Base controlled diverse reactivity of allyl cyanide for synthesis of multi-substituted benzenes

Pratik Yadav, Ranjay Shaw, Amr Elagamy, Abhinav Kumar and RamendraPratap*

Table of content		
Screening of reaction condition		
Crystallographic Data	4	
NMR experiments	5-9	
Spectral Data of Products	10-40	

Screening of reaction condition

Entry	Base	Temperature (°C)	Yield (%) ^b	
			3ј	4j
1	КОН	R.T.	-	-
2	NaOH	R.T.	-	-
3	LiOH	R.T.	-	-
4	K ₂ CO ₃	R.T.	-	-
5	Cs_2CO_3	R.T.	-	-
6	K_3PO_4	R.T.	-	-
7	KO'Bu	R.T.	-	-
8	NaH	R.T.	-	-
9	NaNH ₂	R.T.	-	-
10	DBU	R.T.	-	-
11	n-BuLi	-78	Complex mixture	
12	Et ₃ N	R.T.	-	-
13	КОН	60	15	68
14	NaOH	60	10	24
15	LiOH	60	15	75
16	LiOH	100	12	65
17°	LiOH	100	15	62
18	K ₂ CO ₃	60	trace	15
19	Cs ₂ CO ₃	60	12	45
20	K ₃ PO ₄	60	15	35
21	KO ^t Bu	60	20	34
22	NaH	60	82	-
23	NaH	100	62	-
24 ^c	NaH	100	65	-

Table 1. Screening of base and temperature^a

25	NaNH ₂	60	52	
26	DBU	60	-	-
27	Et ₃ N	60	-	-

^a The reaction was conducted with 6-phenyl-4-piperidin-1-yl-2*H*-pyran-2-one-3-carbonitrile1c (0.5 mmol), allyl cyanide **2** (0.6 mmol), base (0.75 mmol) using DMF (5.0 mL); ^b Yield of isolated product; cReaction was performed under microwave heating.

Entry	Base	Solvent	Yield	(%) ^[b]
			3ј	4j
1	NaH	DMF	82	-
2	NaH	DMSO	40	-
3	NaH	DMAc	55	
4	NaH	NMP	25	
5	NaH	MeCN	-	-
6	NaH	THF	50	
7	NaH	Toluene	-	-
8	LiOH	DMF	15	75
9	LiOH	DMSO	12	40
10	LiOH	DMAc	trace	35
11	LiOH	NMP	-	-
12	LiOH	MeCN	-	-
13	LiOH	THF	-	-
14	LiOH	Toluene	-	-

Table 2. Screening of solvent for cyanoallylationreaction^a

^aThe reaction was conducted with 6-phenyl-4-piperidin-1-yl-2*H*-pyran-2-one-3-carbonitrile**1c** (0.5 mmol), allyl cyanide **2** (0.6 mmol), base (0.75 mmol) using solvent (5.0 mL) at 60 °C; ^b Yield of isolated product.

X-ray Crystallography

Intensity data for both the compounds were collected at 298(2) K on an Agilent Xcaliburdiffractometer using graphite monochromated Mo-K α radiation $\lambda = 0.71073$ Å. Unit cell determination, data collection and data reduction were performed with CrysAlisPro.¹ The structure was solved by direct methods (SIR97)² and refined by a full-matrix least-squares procedure based on F^2 (Shelx1-2014).³ All non-hydrogen atoms were refined anisotropically; hydrogen atoms were located at calculated positions and refined using a riding model. All hetero hydrogen atoms have been located in the difference Fourier map and were refined with bond lengths restraints.

Crystal Data of (30). $C_{18}H_{17}BrN_2$, M = 341.24, Monoclinic, P2_{1/n}, a = 9.541(3) Å, b = 14.222(4) Å, c = 12.432(3) Å, β = 110.54(3)°, V = 1579.7(8) Å³, Z=4, D_{calc}=1.435 mg m⁻³, F(000) = 696, crystal size 0.020 × 0.020 × 0.010 mm, reflections collected 17476, independent reflections 3887 [R(int) = 0.1071], Final indices [I> 2 σ (I)] R1 = 0.0650, wR2 = 0.1571, R indices (all data) R1 = 0.1354, wR2 = 0.1983, gof 1.032, Largest difference peak and hole 0.458 and -0.674 e Å⁻³. CCDC No. 1520565.

- 1. CrysAlis CCD, RED version 1.711.13, copyright 1995-2003, Oxford Diffraction Poland Sp..
- SIR97 Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115-119.
- 3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

NMR experiments for mechanistic insight

Experiment 1

Figure 1.¹H NMR of allyl cyanide and its reaction with base in DMSO-d₆

Experiment 2

Reaction of **1c** and **2** was performed at 60 °C with LiOH/NaH in DMF-d₇ under standardized reaction condition and spectra of reaction mixture were recorded at different time intervals.

4.After 10min. with NaH

5. After30 min with NaH

7. After completion of reaction

In second NMR experiment ¹HNMR of reaction were recorded at 10 min., 30 min., 60 min. and after completion of reaction and it was found that at 10 min allyl cyanide exist as major reactant with minor mixture of E/Z-but-2-enenitrile. After 30 min. allyl cyanide becomes minor reactant with minor mixture of E/Z-but-2-enenitrile and after 60 min. allyl cyanide disappears from the reaction mixture. The pattern remains same in both cases. This confirms that the first step is isomerization of allyl cyanide to E/Z-but-2-enenitrile which further reacts with 2*H*-pyran-2-ones.

Spectral Data of Products

¹H and ¹³C spectra of **3a**

¹H and ¹³C spectra of **3b**

¹H and ¹³C spectra of 3c

¹H and ¹³C spectra of **3d**

¹H and ¹³C spectra of **3e**

¹H and ¹³C spectra of **3f**

¹H and ¹³C spectra of **3g**

¹H and ¹³C spectra of **3**i

¹H and ¹³C spectra of **3**j

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ spectra of 3k

¹H and ¹³C spectra of 3l

¹H and ¹³C spectra of **3m**

¹H and ¹³C spectra of **3q**

¹H and ¹³C spectra of **3**r

¹H and ¹³C spectra of 3s

¹H and ¹³C spectra of **3**t

¹H and ¹³C spectra of **3u**

¹H and ¹³C spectra of 4j

¹H and ¹³C spectra of 4n

¹H and ¹³C spectra of 40

¹H and ¹³C spectra of 4q

¹H and ¹³C spectra of 4r

¹H and ¹³C spectra of 5

¹H and ¹³C spectra of 6

¹H and ¹³C spectra of 7

¹H and ¹³C spectra of 8