Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Pd(II)-catalyzed aerobic 1,2-difunctionalization of conjugated

dienes: efficient synthesis of morpholines and 2-morpholones

Ke Wen,^a Zhengxing Wu,^a Buyun Chen,^a Jianzhong Chen,^a and Wanbin Zhang^{*a} ^a Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

CONTENTS

. PREPARATION OF <i>B</i> -AMINOALCOHOL AND <i>A</i> -AMINOACID SUBSTRATES	.1
2. PD(II)-CATALYZED AEROBIC INTERMOLECULAR 1,2-DIFUNCTIONALIZATION FOR THE SYNTHESIS DF FUNCTIONALIZED MORPHOLINES	10
8. PD(II)-CATALYZED AEROBIC INTERMOLECULAR 1,2-DIFUNCTIONALIZATION FOR THE SYNTHESIS DF FUNCTIONALIZED 2-MORPHOLONES	20
I. TRANSFORMATIONS	29
5. PRELIMINARY MECHANISM STUDY	34
5. NMR SPECTRA	12
7. X-RAY CRYSTAL STRUCTURE ANALYSIS	.5
3. REFERENCES	21

1. Preparation of β -aminoalcohol and α -aminoacid substrates

All of the reagents for the synthesis were commercially available and used without further purification.

N-(2-hydroxyethyl)-4-methylbenzenesulfonamide (1a)^{1a}

∕ОН

NHTs

Under air, 2-aminoethanol (0.61 mL, 10.0 mmol, 1.0 equiv) and 4-toluene sulfonyl chloride (1.91 g, 10.0 mmol, 1.0 equiv) was dissolved in CH₂Cl₂ (30 mL) and the mixture was stirred at 0 °C for 10 min, then Et₃N (1.38 mL, 10.0 mmol, 1.0 equiv) was added to the mixture dropwise in 10 min at 0 °C. The resulting mixture was stirred at room tempetature for 18 h. Then the reaction mixture was washed with H₂O (30 mL, 3 times) and saturated NaCl solution (30 mL, once). The organic phase was collected and dried over over Na₂SO₄. Removal of the solvent under reduced pressure gave the crude product as a gummy oil. Purification by column chromatography on silica gel (petroleum ether/EtOAc = 5/1) gave **1a** as a white solid (1.7868 g, 83% yield). **Known compound**. ¹H NMR (400 MHz, CDCl3) δ 7.74 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.83 (t, *J* = 6.0 Hz, 1H), 3.65 (t, *J* = 5.0 Hz, 2H), 3.11 (br, 1H), 3.04 (dd, *J* = 10.6, 5.4 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 136.5, 129.8, 127.1, 61.2, 45.2, 21.5.

N-(2-hydroxycyclohexyl)-4-methylbenzenesulfonamide (1b)^{1b}

Using the same method and molar quantity as **1a**, the product **1b** was obtained as a white solid (2.0471 g, 76% yield). **Known compound**. ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 4.93 (d, J = 7.6 Hz, 1H), 3.78 (dt, J = 4.8, 2.4 Hz, 1H), 3.23 (ddd, J = 10.4, 7.6, 4.0 Hz, 1H), 2.43 (s, 3H), 1.70 – 1.34 (m, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.4, 138.0, 129.7, 127.0, 68.8, 55.1, 31.5, 28.0, 23.3, 21.5, 19.8.

N-(2-hydroxy-2,3-dihydro-1*H*-inden-1-yl)-4-methylbenzenesulfonamide (1c)^{1c}

Using the same method and molar quantity as **1a**, the product **1c** was obtained as a yellow solid (2.6697 g, 88% yield). **Known compound**. ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.17 – 7.04 (m, 3H), 6.98 (d, J = 7.4 Hz, 1H), 5.36 (d, J = 9.2 Hz, 1H), 4.59 (dd, J = 9.0, 4.8 Hz, 1H), 4.22 (td, J = 5.0, 1.6 Hz, 1H), 2.95 (dd, J = 16.8, 5.0 Hz, 1H), 2.79 (d, J = 16.8 Hz, 1H), 2.38 (s, 3H), 1.96 (br, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.8, 139.5, 139.4, 137.6, 129.9, 128.5, 127.3, 127.2, 125.4, 124.6, 72.8, 61.3, 39.3, 21.6.

N-(2-hydroxy-1,2-diphenylethyl)-4-methylbenzenesulfonamide (1d)^{1d}

Ph OH Ph NHTs

Using the same method and molar quantity as **1a**, the product **1d** was obtained as a white solid (1.8373 g, 50% yield). **Known compound**. ¹**H NMR** (400 MHz, DMSO) δ 8.11 (d, *J* = 9.6 Hz, 1H), 7.29 (d, *J* = 7.4 Hz, 2H), 7.19 (d, *J* = 6.2 Hz, 2H), 7.15 – 7.09 (m, 2H), 7.09 – 6.97 (m, 8H), 5.37 (d, *J* = 5.8 Hz, 1H), 4.62 (t, *J* = 5.8 Hz, 1H), 4.28 (dd, *J* = 9.2, 7.0 Hz, 1H), 2.26 (s, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 143.2, 142.1, 139.4, 139.1, 129.4, 128.7, 128.0, 127.5, 127.4, 127.2, 126.9, 126.6, 75.8, 63.8, 21.3.

N-(2-hydroxy-2-methylpropyl)-4-methylbenzenesulfonamide (1e)^{1e}

Using the same method and molar quantity as **1a**, the product **1e** was obtained as a white solid (1.3626 g, 56% yield). **Known compound**. **¹H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 5.19 (t, *J* = 6.2 Hz, 1H), 2.78 (d, *J* = 6.6 Hz, 2H), 2.35 (s, 3H), 2.06 (br, 1H), 1.15 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 136.8, 129.8, 127.1, 70.2, 53.4, 27.1, 21.5.

N-(1-hydroxy-2-methylpropan-2-yl)-4-methylbenzenesulfonamide (1f)^{1f}

Using the same method and molar quantity as **1a**, the product **1f** was obtained as a white solid (1.9708 g, 81% yield). **Known compound**. ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 5.16 (s, 1H), 3.46 (s, 2H), 2.43 (s, 3H), 2.35 (br, 1H), 1.12 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 139.8, 129.6, 127.0, 70.1, 57.9, 24.5, 21.5.

N-(2-hydroxy-2-methylpropyl)-4-methylbenzenesulfonamide (1g)^{1e}

OH

NHTs

Using the same method and molar quantity as **1a**, the product **1g** was obtained as a white solid (1.4446 g, 63% yield). **Known compound**. ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.24 (br, 1H), 3.91 (dqd, J = 12.6, 6.4, 3.2 Hz, 1H), 3.04 (dd, J = 13.0, 3.0 Hz, 1H), 2.77 (dd, J = 13.0, 8.2 Hz, 1H), 2.43 (s, 3H), 2.21 (br, 1H), 1.15 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 136.6, 129.8, 127.1, 66.6, 50.0, 21.5, 20.6.

N-(1-hydroxypropan-2-yl)-4-methylbenzenesulfonamide (1h)^{1g}

Using the same method and molar quantity as **1a**, the product **1h** was obtained as a white solid (1.9261 g, 84% yield). **Known compound**. **¹H NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.98 (br, 1H), 3.50 (dd, J = 11.0, 3.8 Hz, 1H), 3.33 (ddd, J = 20.4, 10.6, 6.2 Hz, 2H), 2.36 (s, 3H), 1.97 (br, 1H), 0.96 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 137.7, 130.0, 127.3, 66.5, 51.7, 21.7, 17.9.

N-(2-hydroxy-2-phenylethyl)-4-methylbenzenesulfonamide (1i)^{1h}

 Using the same method and molar quantity as **1a**, the product **1i** was obtained as a white solid (2.2727 g, 78% yield). **Known compound**. ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 8.4 Hz, 2H), 7.28 – 7.19 (m, 7H), 5.10 (dd, J = 8.0, 4.6 Hz, 1H), 4.72 (dd, J = 8.8, 3.6 Hz, 1H), 3.16 (ddd, J = 13.2, 8.2, 3.6 Hz, 1H), 2.94 (ddd, J = 13.4, 8.8, 4.6 Hz, 1H), 2.67 (br, 1H), 2.34 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 143.6, 140.8, 136.7, 129.8, 128.7, 128.2, 127.1, 125.9, 72.8, 50.2, 21.5.

