Supplementary Information for

# Enantioselective total synthesis and biological evaluation of (-)-solanacol

L. J. Bromhead, A. R. Norman, K. C. Snowden, B. J. Janssen and C. S. P. McErlean\*

christopher.mcerlean@sydney.edu.au

| Conversion of ketone 25 into alcohol 24 | S2 |
|-----------------------------------------|----|
| Plant based assays                      | S2 |
| Enantioselective HPLC traces            | S3 |
| Computational details                   | S4 |
| References                              | S8 |
| NMR spectra                             | S9 |
|                                         |    |
|                                         |    |
|                                         |    |

### Conversion of ketone 25 into alcohol 24



#### Plant based assays

#### Seed Germination Assays

*Orobanche minor* seed (collected from Auckland, New Zealand) were surface sterilised in 70% ethanol, 0.05% triton X-100 for 10 minutes, followed by a rinse in 100% ethanol, and allowed to dry. Seed were then spread on 6 mm glass fibre filter disks, placed on damp filter paper in a petri dish and incubated at 24° C in the dark for 7 days for preconditioning. Filter disks were then briefly dried on filter paper, transferred to the wells of a 96-well plate and 20 μL of GR24 and Solanacol at varying concentrations in 2% DMSO were added. Each concentration was tested on triplicate filter disks containing 21-40 individual seed. After 6 days incubation, germination was scored from photographs of each filter disk.

#### DSF method

DSF experiments were performed on a LightCycler 480 (Roche) using excitation and emission wavelengths of 498 and 640 nm, respectively. Sypro Tangerine (Ex/Em: 490/640 nm) was used as the reporter dye. Samples were heat-denatured using a linear 25 to 95 °C gradient at a rate of 1.3 °C per minute. Protein unfolding was monitored by detecting changes in Sypro Tangerine fluorescence. The inflection point of the fluorescence vs temperature curves was identified by plotting the first derivative over temperature using the "Tm calling" function of the LightCycler 480 Software, and the minima were referred to as the melting temperatures.

Final reaction mixtures were prepared in triplicate in 384-well white microplates, by mixing 19.5  $\mu$ L of 10  $\mu$ M DAD2 containing Sypro Tangerine 20× in 20 mM Tris.HCl pH8.0, 150 mM NaCl buffer, and 0.5  $\mu$ L of 10 mM GR24 or Solanacol in DMSO. Reactions were incubated for 30 minutes at room temperature in the absence of light before analysis.

#### **Enantioselective HPLC traces**







|   | i eak Results |          |         |        |                         |                       |         |            |
|---|---------------|----------|---------|--------|-------------------------|-----------------------|---------|------------|
|   | RT            | Area     | Height  | % Area | Baseline Start<br>(min) | Baseline End<br>(min) | Channel | Wavelength |
| 1 | 9.42          | 25192185 | 1486939 | 97.14  | 9.02                    | 9.80                  | W2996   | 215.0nm    |
| 2 | 10.16         | 741334   | 39312   | 2.86   | 9.88                    | 10.52                 | W2996   | 215.0nm    |

Column: RegisPack; Solvent: *iso*-propanol:hexane 1:9; Flow rate: 0.7 mL/min.

### **Computational details**

#### Bond dissociation energies

Bond dissociation energies (BDEs) were calculated using the  $\omega$ -B97M-V functional, def2-TZVPPD basis set combination.<sup>1</sup> A recent comparative study of over 200 functionals that included more than one million data points demonstrated that  $\omega$ -B97M-V outcompeted other functionals across a range of reaction types, including BDE calculations.<sup>2</sup> BDE was defined as [*E*(benzylic radical) + *E*(H atom)] – *E*(starting material), or [*E*(benzylic radical) + *E*(water)] – *E*[(starting material) + *E*(hydroxyl radical)].



