichuan University, Chengdu, Sichuan 610064, China

^b Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China

Table of Contents

Table S1. Comparison of ¹ H NMR data for natural product with synthetic compound 1
Table S2. Comparison of 13 C NMR data for natural product with synthetic compound 1 4
Table S3. Comparison of ¹ H NMR data for natural product with synthetic compound 2 5
Table S4. Comparison of ¹³ C NMR data for natural product with synthetic compound 2 6
Table S5 Synthesis of compound 1 via Stille coupling reaction between compound 12 and tributy
(3-methyl-2-buten-1-yl) stannan7
Spectra for Compounds
¹ H- ¹ H NOESY NMR spectra (in CDCl ₃) of compound 1 and compound 2 (400 MHz)46

Position	Natural (400 MHz, CDCl ₃)	Synthetic (400 MHz, CDCl ₃)	Δδ [*] (ppm)
1	3.49 d, (2.1,3.9)	3.44 s	-0.05
2			
3	5.77 m, (2.1)	5.81 s,	0.04
4			
5	4.52 dd, (3.2,9.1)	4.54 d, (8.7),	0.02
6	3.86 dd, (3.2,3.9)	3.79 d, (3.5)	-0.07
7	3.03 br d, (2.9,7.2)	3.04 qd, (17.0, 7.3),	0.01
8	5.13 dd,(2.9,7.2)	5.14 t, (6.9)	0.01
9			
10	1.62 s	1.64 s	0.02
11	1.74 s	1.76 s	0.02
5-OH	2.21 d, (9.1)	2.24 d, (8.8)	0.03

Table S1. Comparison of ¹H NMR data for natural product with synthetic compound **1**

Position	Natural (100 MHz, CDCl ₃)	Synthetic (100 MHz, CDCl ₃)	Δδ* (ppm)
1	66.8	65.9	-0.9
2	192.8	193.9	1.1
3	122.1	123.0	0.9
4	159.6	159.1	-0.5
5	54.7	52.6	-2.1
6	55.6	56.9	1.3
7	32.4	33.5	1.1
8	118.6	118.2	-0.4
9	136.5	137.0	0.5
10	25.87	25.9	0
11	17.8	18.0	0.2

Table S2. Comparison of $^{\rm 13}{\rm C}$ NMR data for natural product with synthetic compound ${\bf 1}$

Position	Natural (400 MHz, CDCl ₃) Synthetic (400 MHz, CDCl ₃)		Δδ [*] (ppm)
1	3.49 d, (2.1,3.9)	3.49 dd, (3.7, 2.1)	0.00
2			
3	5.77 m, (2.1)	5.78 s	0.01
4			
5	4.52 dd, (3.2,9.1)	4.53 d, (10.2)	0.01
6	3.86 dd, (3.2,3.9)	3.87 d, (3.2)	0.01
7	3.03 br d, (2.9,7.2)	3.03 d, (7.3)	0.00
8	5.13 dd, (2.9,7.2)	5.13 t, (7.3)	0
9			
10	1.62 s	1.63 s	0.01
11	1.74 s	1.74 s	0.00
5-OH	2.21 d, (9.1)	2.19 d, (10.7)	-0.02

Table S3. Comparison of ¹H NMR data for natural product with synthetic compound **2**

Position	Natural (100 MHz, CDCl ₃)	100 MHz, CDCl ₃) Synthetic (100 MHz, CDCl ₃)	
1	66.8	66.7	-0.1
2	192.8	192.9	0.1
3	122.1	122.0	-0.1
4	159.6	159.7	0.1
5	54.7	54.6	-0.1
6	55.6	55.6	0.0
7	32.4	32.3	-0.1
8	118.6	118.4	-0.2
9	136.5	136.5	0.0
10	25.87	25.8	-0.1
11	17.8	17.8	0.0

Table S4. Comparison of 13 C NMR data for natural product with synthetic compound 2

Table S5 Synthesis of compound **1** via Stille coupling reaction between compound **12** and tributy (3-methyl-2-buten-1-yl) stannan

entry	condition	solvent	temperature($^{\circ}\!\!\mathbb{C}$)	results
1	Pd(CH ₃ CN) ₂ Cl ₂	THF	70	12: degradation
2	$Pd(CH_3CN)_2Cl_2$	DMF	70	12: degradation
3	Pd(CH ₃ CN) ₂ Cl ₂ , CuCl	THF	70	12: degradation
4	Pd(CH ₃ CN) ₂ Cl ₂ , AsPh ₃	toluene	70	12: degradation
5	Pd(PPh ₃) ₄ , PPh ₃	THF	70	12: degradation
6	Pd(dppf)Cl ₂	DMF	80	12: degradation
7	Pd ₂ (dba) ₃ , PPh ₃ , CuCl	toluene	80	12: degradation

Note: The examined conditions all resulted in degradation of **12**.

Spectra for Compounds

¹H NMR spectra of compound **4** in DMSO- d_6 (400 MHz)

¹³C NMR spectra of compound **4** in DMSO- d_6 (100 MHz)

Ī

¹H NMR spectra of compound **6** in CDCl₃ (400 MHz)

 ^1H NMR spectra of compound 7 in CDCl_3 (400 MHz)

¹H NMR spectra of compound **8** in CDCl₃ (400 MHz)

¹H NMR spectra of compound **10** in CDCl₃ (400 MHz)

<u>+</u> -

¹H NMR spectra of compound **11** in CDCl₃ (400 MHz)

0.0

¹H NMR spectra of compound **12** in CDCl₃ (400 MHz)^{$\$}

<u>.</u>-

¹³C NMR spectra of compound **12** in CDCl₃ (100 MHz)

÷

¹H NMR spectra of compound **13** in CDCl₃ (400 MHz)

¹³C NMR spectra of compound **13** in CDCl₃ (100 MHz)

¹H NMR spectra of compound **1** in CDCl₃ (400 MHz)

5.127

3.436

3.073

^1H NMR spectra of compound 14 in CDCl3 and D2O (400 MHz)

¹³C NMR spectra of compound **16** in CDCl₃ (100 MHz)

¹H NMR spectra of compound **18** in CDCl₃ (400 MHz)

¹³C NMR spectra of compound **18** in CDCl₃ (100 MHz)

¹H NMR spectra of compound **2** in CDCl₃ (400 MHz)

 1 H NMR spectra of compound natural product in CDCl₃ (300 MHz) and compound **1** in CDCl₃ (400

MHz)

13 C NMR spectra of compound natural product in CDCl₃ (75 MHz) and 1 in CDCl₃ (100 MHz)

 1 H NMR spectra of compound natural product in CDCl₃ (300 MHz) and compound **2** in CDCl₃ (400

MHz)

 13 C NMR spectra of compound natural product in CDCl₃ (75 MHz) and **2** in CDCl₃ (100 MHz)

 $^1\text{H-}\,^1\text{H}$ NOESY NMR spectra (in CDCl_3) of compound $\boldsymbol{1}$ and compound $\boldsymbol{2}$ (400 MHz)

42