N-(2-hydroxy-1-phenylethyl)-4-methylbenzenesulfonamide (1j)^{li}

OH Ph NHTs

Using the same method and molar quantity as **1a**, the product **1j** was obtained as a white solid (1.8356 g, 63% yield). **Known compound**. ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.12 – 6.98 (m, 7H), 5.78 (t, *J* = 6.4 Hz, 1H), 4.35 (dd, *J* = 11.8, 6.6 Hz, 1H), 3.68 – 3.60 (m, 2H), 2.28 (s, 3H), 2.23 (br, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 137.6, 137.1, 129.4, 128.5, 127.8, 127.2, 126.9, 66.2, 59.7, 21.5.

N-(2-hydroxyethyl)acetamide (1k)

∕ОН

NHAc

Commercially available. ¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (br, 1H), 4.53 (br, 1H), 3.67 (t, *J* = 4.8 Hz, 2H), 3.35 (t, *J* = 4.8 Hz, 2H), 1.99 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.0, 61.5, 42.6, 23.2.

tert-butyl (2-hydroxyethyl)carbamate (11)

∕ОН

NHBoc

Commercially available. ¹**H NMR** (400 MHz, CDCl₃) δ 5.10 (br, 1H), 3.69 (t, *J* = 4.6 Hz, 2H), 3.28 (d, *J* = 4.8 Hz, 2H), 1.45 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.9, 79.7, 62.4, 43.1, 28.4.

benzyl (2-hydroxyethyl)carbamate (1m)

∕OH

NHCbz

Commercially available. ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 5.17 (br, 1H), 5.11 (s, 2H), 3.80 – 3.62 (m, 2H), 3.36 (dd, *J* = 10.4, 5.2 Hz, 2H), 2.19 (br, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 136.4, 128.6, 128.2, 128.1, 66.9, 62.4, 43.5.

2-(methylamino)ethan-1-ol (1n)

∕он

`NHMe

Commercially available. ¹**H NMR** (400 MHz, CDCl₃) δ 3.74 – 3.61 (m, 2H), 3.49 (br, 2H), 2.76 – 2.65 (m, 2H), 2.43 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 60.2, 53.5, 35.9.

tosylglycine (4a)^{2a}

```
O OH
NHTs
```

Under air, glycine (750.6 mg, 10.0 mmol, 1.0 equiv) and 4-toluene sulfonyl chloride (1.91 g, 10.0 mmol, 1.0 equiv) was dissolved in H₂O (30 mL) at room temperature, followed by the slow addition of NaOH (1.20 g, 30.0 mmol, 3.0 equiv). The mixture was heated to 40 °C and then stirred for 12 h. After the completion of reaction, the mixture was cooled to room temperature and diluted HCl solution was added until the mixture's pH = 1. Then the mixture was extracted with EtOAc (30 mL, 3 times) and washed with H₂O (10 mL, 3 times). The organic phase was collected and dried over over Na₂SO₄. Removal of the solvent under reduced pressure gave the product as a white solid (2.1320 g, 93% yield), which was pure enough and used without further purification. **Known compound**. ¹**H NMR** (400 MHz, DMSO) δ 12.60 (br, 1H), 7.93 (t, *J* = 6.0 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 3.55 (d, *J* = 5.8 Hz, 2H), 2.38 (s, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 170.7, 143.1, 138.3, 130.0, 127.0, 44.2, 21.4.

tosylalanine (4b)^{2b}

O OH Me NHTs

Using the same method and molar quantity as **4a**, the product **4b** was obtained as a white solid (2.1865 g, 90% yield). **Known compound**. ¹**H NMR** (400 MHz, DMSO) δ 8.00 (d, *J* = 7.4 Hz, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 3.71 (p, *J* = 7.2 Hz, 1H), 2.35 (s, 3H), 1.11 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 178.4, 147.7, 143.7, 134.7, 131.7, 56.3, 26.2, 23.6.

2-((4-methylphenyl)sulfonamido)butanoic acid (4c)^{2c}

O Et NHTs

Using the same method and molar quantity as **4a**, the product **4c** was obtained as a white solid (2.2642 g, 88% yield). **Known compound**. ¹**H NMR** (400 MHz, DMSO) δ 12.61 (br, 1H), 8.01 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 3.55 (td, *J* = 8.4, 5.6 Hz, 1H), 2.34 (s, 3H), 1.69 – 1.33 (m, 2H), 0.73 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 173.1, 142.9, 138. 9, 129.8, 126.9, 57.4, 25.9, 21.4, 10.4.

tosylleucine (4d)^{2d}

Using the same method and molar quantity as **4a**, the product **4d** was obtained as a white solid (2.4255 g, 85% yield). **Known compound**. ¹**H NMR** (400 MHz, DMSO) δ 12.52 (br, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.6 Hz, 2H), 3.63 (td, J = 8.8, 6.4 Hz, 1H), 1.56 (tt, J = 13.4, 6.6 Hz, 1H), 1.37 (ddd, J = 9.0, 5.8, 3.4 Hz, 2H), 0.80 (d, J = 6.6 Hz, 3H), 0.68 (d, J = 6.6 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 173.7, 142.9, 138.8, 129.8, 127.0, 54.4, 41.4, 24.3, 23.0, 21.5, 21.4.

2-((4-methylphenyl)sulfonamido)-2-phenylacetic acid (4e)^{2e}

0 ω NHTs

Using the same method and molar quantity as **4a**, the product **4e** was obtained as a white solid (2.6565 g, 87% yield). **Known compound**. ¹**H NMR** (400 MHz, DMSO) δ 12.93 (br, 1H), 8.64 (d, *J* = 9.2 Hz, 1H), 7.61 (d, *J* = 8.2 Hz, 2H), 7.29 – 7.25 (m, 6H), 4.86 (d, *J* = 9.4 Hz, 1H), 2.33 (s, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 171.4, 142.9, 138.7, 137.1, 129.7, 128.8, 128.3, 127.7, 127.0, 60.0, 21.4.

2-(4-methoxyphenyl)-2-((4-methylphenyl)sulfonamido)acetic acid (4f)^{2f}

Using the same method and molar quantity as **4a**, the product **4f** was obtained as a yellow solid (2.4148 g, 72% yield). **Known compound**. ¹**H NMR** (400 MHz, DMSO) δ 8.45 (br, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 4.75 (s, 1H), 3.70 (s, 3H), 2.34 (s, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 176.4, 164.1, 147.6, 143.4, 134.4, 133.7, 131.7, 118.9, 64.2, 60.3, 26.1.

2-(4-chlorophenyl)-2-((4-methylphenyl)sulfonamido)acetic acid (4g)

Using the same method and molar quantity as **4a**, the product **4g** was obtained as a white solid (2.8541 g, 84% yield). Mp = 277~278 °C. ¹H NMR (400 MHz, DMSO) δ 8.42 (br, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.32 – 7.22 (m, 6H), 4.80 (s, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 175.7, 147.7, 143.2, 141.6, 137.5, 134.5, 134.4, 133.3, 131.8, 64.4, 26.1. HRMS (ESI) calcd for C₁₅H₁₄ClNO₄S [M+H]⁺ 340.0410, found 340.0411.

tosylphenylalanine (4h)^{2d}

Using the same method and molar quantity as **4a**, the product **4h** was obtained as a white solid (2.8742 g, 90% yield). **Known compound**. ¹**H NMR** (400 MHz, CD₃OD) δ 7.54 (d, *J* = 7.8 Hz, 2H),

7.25 – 7.01 (m, 7H), 4.04 – 3.89 (t, J = 6.8 Hz, 1H), 3.02 (dd, J = 13.6, 5.6 Hz, 1H), 2.83 (dd, J = 13.6, 8.4 Hz, 1H), 2.38 (s, 3H). ¹³**C NMR** (100 MHz, CD₃OD) δ 173.0, 143.0, 137.7, 136.4, 129.0, 129.0, 127.9, 126.6, 126.3, 57.4, 38.5, 20.0.