| Position | BDE      |
|----------|----------|
|          | (kJ/mol) |
| 4α       | -        |
| 4β       | 399      |
| 8b       | 421      |
| 9        | 405      |
| 10       | 408      |





| BDE (kJ/mol) |
|--------------|
| 372          |
| -            |
| -            |
| -            |
| -            |

| BDE (kJ/mol) |  |
|--------------|--|
| -            |  |
| 374          |  |
| -            |  |
| -            |  |
| -            |  |
|              |  |

Cartesian co-ordinates

Compound 18



| Н | 0.479618  | -2.633315 | -1.988540 |
|---|-----------|-----------|-----------|
| С | 0.323557  | -1.614549 | -1.650135 |
| С | -0.068023 | 1.053046  | -0.793097 |
| С | -0.268458 | -1.350911 | -0.425814 |
| С | 0.725272  | -0.541065 | -2.436738 |
| С | 0.538560  | 0.781791  | -2.032865 |
| С | -0.448995 | -0.031948 | -0.005779 |
| Н | 1.200735  | -0.729002 | -3.394216 |

| С | -0.805078 | -2.319869 | 0.589695  |
|---|-----------|-----------|-----------|
| Н | -0.161768 | -3.192295 | 0.740271  |
| Н | -1.784055 | -2.705929 | 0.281351  |
| С | -0.932900 | -1.462569 | 1.852232  |
| Н | -1.764773 | -1.765480 | 2.491131  |
| С | -1.094458 | -0.012009 | 1.351918  |
| С | 0.351007  | -1.351278 | 2.664314  |
| Н | 1.228512  | -1.578027 | 2.047890  |
| Н | 0.399318  | -1.992552 | 3.543375  |
| С | -0.283571 | 2.467171  | -0.350391 |
| Н | 0.665656  | 3.004897  | -0.257841 |
| Н | -0.778943 | 2.524110  | 0.616279  |
| Н | -0.881826 | 3.023274  | -1.079559 |
| С | 0.987827  | 1.906131  | -2.913910 |
| Н | 1.709049  | 2.555954  | -2.407778 |
| Н | 0.153776  | 2.549711  | -3.212892 |
| Н | 1.459089  | 1.531726  | -3.823545 |
| Н | -2.127660 | 0.343541  | 1.332581  |
| 0 | -0.410976 | 0.832670  | 2.300249  |
| С | 0.445410  | 0.101254  | 3.064072  |
| 0 | 1.144098  | 0.605522  | 3.897744  |

# Desired benzylic radical



| 0.319780  | -0.060877                                                                                                                                                                                            | -0.007704                                                                                                                                                                                                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.411833 | -0.146430                                                                                                                                                                                            | 2.645878                                                                                                                                                                                                                                                                           |
| 0.213352  | 1.135777                                                                                                                                                                                             | 0.672938                                                                                                                                                                                                                                                                           |
| 0.054439  | -1.314662                                                                                                                                                                                            | 0.606187                                                                                                                                                                                                                                                                           |
| -0.320259 | -1.344241                                                                                                                                                                                            | 1.962044                                                                                                                                                                                                                                                                           |
| -0.153923 | 1.090673                                                                                                                                                                                             | 2.038588                                                                                                                                                                                                                                                                           |
| 0.230924  | -2.351491                                                                                                                                                                                            | -0.318668                                                                                                                                                                                                                                                                          |
| 0.698418  | -1.820192                                                                                                                                                                                            | -1.635485                                                                                                                                                                                                                                                                          |
| 0.642410  | -0.279402                                                                                                                                                                                            | -1.452973                                                                                                                                                                                                                                                                          |
| -0.444580 | 0.197876                                                                                                                                                                                             | -2.280075                                                                                                                                                                                                                                                                          |
| -0.992697 | -0.794790                                                                                                                                                                                            | -3.025198                                                                                                                                                                                                                                                                          |
| -0.222459 | -2.079738                                                                                                                                                                                            | -2.824445                                                                                                                                                                                                                                                                          |
| 0.457193  | 2.449342                                                                                                                                                                                             | -0.002041                                                                                                                                                                                                                                                                          |
| -0.278873 | 2.354985                                                                                                                                                                                             | 2.826700                                                                                                                                                                                                                                                                           |
| -1.935980 | -0.606754                                                                                                                                                                                            | -3.741798                                                                                                                                                                                                                                                                          |
| 1.541789  | 0.236936                                                                                                                                                                                             | -1.795073                                                                                                                                                                                                                                                                          |
|           | 0.319780<br>-0.411833<br>0.213352<br>0.054439<br>-0.320259<br>-0.153923<br>0.230924<br>0.698418<br>0.642410<br>-0.444580<br>-0.992697<br>-0.222459<br>0.457193<br>-0.278873<br>-1.935980<br>1.541789 | 0.319780-0.060877-0.411833-0.1464300.2133521.1357770.054439-1.314662-0.320259-1.344241-0.1539231.0906730.230924-2.3514910.698418-1.8201920.642410-0.279402-0.4445800.197876-0.992697-0.794790-0.222459-2.0797380.4571932.449342-0.2788732.354985-1.935980-0.6067541.5417890.236936 |