2-((4-methylphenyl)sulfonamido)-3-(p-tolyl)propanoic acid (4i)

Using the same method and molar quantity as **4a**, the product **4i** was obtained as a white solid (2.7339 g, 82% yield). Mp = 225~226 °C. ¹H NMR (400 MHz, CD₃OD) δ 7.54 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.03 – 6.98 (m, 4H), 3.99 (dd, *J* = 8.4, 5.6 Hz, 1H), 3.01 (dd, *J* = 13.8, 5.6 Hz, 1H), 2.79 (dd, *J* = 13.8, 8.6 Hz, 1H), 2.42 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 173.1, 142.9, 137.7, 136.0, 133.3, 129.0, 128.9, 128.6, 126.6, 57.5, 38.0, 20.1, 19.8. HRMS (ESI) calcd for C₁₇H₁₉NO₄S [M+H]⁺ 334.1113, found 334.1109.

3-(4-fluorophenyl)-2-((4-methylphenyl)sulfonamido)propanoic acid (4j)

Using the same method and molar quantity as **4a**, the product **4j** was obtained as a yellow solid (2.2941 g, 68% yield). Mp = 180~181 °C. ¹H NMR (400 MHz, CD₃OD) δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 7.16 – 7.03 (m, 2H), 6.86 (t, *J* = 8.8 Hz, 2H), 3.98 (dd, *J* = 8.6, 5.4 Hz, 1H), 3.02 (dd, *J* = 13.8, 5.2 Hz, 1H), 2.79 (dd, *J* = 13.8, 8.8 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) δ 172.9, 161.9 (d, *J* = 241.0 Hz), 143.1, 137.7, 132.4 (d, *J* = 3.0 Hz), 130.8 (d, *J* = 8.0 Hz), 129.1, 126.6, 114.6 (d, *J* = 21.0 Hz), 57.4, 37.6, 20.1. HRMS (ESI) calcd for C₁₆H₁₆FNO₄S [M+H]⁺338.0862, found 338.0862.

acetylglycine (4k)

O OH NHAc

Commercially available. ¹**H NMR** (400 MHz, DMSO) δ 12.44 (br, 1H), 8.14 (br, 1H), 3.70 (d, *J* = 5.8 Hz, 2H), 1.82 (s, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 171.9, 170.0, 41.1, 22.8.

benzoylglycine (4l)

O OH NHCOPh

Commercially available. ¹**H NMR** (400 MHz, DMSO) δ 12.57 (br, 1H), 8.81 (t, *J* = 5.2 Hz, 1H), 7.94 – 7.74 (m, 2H), 7.61 – 7.38 (m, 3H), 3.90 (d, *J* = 5.8 Hz, 2H). ¹³**C NMR** (100 MHz, DMSO) δ 171.8, 166.9, 134.3, 131.9, 128.8, 127.7, 41.7.

(tert-butoxycarbonyl)glycine (4m)

O OH NHBoc

Commercially available. ¹**H NMR** (400 MHz, DMSO) δ 12.39 (br, 1H), 7.02 (t, *J* = 6.2 Hz, 1H), 3.55 (d, *J* = 6.2 Hz, 2H), 1.36 (s, 9H). ¹³**C NMR** (100 MHz, DMSO) δ 172.2, 156.3, 78.5, 42.3, 28.6.

((benzyloxy)carbonyl)glycine (4n)

O OH NHCbz

Commercially available. ¹**H NMR** (400 MHz, DMSO) δ 12.53 (br, 1H), 7.57 – 7.23 (m, 5H), 5.03 (s, 2H), 3.66 (dd, *J* = 6.2, 2.4 Hz, 2H). ¹³**C NMR** (100 MHz, DMSO) δ 172.2, 157.2, 137.7, 129.0, 128.5, 128.4, 66.2, 42.8.

methylglycine (40)

О҉ОН

NHMe

Commercially available. ¹**H NMR** (400 MHz, D₂O) δ 3.62 (d, J = 1.0 Hz, 2H), 2.75 (s, 3H). ¹³**C** NMR (100 MHz, D₂O) δ 171.4, 50.8, 32.6.

2. Pd(II)-catalyzed aerobic intermolecular 1,2-difunctionalization for the synthesis of functionalized morpholines

General procedure A: To a sealed tube (15 mL) were added substrate **1** (0.2 mmol, 1 equiv), Pd(OAc)₂ (4.4 mg, 0.1 equiv), Cu(OAc)₂ (7.3 mg, 0.2 equiv) and DMSO (1 mL) at room temperature. The resulting mixture was kept stirring for 15 min. Afterwards, the system was degassed and recharged with O₂ for three times. Finally, the conjugated diene **2** (detailed equivalents are mentioned in the manuscript) was added and the tube was sealed and heated to 80 °C. After stirring for 24 h, the mixture was cooled to room temperature and firstly filtered through a thin silica gel pad (100-200 mesh) using EtOAc to remove DMSO and metal species. The solvent was then removed by rotary evaporation. The residue was purified by preparative TLC on silica gel (PE:EA = 5:1) to give the product **3**.

	OH +	Condit	ions		
	1a	2a	Ts 3aa	Ť	
Entry	Pd(II) (equiv)	Oxidant (equiv)	Solvent	Temp	Yield $(\%)^b$
1	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	MeCN	80 °C	ND
2	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	DMA	80 °C	ND
3	$Pd(OAc)_2(0.1)$	O ₂ (1 atm)	DMF	80 °C	ND
4	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	DCE	80 °C	ND
5	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	Toluene	80 °C	ND
6	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	THF	80 °C	ND
7	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	1,4-Dioxane	80 °C	ND
8	$Pd(OAc)_2(0.1)$	O ₂ (1 atm)	MeOH	80 °C	ND
9	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	EtOH	80 °C	ND
10	Pd(TFA) ₂ (0.1)	O ₂ (1 atm)	DMSO	80 °C	Trace
11	$PdBr_2(0.1)$	O ₂ (1 atm)	DMSO	80 °C	ND
12	$PdCl_2(0.1)$	O ₂ (1 atm)	DMSO	80 °C	ND
13	$Pd(MeCN)_2Cl_2(0.1)$	O ₂ (1 atm)	DMSO	80 °C	ND
14	$Pd(OAc)_2(0.1)$	PhI(OAc) ₂ (1.2)	DMSO	80 °C	Trace
15	$Pd(OAc)_2(0.1)$	Ag ₂ O (1.2)	DMSO	80 °C	ND
16	Pd(OAc) ₂ (0.1)	$Cu(OAc)_2(0.2) + O_2$ (1 atm)	DMSO	70 °C	64
17	Pd(OAc) ₂ (0.1)	$Cu(OAc)_2(0.2) + O_2$ (1 atm)	DMSO	90 °C	86

Table S1. Optimization of the Reaction Conditions for Morpholine Synthesis^a

S10

18	-	-	DMSO	80 °C	ND
19	-	$Cu(OAc)_2(0.2) + O_2$	DMSO	80 °C	ND
		(1 atm)			

^{*a*}The reaction was carried out with **1a** (0.2 mmol, 1 equiv), **2a** (2.0 mmol, 10 equiv) according to General Procedure A unless otherwise noted. ^{*b*}Isolated yields.

Other attempted substrates

ОН	ОН	ОН	ОН
NHAc 1k	NHBoc 1I	NHCbz 1m	NHMe 1n
ND	ND	ND	ND

Scale-up of the reaction

To a sealed tube (100 mL) were added substrate **1a** (0.86 g, 4.0 mmol, 1 equiv), $Pd(OAc)_2$ (90.0 mg, 0.1 equiv), $Cu(OAc)_2$ (146.1 mg, 0.2 equiv) and DMSO (25 mL) at room temperature. The resulting mixture was kept stirring for 15 min. Afterwards, the system was degassed and recharged with O₂ for three times. Finally, the isoprene **2a** (3.5 mL, 40.0 mmol, 10 equiv) was added and the tube was sealed and heated to 80 °C. After stirring for 24 h, the mixture was cooled to room temperature and firstly filtered through a silica gel pad (100-200 mesh) using EtOAc to remove DMSO and metal species. The solvent was then removed by rotary evaporation. The residue was purified by silica gel chromatography (PE:EA = 5:1) to give the product **3aa** (0.78 g, 70% yield).

3-(prop-1-en-2-yl)-4-tosylmorpholine (3aa)

Colorless gummy oil (48.9 mg, 87% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 5.09 – 5.00 (m, 2H), 4.13 – 4.07 (m, 1H), 3.98 (dd, *J* = 12.0, 2.4 Hz, 1H), 3.69 – 3.63 (m, 1H), 3.50 – 3.35 (m, 4H), 2.44 (s, 3H), 1.75 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.5, 140.9, 137.2, 129.8, 127.3, 115.2, 67.8, 65.9, 57.7, 42.2, 21.6, 20.8. HRMS (ESI) calcd for C₁₄H₁₉NO₃S [M+H]⁺ 282.1164, found 282.1174.

3-(prop-1-en-2-yl)-4-tosyloctahydro-2H-benzo[b][1,4]oxazine (3ba)

White solid (dr > 10:1, 57.1 mg, 85% overall yield; 49.9 mg isolated for **3ba** as major isomer). Mp = 188~189 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.21 – 5.17 (m, 1H), 5.06 (dt, *J* = 2.8, 1.4 Hz, 1H), 4.29 (d, *J* = 12.4 Hz, 1H), 4.19 – 4.10 (m, 1H), 3.62 (ddd, *J* = 12.8, 4.6, 3.2 Hz, 1H), 3.28 (dd, *J* = 12.4, 4.2 Hz, 1H), 3.17 – 3.03 (m, 1H), 2.44 (s, 3H), 2.16 (qd, *J* = 11.8, 3.2 Hz, 1H), 1.92 (s, 3H), 1.83 – 1.74 (m, 1H), 1.71 – 1.61 (m, 2H), 1.36 – 1.14 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 143.3, 138.6, 129.9, 126.9, 113.5, 74.0, 66.6, 55.3, 54.2, 31.6, 27.3, 25.4, 21.6, 21.5, 19.6. HRMS (ESI) calcd for C₁₈H₂₅NO₃S [M+H]⁺336.1633, found 336.1652.

3-(prop-1-en-2-yl)-4-tosyl-2,3,4,4a,9,9a-hexahydroindeno[2,1-b][1,4]oxazine (3ca)

White solid (dr > 10:1, 60.7 mg, 82% overall yield; 52.2 mg isolated for **3ca** as major isomer). Mp = 180~182 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.4 Hz, 2H), 7.45 (dd, *J* = 6.0, 2.6 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.21 – 7.12 (m, 3H), 5.07 (d, *J* = 4.8 Hz, 1H), 4.85 – 4.83 (m, 1H), 4.58 (d, *J* = 1.0 Hz, 1H), 4.17 – 4.14 (m, 1H), 3.96 (t, *J* = 4.8 Hz, 1H), 3.87 (dd, *J* = 12.2, 1.8 Hz, 1H), 3.26 (dd, *J* = 12.2, 4.0 Hz, 1H), 2.98 (dd, *J* = 16.8, 4.8 Hz, 1H), 2.88 (d, *J* = 16.8 Hz, 1H), 2.47 (s, 3H), 1.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 141.9, 140.0, 138.7, 137.7, 130.0, 127.7, 127.2, 126.5, 124.9, 124.5, 115.0, 75.8, 65.1, 59.2, 55.0, 38.3, 21.6, 21.4. HRMS (ESI) calcd for C₂₁H₂₃NO₃S [M+H]⁺370.1477, found 370.1478.

2,3-diphenyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3da)

White solid (dr > 10:1, 63.4 mg, 73% overall yield; 52.5 mg isolated for **3da** as major isomer). Mp = 162~163 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.8 Hz, 2H), 7.46 (d, *J* = 7.8 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 6.0 Hz, 1H), 7.22 – 6.95 (m, 7H), 5.40 (d, *J* = 3.6 Hz, 1H), 5.00 (s, 1H), 4.72 (s, 1H), 4.58 (d, *J* = 12.4 Hz, 1H), 4.52 (d, *J* = 3.6 Hz, 1H), 4.35 – 4.29 (m, 1H), 3.56 (dd, *J* = 12.4, 4.2 Hz, 1H), 2.44 (s, 3H), 1.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 142.5, 138.6, 138.5, 135.3, 131.6, 130.3, 128.1, 127.1, 127.0, 126.9, 126.9, 124.8, 114.1, 78.6, 67.0, 57.9, 55.0, 21.6, 20.6. HRMS (ESI) calcd for C₂₆H₂₇NO₃S [M+H]⁺434.1790, found 434.1798.

2,2-dimethyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ea)

White gummy oil (51.9 mg, 84% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 4.95 (s, 1H), 4.90 (s, 1H), 4.04 – 3.96 (m, 1H), 3.85 (d, J = 3.6 Hz, 2H), 3.15 (q, J = 13.0 Hz, 2H), 2.42 (s, 3H), 1.65 (s, 3H), 1.18 (s, 3H), 1.12 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 140.9, 136.8, 129.5, 127.4, 115.2, 70.8, 62.5, 57.5, 50.7, 26.3, 22.3, 21.6, 20.7. HRMS (ESI) calcd for C₁₆H₂₃NO₃S [M+H]⁺310.1477, found 310.1462.

3,3-dimethyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3fa)

White gummy oil (45.9 mg, 74% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 7.0 Hz, 2H), 5.24 – 5.01 (m, 2H), 4.47 (s, 1H), 4.27 (dd, *J* = 11.8, 2.6 Hz, 1H), 3.75 (dd, *J* = 11.8, 4.0 Hz, 1H), 3.54 (d, *J* = 11.6 Hz, 1H), 3.18 (d, *J* = 11.5 Hz, 1H), 2.42 (s, 3H), 1.89 (s, 3H), 1.52

(s, 3H), 1.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 142.8, 141.4, 129.4, 126.9, 114.9, 76.8, 67.7, 58.4, 58.3, 26.4, 24.9, 21.6, 21.5. HRMS (ESI) calcd for C₁₆H₂₃NO₃S [M+H]⁺310.1477, found 310.1472.

2-methyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ga)

White gummy oil (dr = 1.2:1, 52.0 mg isolated as a mixture with **3ga'**, 88% overall yield; 25.7 mg isolated for **3ga**). ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.07 – 5.00 (m, 2H), 4.24 – 4.19 (m, 1H), 4.07 (d, *J* = 12.0 Hz, 1H), 3.57 (dd, *J* = 13.8, 2.8 Hz, 1H), 3.52 (dd, *J* = 12.2, 3.8 Hz, 1H), 3.33 (dtt, *J* = 12.4, 6.2, 3.2 Hz, 1H), 2.89 (dd, *J* = 13.8, 11.0 Hz, 1H), 2.43 (s, 3H), 1.71 (s, 3H), 1.06 (d, *J* = 6.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 140.6, 138.1, 129.8, 127.1, 115.1, 71.0, 67.5, 56.0, 47.1, 21.5, 21.3, 18.5. HRMS (ESI) calcd for C₁₅H₂₁NO₃S [M+H]⁺296.1320, found 296.1320.

2-methyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ga')

White solid (dr = 1.2:1, 52.0 mg isolated as a mixture with **3ga**, 88% overall yield; 21.2 mg isolated for **3ga'**). Mp = 117~118 °C. **¹H NMR** (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 5.00 – 4.96 (m, 1H), 4.90 (d, *J* = 0.6 Hz, 1H), 3.73 – 3.55 (m, 4H), 3.10 (dd, *J* = 9.0, 4.8 Hz, 1H), 2.45 (s, 3H), 2.17 (dd, *J* = 11.8, 10.2 Hz, 1H), 1.90 (s, 3H), 1.14 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 142.9, 131.5, 129.5, 128.6, 115.1, 71.3, 69.8, 62.9, 52.3, 21.6, 18.6, 18.3. HRMS (ESI) calcd for C₁₅H₂₁NO₃S [M+H]⁺296.1320, found 296.1322.