| Н | 1.720090  | -2.152698 | -1.854661 |
|---|-----------|-----------|-----------|
| Н | -0.696750 | -0.153278 | 3.693238  |
| Н | -0.529931 | -2.284611 | 2.458411  |
| Н | 0.089243  | -3.405629 | -0.119951 |
| Н | 0.328456  | -2.287312 | -3.746158 |
| Н | -0.917645 | -2.906252 | -2.676629 |
| Н | 1.284300  | 2.996028  | 0.462794  |
| Н | 0.680529  | 2.328225  | -1.061147 |
| Н | -0.420779 | 3.098373  | 0.068513  |
| Н | 0.661482  | 2.916591  | 2.852115  |
| Н | -0.570993 | 2.152265  | 3.857785  |
| Н | -1.025703 | 3.031285  | 2.396817  |

# Compound 22



| н | 0.573850  | -2.527840 | -1.981322 |
|---|-----------|-----------|-----------|
| С | 0.424356  | -1.506011 | -1.651384 |
| С | 0.015822  | 1.168543  | -0.811809 |
| С | -0.160503 | -1.229582 | -0.427923 |
| С | 0.818651  | -0.436787 | -2.446181 |
| С | 0.623782  | 0.887961  | -2.049144 |
| С | -0.357829 | 0.087251  | -0.016778 |
| Н | 1.290207  | -0.626639 | -3.404984 |
| С | -0.716968 | -2.196903 | 0.573357  |
| Н | -0.065672 | -3.069287 | 0.730081  |
| С | -0.832944 | -1.341008 | 1.839226  |
| Н | -1.667259 | -1.662483 | 2.467893  |
| С | -1.002196 | 0.108496  | 1.341406  |
| С | 0.452771  | -1.234169 | 2.646101  |
| Н | 1.327876  | -1.474508 | 2.031053  |
| Н | 0.499342  | -1.866618 | 3.531605  |
| С | -0.211585 | 2.584692  | -0.382274 |
| Н | 0.732224  | 3.133506  | -0.300754 |
| Н | -0.701668 | 2.644639  | 0.586986  |
| Н | -0.821321 | 3.126925  | -1.112280 |
| С | 1.064118  | 2.007994  | -2.939720 |
| Н | 1.779763  | 2.667431  | -2.438318 |
| Н | 0.223959  | 2.641641  | -3.242132 |
| Н | 1.537820  | 1.630295  | -3.846547 |
| Н | -2.033563 | 0.463932  | 1.325215  |
| 0 | -0.307096 | 0.952155  | 2.282758  |

| С | 0.559217  | 0.221721  | 3.034694 |
|---|-----------|-----------|----------|
| 0 | 1.272662  | 0.724860  | 3.856137 |
| 0 | -1.990327 | -2.612158 | 0.089856 |
| Н | -2.327490 | -3.268048 | 0.715180 |