3-methyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ha)

White gummy oil (dr = 1.7:1, 51.9 mg isolated as a mixture with **3ha'**, 88% overall yield; 27.0 mg isolated for **3ha**). ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 3H), 7.26 (d, *J* = 8.2 Hz, 3H), 5.13 – 5.10 (m, 1H), 5.06 – 5.02 (m, 1H), 4.37 (t, *J* = 4.4 Hz, 1H), 3.95 – 3.82 (m, 2H), 3.72 (dd, *J* = 12.0, 3.8 Hz, 1H), 3.62 (dd, *J* = 11.4, 3.0 Hz, 1H), 3.45 (dd, *J* = 11.4, 7.0 Hz, 1H), 2.42 (s, 3H), 1.67 (s, 3H), 1.25 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.1, 140.6, 140.2, 129.3, 127.6, 117.0, 72.3, 68.9, 59.0, 50.8, 21.5, 20.7, 15.2. HRMS (ESI) calcd for C₁₅H₂₁NO₃S [M+H]⁺296.1320, found 296.1333.

3-methyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ha')

White gummy oil (dr = 1.7:1, 51.9 mg isolated as a mixture with **3ha**, 88% overall yield; 19.9 mg isolated isolated for **3ha'**). ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.22 – 5.17 (m, 1H), 5.10 – 5.05 (m, 1H), 4.22 (d, *J* = 12.4 Hz, 2H), 3.90 – 3.80 (m, 1H), 3.47 (d, *J* = 11.6 Hz, 1H), 3.17 (ddd, *J* = 18.6, 12.0, 3.6 Hz, 2H), 2.44 (s, 3H), 1.93 (s, 3H), 1.39 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 144.3, 143.4, 138.3, 129.9, 127.0, 113.7, 70.2, 66.3, 54.7, 49.4, 21.6, 21.5, 19.1. HRMS (ESI) calcd for C₁₅H₂₁NO₃S [M+H]⁺296.1320, found 296.1329.

2-phenyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ia)

White solid (dr = 2:1, 60.7 mg isolated as a mixture with **3ia'**, 85% overall yield; 37.4 mg isolated for **3ia**). Mp = 128~129 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 2H), 3.79 – 3.68 (m, 7H), 5.19 – 5.16 (m, 1H), 5.12 – 5.07 (m, 1H), 4.35 – 4.30 (m, 1H), 4.25 (d, *J* = 12.4 Hz, 2H), 3.79 – 3.68 (m, 2H), 3.13 (dd, *J* = 14.0, 11.2 Hz, 1H), 2.44 (s, 3H), 1.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 140.8, 138.8, 138.0, 129.9, 128.5, 128.3, 127.2, 126.0, 115.5, 67.7, 56.0, 47.3, 21.6, 21.4. HRMS (ESI) calcd for C₂₀H₂₃NO₃S [M+H]⁺358.1477, found 358.1477.

2-phenyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ia')

White solid (dr = 2:1, 60.7 mg isolated as a mixture with **3ia**, 85% overall yield; 17.6 mg isolated for **3ia'**). Mp = 145~146 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.37 – 7.27 (m, 7H), 5.04 (dd, *J* = 3.0, 1.4 Hz, 1H), 4.97 – 4.94 (m, 1H), 4.64 (dd, *J* = 10.2, 2.6 Hz, 1H), 3.93 (dd, *J* = 11.8, 2.6 Hz, 1H), 3.86 – 3.69 (m, 2H), 3.19 (dd, *J* = 9.8, 4.4 Hz, 1H), 2.44 (s, 3H), 2.36 (dd, *J* = 11.6, 10.4 Hz, 1H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 142.9, 138.5, 131.2, 129.6, 128.7, 128.6, 128.3, 126.0, 115.5, 77.4, 70.4, 63.3, 53.0, 21.6, 18.2. HRMS (ESI) calcd for C₂₀H₂₃NO₃S [M+H]⁺358.1477, found 358.1478.

3-phenyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ja)

White solid (dr = 2:1, 63.1 mg isolated as a mixture with **3ja'**, 88% overall yield; 40.0 mg isolated for **3ja**). Mp = 208~209 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.61 – 7.55 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.20 (m, 3H), 4.90 – 4.86 (m, 2H), 4.62 (d, *J* = 1.2 Hz, 1H), 4.29 (dd, *J* = 12.2, 1.6 Hz, 1H), 4.19 – 4.08 (m, 2H), 3.41 (dd, *J* = 12.2, 4.2 Hz, 1H), 3.32 (dd, *J* = 11.8, 3.8 Hz, 1H), 2.47 (s, 3H), 1.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 142.1, 138.8, 138.0, 130.1, 129.0, 127.6, 127.3, 127.2, 114.5, 66.8, 66.2, 55.9, 54.2, 21.6, 20.7. HRMS (ESI) calcd for C₂₀H₂₃NO₃S [M+H]⁺358.1477, found 358.1476.

3-phenyl-5-(prop-1-en-2-yl)-4-tosylmorpholine (3ja')

White solid (dr = 2:1, 63.1 mg isolated as a mixture with **3ja**, 88% overall yield; 18.7 mg isolated for **3ja'**). Mp = 210~211 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 7.23 – 7.04 (m, 6H), 6.98 (d, *J* = 8.0 Hz, 2H), 5.25 – 5.21 (m, 1H), 5.17 (d, *J* = 1.0 Hz, 1H), 4.88 (dd, *J* = 7.6, 3.6 Hz, 1H),

4.45 (t, *J* = 4.0 Hz, 1H), 4.14 – 4.06 (m, 2H), 3.93 (dd, *J* = 11.8, 3.8 Hz, 2H), 2.33 (s, 3H), 1.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 142.1, 138.8, 135.8, 129.7, 128.7, 127.9, 127.8, 127.4, 115.9, 70.4, 69.0, 59.4, 57.8, 21.4, 21.2. HRMS (ESI) calcd for C₂₀H₂₃NO₃S [M+H]⁺358.1477, found 358.1480.

4-tosyl-3-vinylmorpholineoline (3ab)³

Colorless gummy oil (37.4 mg, 70% yield). **Known compound**. ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.85 (ddd, *J* = 17.4, 10.6, 7.2 Hz, 1H), 5.21 (ddt, *J* = 20.8, 10.6, 1.2 Hz, 2H), 4.14 – 4.06 (m, 1H), 3.85 – 3.72 (m, 2H), 3.69 – 3.52 (m, 2H), 3.38 – 3.24 (m, 2H), 2.43 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.5, 136.0, 133.1, 129.6, 127.7, 118.6, 70.9, 66.5, 56.5, 42.2, 21.6.

3-methyl-3-(prop-1-en-2-yl)-4-tosylmorpholine (3ac)

Yellow gummy oil (33.7 mg, 57% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 5.12 – 5.09 (m, 1H), 5.09 – 5.06 (m, 1H), 3.76 (d, J = 11.8 Hz, 1H), 3.70 – 3.64 (m, 2H), 3.60 (ddd, J = 13.4, 5.0, 3.6 Hz, 1H), 3.34 (ddd, J = 13.4, 6.8, 4.6 Hz, 1H), 3.25 (d, J = 12.0 Hz, 1H), 2.43 (s, 3H), 1.86 (s, 3H), 1.42 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.4, 143.2, 139.3, 129.6, 127.3, 114.1, 74.9, 66.8, 64.2, 43.8, 21.5, 20.3, 19.8. HRMS (ESI) calcd for C₁₅H₂₁NO₃S [M+H]⁺296.1320, found 296.1340.

3-(4-(3,3-dimethyloxiran-2-yl)but-1-en-2-yl)-4-tosylmorpholine (3ad)

A mixture of two isomers (dr = 1:1). Yellow gummy oil (58.3 mg, 80% overall yield). ¹H NMR (400 MHz, CDCl₃) 1H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.4, 2H), 7.70 (d, *J* = 8.4, 2H), 7.32 (d, *J* = 6.17

= 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.23 (d, J = 4.6 Hz, 1H), 5.23 (d, J = 4.6 Hz, 1H), 5.15 – 5.10 (m, 1H), 4.18 (d, J = 15.2 Hz, 1H), 4.18 (d, J = 15.2 Hz, 1H), 4.00 (ddd, J = 12.0, 5.0, 1.6 Hz, 1H), 4.00 (ddd, J = 12.0, 5.0, 1.6 Hz, 1H), 3.69 – 3.59 (m, 1H), 3.69 – 3.59 (m, 1H), 3.51 – 3.30 (m, 4H), 3.51 – 3.30 (m, 4H), 2.75 – 2.67 (m, 1H), 2.75 – 2.67 (m, 1H), 2.44 (s, 3H), 2.44 (s, 3H), 2.22 (t, J = 8.0 Hz, 2H), 2.18 – 2.07 (m, 2H), 1.75 – 1.63 (m, 2H), 1.75 – 1.63 (m, 2H), 1.31 (s, 3H), 1.31 (s, 3H), 1.29 (s, 3H), 1.27 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 144.0, 143.9, 143.6, 143.6, 137.6, 137.5, 129.9, 129.9, 127.3, 127.3, 114.8, 114.8, 67.3, 67.3, 65.8, 65.7, 64.0, 63.8, 58.5, 58.4, 56.4, 56.4, 42.1, 41.9, 30.4, 30.2, 27.3, 27.3, 24.9, 24.9, 21.6, 21.6, 18.8, 18.8. HRMS (ESI) calcd for C₁₉H₂₇NO₄S [M+H]⁺366.1739, found 366.1749.

(*E*)-3-styryl-4-tosylmorpholine (3ae)

Yellow gummy oil (57.1 mg, 83% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.30 – 7.15 (m, 7H), 6.48 (d, *J* = 16.0 Hz, 1H), 6.09 (dd, *J* = 16.0, 8.2 Hz, 1H), 4.28 (d, *J* = 8.2 Hz, 1H), 3.88 (dt, *J* = 11.6, 2.8 Hz, 1H), 3.80 (ddd, *J* = 26.0, 11.6, 3.0 Hz, 2H), 3.66 (td, *J* = 11.2, 3.0 Hz, 1H), 3.49 – 3.40 (m, 1H), 3.34 – 3.24 (m, 1H), 2.32 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.5, 136.2, 135.8, 133.7, 129.5, 128.5, 127.9, 127.8, 126.5, 123.5, 71.4, 66.7, 56.5, 42.4, 21.4. HRMS (ESI) calcd for C₁₉H₂₂NO₃S [M+H]⁺344.1320, found 344.1321.

(*E*)-3-(4-methoxystyryl)-4-tosylmorpholine (3af)

Yellow gummy oil (59.7 mg, 80% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 6.43 (d, J = 16.0 Hz, 1H), 5.95 (dd, J = 16.0, 8.2 Hz, 1H), 4.30 – 4.20 (m, 1H), 3.89 – 3.73 (m, 6H), 3.69 – 3.61 (m, 1H), 3.43 (dt, J = 12.4, 2.6 Hz, 1H), 3.33 – 3.24 (m, 1H), 2.33 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.4, 143.4, 135.9, 133.2, 129.4, 129.0, 127.9, 127.7, 121.2, 113.9, 71.5, 66.6, 56.6, 55.3, 42.4, 21.4. HRMS (ESI) calcd for $C_{20}H_{23}NO_4S$ [M+H]⁺374.1426, found 374.1422.

(*E*)-3-(4-bromostyryl)-4-tosylmorpholine (3ag)

Brown gummy oil (75.9 mg, 90% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.6 Hz, 2H), 6.43 (d, J = 16.0 Hz, 1H), 6.10 (dd, J = 16.0, 8.0 Hz, 1H), 4.31 – 4.24 (m, 1H), 3.87 (dt, J = 11.6, 3.0 Hz, 1H), 3.78 (ddd, J = 28.2, 11.6, 3.0 Hz, 2H), 3.64 (ddd, J = 11.4, 10.6, 3.0 Hz, 1H), 3.45 (dt, J = 12.0, 2.4 Hz, 1H), 3.28 (ddd, J =12.8, 10.6, 3.4 Hz, 1H), 2.34 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.6, 135.8, 135.1, 132.4, 131.6, 129.5, 128.0, 127.8, 124.5, 121.8, 71.2, 66.6, 56.3, 42.3, 21.5. HRMS (ESI) calcd for C₁₉H₂₀BrNO₃S [M+H]⁺422.0426, found 422.0421.

3. Pd(II)-catalyzed aerobic intermolecular 1,2-difunctionalization for the synthesis of functionalized 2-morpholones

General procedure B: To a glass tube (15 mL) were added substrate **4** (0.2 mmol, 1 equiv), $Pd(OAc)_2$ (4.4 mg, 0.1 equiv) and DMSO (1 mL) at room temperature. The resulting mixture was kept stirring for 15 min with the tube in an autoclave. Afterwards, the conjugated diene **2** (detailed equivalents are mentioned in the manuscript) was added and the tube was immediately capped with a plastic cap with a tiny hole on it (for the ingression of O₂). The autoclave was sealed, charged with O₂ (5 atm) and heated to 70 °C. After stirring for 24 h, the mixture was cooled to room temperature and firstly filtered through a thin silica gel pad (100-200 mesh) using EtOAc to remove DMSO and metal species. The solvent was then removed by rotary evaporation. The residue was purified by preparative TLC on silica gel (PE:EA = 5:1) to give the product **5**.

	O OH + NHTs +	Condit	tions O	0 N Ts	
	4a	2a		5aa	
Entry	Pd(II) (equiv)	Oxidant (equiv)	Solvent	Temp	Yield (%) ^b
1	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	MeCN	80 °C	ND
2	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	DMA	80 °C	ND
3	$Pd(OAc)_2(0.1)$	O ₂ (1 atm)	DMF	80 °C	ND
4	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	DCE	80 °C	ND
5	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	Toluene	80 °C	ND
6	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	THF	80 °C	ND
7	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	1,4-Dioxane	80 °C	ND
8	Pd(OAc) ₂ (0.1)	O ₂ (1 atm)	MeOH	80 °C	ND
9	Pd(OAc) ₂ (0.1)	O ₂ (1 atm.)	EtOH	80 °C	ND
10	Pd(TFA) ₂ (0.1)	O ₂ (1 atm.)	DMSO	80 °C	ND
11	PdBr ₂ (0.1)	O ₂ (1 atm)	DMSO	80 °C	ND
12	PdCl ₂ (0.1)	O ₂ (1 atm)	DMSO	80 °C	ND
13	Pd(MeCN) ₂ Cl ₂ (0.1)	O ₂ (1 atm)	DMSO	80 °C	ND
14	Pd(OAc) ₂ (0.1)	NBS (1.2)	DMSO	80 °C	ND
15	Pd(OAc) ₂ (0.1)	Ag ₂ O (1.2)	DMSO	80 °C	ND

Table S2. Optimization of the reaction conditions for 2-morpholone synthesis^a

16	Pd(OAc) ₂ (0.1)	H ₂ O ₂ (3.0)	DMSO	80 °C	Trace
17	Pd(OAc) ₂ (0.1)	O ₂ (5 atm)	DMSO	80 °C	65
18	Pd(OAc) ₂ (0.1)	O ₂ (5 atm)	DMSO	90 °C	59
19	Pd(OAc) ₂ (0.1)	O ₂ (5 atm)	DMSO	60 °C	50
20	-	O2 (5 atm)	DMSO	70 °C	ND

^aThe reaction was carried out with **4a** (0.2 mmol, 1 equiv), **2a** (2.0 mmol, 10 equiv) according to General Procedure B unless otherwise noted. ^bIsolated yields.