Compound 23



| Н | 0.507142  | -2.506908 | -1.970185 |
|---|-----------|-----------|-----------|
| С | 0.337970  | -1.481684 | -1.664156 |
| С | -0.076029 | 1.198970  | -0.839351 |
| С | -0.269515 | -1.196224 | -0.453534 |
| С | 0.743285  | -0.415071 | -2.456542 |
| С | 0.542433  | 0.912364  | -2.069573 |
| С | -0.460468 | 0.120950  | -0.044054 |
| Н | 1.232755  | -0.608959 | -3.405683 |
| С | -0.804213 | -2.165072 | 0.554748  |
| Н | -1.800434 | -2.519670 | 0.247424  |
| С | -0.934612 | -1.302461 | 1.823122  |
| Н | -1.767604 | -1.607340 | 2.461218  |
| С | -1.094000 | 0.147316  | 1.319124  |
| С | 0.357153  | -1.202979 | 2.620811  |
| Н | 1.219120  | -1.468307 | 2.001043  |
| Н | 0.401968  | -1.832008 | 3.508556  |
| С | -0.293685 | 2.617041  | -0.411234 |
| Н | 0.655393  | 3.153388  | -0.310318 |
| Н | -0.800730 | 2.681852  | 0.549040  |
| Н | -0.882187 | 3.168785  | -1.151510 |
| С | 0.994881  | 2.027938  | -2.959982 |
| Н | 1.708498  | 2.686384  | -2.454361 |
| Н | 0.160515  | 2.664047  | -3.273424 |
| Н | 1.476267  | 1.644982  | -3.860603 |
| Н | -2.124865 | 0.508634  | 1.313470  |
| 0 | -0.388040 | 0.989844  | 2.250232  |
| С | 0.474197  | 0.251100  | 3.004064  |
| 0 | 1.191231  | 0.754332  | 3.822305  |
| 0 | 0.075625  | -3.269332 | 0.671120  |
| н | -0.382051 | -3.951910 | 1.178232  |

## References

- 1. N. Mardirossian and M. Head-Gordon, *The Journal of Chemical Physics*, 2016, **144**, 214110.
- 2. N. Mardirossian and M. Head-Gordon, *Mol. Phys.*, 2017, **115**, 2315-2372.







152.0 152.0 152.5 132.3 132.0 132.0 133.0 133.0

| 70.3<br>20.3  |  |  |
|---------------|--|--|
|               |  |  |
| τ· <i>L</i> ε |  |  |
| 8°TS          |  |  |





0=













|                                          |   |      | uđđ<br>l |
|------------------------------------------|---|------|----------|
|                                          |   |      |          |
|                                          |   |      | 10       |
| 5.21 ——<br>7.61 ——                       |   | <br> | 20       |
| Ŧ.cc                                     |   |      | 30       |
| VCC                                      |   |      | 40       |
| 8.74                                     |   | <br> | 50       |
|                                          |   |      |          |
|                                          |   |      | 02       |
| 9.08                                     | - |      | 80       |
| 6.28 ——                                  |   | <br> | 06       |
|                                          |   |      | 100      |
|                                          |   |      | 110      |
| \$ ° 77 T                                |   | <br> | 120      |
| 9.221                                    |   | ]    | 130      |
| 2 · 521<br>2 · 221<br>2 · 221<br>2 · 821 |   |      | 140      |
| 0.541                                    |   |      | <br>150  |
|                                          |   |      | <br>160  |
|                                          |   |      | 170      |
| 8.971                                    |   |      | 180      |
|                                          |   |      | <br>190  |
|                                          |   |      | 200      |
|                                          |   |      | 210      |
|                                          |   |      | 220      |
| ð<br>R                                   |   |      | 230      |
| $\geq /$                                 |   | 1    | Ł        |







50<sup>.</sup>9 90<sup>.</sup>9</sub>≻

7.26 7.38 7.40 7.57 7.58

25 O