Other attempted substrates

Scale-up of the reaction

To a glassware (100 mL) were added substrate **4a** (0.92 g, 4.0 mmol, 1 equiv), $Pd(OAc)_2$ (90.0 mg, 0.1 equiv) and DMSO (25 mL) at room temperature. The resulting mixture was kept stirring for 15 min with the tube in an autoclave. Afterwards, the isoprene **2a** (3.5 mL, 10.0 mmol, 10 equiv) was added and the tube was immediately capped with a plastic cap with a tiny hole on it (for the ingression of O₂). The autoclave was sealed, charged with O₂ (5 atm) and heated to 70 °C. After stirring for 24 h, the mixture was cooled to room temperature and firstly filtered through a silica gel pad (100-200 mesh) using EtOAc to remove DMSO and metal species. The solvent was then removed by rotary evaporation. The residue was purified by silica gel chromatography (PE:EA = 5:1) to give the product **5aa** (0.52 g, 44% yield).

6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5aa)

White gummy oil (39.1 mg, 66% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 5.12 – 5.10 (m, 1H), 5.10 – 5.07 (m, 1H), 4.92 (dd, J = 9.0, 3.0 Hz, 1H), 4.15 (dd, J = 17.6, 1.2 Hz, 1H), 3.73 (ddd, J = 12.8, 3.2, 1.2 Hz, 1H), 3.60 (d, J = 17.6 Hz, 1H), 2.84 (dd, J = 12.8, 9.0 Hz, 1H), 2.46 (s, 3H), 1.78 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.4, 145.0, 138.9, 131.6, 130.3, 127.8, 115.4, 81.0, 46.6, 45.9, 21.6, 18.3. HRMS (ESI) calcd for C₁₄H₁₇NO₄S [M+H]⁺296.0957, found 296.0958.

3-methyl-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ba)

White gummy oil (dr = 7:1, 25.7 mg, 42% overall yield; 21.0 mg isolated for **5ba** as major isomer). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 5.12 – 5.10 (m, 1H), 5.10 – 5.07 (m, 1H), 4.91 (d, *J* = 9.0 Hz, 1H), 4.30 (q, *J* = 7.2 Hz, 1H), 3.83 (dd, *J* = 12.2, 2.6 Hz, 1H), 2.94 (dd, *J* = 12.2, 9.0 Hz, 1H), 2.45 (s, 3H), 1.75 (s, 3H), 1.69 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.7, 138.6, 133.4, 130.2, 127.5, 115.4, 78.8, 53.3, 45.9, 21.7, 21.6, 18.5. HRMS (ESI) calcd for C₁₅H₁₉NO₄S [M+H]⁺310.1113, found 310.1113.

3-methyl-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ba')

White gummy oil (dr = 7:1, 25.7 mg, 42% overall yield; 2.8 mg isolated for **5ba'** as minor isomer). ¹**H NMR** (400 MHz, CDCl₃) ¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.07 – 4.99 (m, 2H), 4.63 (q, *J* = 7.0 Hz, 1H), 4.59 – 4.51 (m, 1H), 3.89 (ddd, *J* = 14.8, 3.4, 1.2 Hz, 1H), 3.22 (dd, *J* = 14.8, 10.8 Hz, 1H), 2.45 (s, 3H), 1.74 (s, 3H), 1.52 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.2, 144.6, 138.9, 136.5, 130.3, 127.1, 115.0, 81.3, 52.2, 42.5, 21.6, 18.6, 17.9. HRMS (ESI) calcd for C₁₅H₁₉NO₄S [M+H]⁺310.1113, found 310.1116.

3-ethyl-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ca)

White solid (dr = 8:1, 48.6 mg, 75% overall yield; 40.9 mg isolated for **5ca** as major isomer). Mp = 96~97 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 5.08 (d, *J* = 18.8 Hz, 2H), 4.90 (dd, *J* = 10.2, 1.8 Hz, 1H), 4.16 (dd, *J* = 7.6, 5.8 Hz, 1H), 3.83 (dd, *J* = 12.0, 2.6 Hz, 1H), 2.84 (dd, *J* = 12.0, 10.4 Hz, 1H), 2.45 (s, 3H), 2.17 – 2.04 (m, 2H), 1.74 (s, 3H), 1.09 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 144.7, 138.6, 133.0, 130.2, 127.6, 115.4, 78.0, 59.0, 46.6, 28.9, 21.6, 18.3, 9.9. HRMS (ESI) calcd for C₁₆H₂₁NO₄S [M+H]⁺324.1270, found 324.1274.

3-ethyl-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ca')

White gummy oil (dr = 8:1, 48.6 mg, 75% overall yield; 7.0 mg isolated for **5ca'** as minor isomer). ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 4.99 (d, *J* = 8.4 Hz, 2H), 4.43 (ddd, *J* = 14.6, 9.6, 4.4 Hz, 2H), 3.95 (dd, *J* = 15.2, 3.4 Hz, 1H), 3.19 (dd, *J* = 15.4, 11.4 Hz, 1H), 2.45 (s, 3H), 2.15 – 2.02 (m, 2H), 1.70 (s, 3H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.7, 144.7, 138.9, 130.3, 127.1, 114.8, 99.9, 80.6, 57.3, 43.1, 26.4, 21.6, 17.7, 10.3. HRMS (ESI) calcd for C₁₆H₂₁NO₄S [M+H]⁺324.1270, found 324.1281.

3-isobutyl-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5da)

′Bu

White solid (dr > 10:1, 50.6 mg, 72% overall yield; 44.5 mg isolated for **5da** as major isomer). Mp = $100 \sim 101 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.6 Hz, 2H), 7.35 (d, J = 7.6 Hz, 2H), 5.07 (d,

J = 19.2 Hz, 2H), 4.92 (d, J = 10.2 Hz, 1H), 4.32 (d, J = 6.2 Hz, 1H), 3.80 (d, J = 12.2 Hz, 1H), 2.92 (t, J = 11.2 Hz, 1H), 2.44 (s, 3H), 1.88 (s, 2H), 1.77 (dd, J = 16.8, 8.2 Hz, 1H), 1.72 (s, 3H), 1.07 (d, J = 4.4 Hz, 3H), 0.99 (d, J = 4.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.0, 144.6, 138.5, 133.2, 130.2, 127.5, 115.5, 55.8, 46.3, 44.5, 24.5, 22.9, 21.7, 21.6, 18.3. HRMS (ESI) calcd for C₁₈H₂₅NO₄S [M+H]⁺352.1583, found 352.1589.

3-phenyl-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ea)

White solid (dr > 10:1, 45.3 mg, 61% overall yield; 40.1 mg isolated for **5ea** as major isomer). Mp = 104~105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.45 – 7.32 (m, 5H), 5.69 (s, 1H), 4.98 (d, *J* = 7.0 Hz, 2H), 4.61 (dd, *J* = 11.2, 3.0 Hz, 1H), 3.89 (dd, *J* = 11.8, 3.2 Hz, 1H), 3.16 (t, *J* = 11.6 Hz, 1H), 2.45 (s, 3H), 1.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 144.8, 138.1, 134.5, 133.7, 130.2, 129.3, 128.8, 127.5, 125.8, 115.6, 60.2, 46.4, 21.6, 18.1. HRMS (ESI) calcd for C₂₀H₂₁NO₄S [M+H]⁺372.1270, found 372.1271.

3-(4-methoxyphenyl)-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5fa)

Yellow solid (dr > 10:1, 62.6 mg, 78% overall yield; 55.8 mg isolated for **5fa** as major isomer). Mp = 110~111 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 9.0 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 5.62 (s, 1H), 5.02 – 4.97 (m, 2H), 4.63 (dd, *J* = 11.4, 3.2 Hz, 1H), 3.92 – 3.73 (m, 4H), 3.13 (t, *J* = 11.6 Hz, 1H), 2.45 (s, 3H), 1.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 159.9, 144.7, 138.1, 133.7, 130.2, 127.4, 127.1, 126.3, 115.5, 114.7, 59.8, 55.4, 46.4, 21.6, 18.2. HRMS (ESI) calcd for C₂₁H₂₃NO₅S [M+H]⁺402.1375, found 402.1375.

3-(4-chlorophenyl)-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ga)

White solid (dr > 10:1, 48.7 mg, 60% overall yield; 43.3 mg isolated for **5ga** as major isomer). Mp = 105~106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.43 – 7.33 (m, 4H), 5.60 (s, 1H), 5.04 – 4.97 (m, 2H), 4.59 (dd, *J* = 11.0, 2.6 Hz, 1H), 3.89 (dd, *J* = 11.8, 3.0 Hz, 1H), 3.22 – 3.05 (m, 1H), 2.46 (s, 3H), 1.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 145.0, 137.8, 134.9, 133.3, 133.2, 130.3, 129.5, 127.5, 127.4, 115.8, 59.8, 46.5, 21.7, 18.2. HRMS (ESI) calcd for C₂₀H₂₀CINO₄S [M+H]⁺406.0880, found 406.0888.

3-benzyl-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ha)

White gummy oil (dr > 10:1, 61.8 mg, 80% overall yield; 54.9 mg isolated for **5ha** as major isomer). ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.35 – 7.29 (m, 5H), 4.89 – 4.85 (m, 1H), 4.73 (d, *J* = 1.0 Hz, 1H), 4.44 (dd, *J* = 5.8, 3.0 Hz, 1H), 3.65 (dd, *J* = 13.6, 5.8 Hz, 1H), 3.58 (dd, *J* = 11.8, 2.2 Hz, 1H), 3.34 (dd, *J* = 13.6, 3.0 Hz, 1H), 3.31 – 3.25 (m, 1H), 2.57 (dd, *J* = 11.8, 10.2 Hz, 1H), 2.46 (s, 3H), 1.51 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.2, 144.9, 138.2, 135.3, 132.2, 130.6, 130.3, 128.7, 127.8, 127.6, 115.3, 77.6, 59.1, 46.4, 41.4, 21.6, 18.2. HRMS (ESI) calcd for C₂₁H₂₃NO₄S [M+H]⁺386.1426, found 386.1430.

3-(4-methylbenzyl)-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ia)

White gummy oil (dr > 10:1, 64.9 mg, 81% overall yield; 58.6 mg isolated for **5ia** as major isomer). **¹H NMR** (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.6 Hz, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 4.91 – 4.84 (m, 1H), 4.73 (d, *J* = 0.8 Hz, 1H), 4.42 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 4.91 – 4.84 (m, 1H), 4.73 (d, *J* = 0.8 Hz, 1H), 4.42 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 4.91 – 4.84 (m, 1H), 4.73 (d, *J* = 0.8 Hz, 1H), 4.42 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 4.91 – 4.84 (m, 1H), 4.73 (d, *J* = 0.8 Hz, 1H), 4.42 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 4.91 – 4.84 (m, 1H), 4.73 (d, *J* = 0.8 Hz, 1H), 4.42 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 4.91 – 4.84 (m, 1H), 4.73 (d, *J* = 0.8 Hz, 1H), 4.42 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 7.14 (d, *J* = 8.2 Hz), 7.14 (d, *J* = 8.14 (d, J), 7.14 (d, J), 7.14 (d, J), 7.14 (d, J), 7.14 (d, J) 1H), 3.61 - 3.54 (m, 2H), 3.37 - 3.27 (m, 2H), 2.58 (dd, J = 11.8, 10.2 Hz, 1H), 2.45 (s, 3H), 2.34 (s, 3H), 1.52 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.3, 144.8, 138.4, 137.3, 132.3, 132.1, 130.4, 130.2, 129.4, 127.7, 115.2, 59.2, 46.4, 41.1, 21.6, 21.1, 18.2. HRMS (ESI) calcd for C₂₂H₂₅NO₄S [M+H]⁺400.1583, found 400.1570.

3-(4-fluorobenzyl)-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ja)

Yellow gummy oil (dr > 10:1, 58.1 mg, 72% overall yield; 51.5 mg isolated for **5ja** as major isomer). ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 7.33 – 7.27 (m, 2H), 7.04 (t, J = 8.6 Hz, 2H), 4.93 – 4.89 (m, 1H), 4.82 – 4.78 (m, 1H), 4.38 (dd, J = 5.6, 3.0 Hz, 1H), 3.72 – 3.57 (m, 2H), 3.46 (ddd, J = 10.2, 1.4, 0.6 Hz, 1H), 3.32 (dd, J = 14.0, 2.8 Hz, 1H), 2.61 – 2.53 (m, 1H), 2.46 (s, 3H), 1.55 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 168.0, 162.4 (d, J = 245.0 Hz), 145.0, 138.2, 132.1 (d, J = 7.8 Hz), 131.9, 131.0 (d, J = 3.4 Hz), 130.3, 127.8, 115.6 (d, J = 21.0 Hz), 115.4, 77.9, 59.1, 46.5, 40.5, 21.6, 18.3. HRMS (ESI) calcd for C₂₁H₂₃FNO₄S [M+H]⁺404.1332, found 404.1323.

4-tosyl-6-vinylmorpholin-2-one (5ab)

Yellow solid (32.4 mg, 58% yield). Mp = 89~90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 5.93 – 5.75 (m, 1H), 5.50 – 5.37 (m, 2H), 5.04 – 4.94 (m, 1H), 4.13 (dd, *J* = 17.6, 1.2 Hz, 1H), 3.71 (ddd, *J* = 12.8, 3.2, 1.2 Hz, 1H), 3.62 (d, *J* = 17.6 Hz, 1H), 2.81 (dd, *J* = 12.7, 8.7 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 145.0, 134.2, 131.8, 130.3, 127.8, 120.2, 78.8, 46.7, 21.6. HRMS (ESI) calcd for C₁₃H₁₅NO₄S [M+H]⁺282.0800, found 282.0802.

6-methyl-6-(prop-1-en-2-yl)-4-tosylmorpholin-2-one (5ac)

Yellow solid (55.6 mg, 90% yield). Mp = 88~89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 5.07 (d, *J* = 0.6 Hz, 1H), 5.05 – 5.00 (m, 1H), 3.91 (d, *J* = 17.8 Hz, 1H), 3.66 – 3.62 (m, 2H), 2.89 (d, *J* = 12.6 Hz, 1H), 2.46 (s, 3H), 1.85 (s, 3H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 144.8, 144.4, 131.7, 130.2, 127.7, 113.6, 84.9, 49.6, 46.0, 24.1, 21.6, 18.9. HRMS (ESI) calcd for C₁₅H₁₉NO₄S [M+H]⁺310.1113, found 310.1110.

5-methyl-4-tosyl-6-vinylmorpholin-2-one (5ad)

Yellow gummy oil (49.0 mg, 83% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.73 (ddd, *J* = 17.0, 10.6, 5.6 Hz, 1H), 5.43 – 5.18 (m, 2H), 4.58 (ddt, *J* = 5.8, 4.6, 1.4 Hz, 1H), 4.22 (d, *J* = 18.0 Hz, 1H), 3.99 (qd, *J* = 6.8, 4.6 Hz, 1H), 3.88 (d, *J* = 18.0 Hz, 1H), 2.44 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.5, 144.5, 134.9, 133.2, 130.0, 127.4, 120.1, 82.4, 51.2, 43.3, 21.6, 16.4. HRMS (ESI) calcd for C₁₄H₁₇NO₄S [M+H]⁺296.0957, found 296.0954.

7-methylene-4-tosyl-1-oxa-4-azaspiro[5.5]undecan-2-one (5ae)

White gummy oil (38.4 mg, 58% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.99 – 4.95 (m, 2H), 3.83 (dd, *J* = 47.0, 17.6 Hz, 2H), 3.36 (q, *J* = 12.8 Hz, 2H), 2.51 – 2.40 (m, 4H), 2.22 – 2.11 (m, 1H), 2.06 – 1.98 (m, 1H), 1.88 – 1.73 (m, 3H), 1.48 – 1.43 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 164.5, 145.9, 144.8, 132.1, 130.2, 127.7, 110.5, 85.0, 48.0, 46.4, 36.5, 33.2, 27.1, 22.7, 21.6. HRMS (ESI) calcd for C₁₇H₂₁NO₄S [M+H]⁺336.1270, found 336.1287.

7-methylene-4-tosyl-1-oxa-4-azaspiro[5.6]dodecan-2-one (5af)

White gummy oil (52.4 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 5.15 – 5.10 (m, 1H), 5.08 – 5.04 (m, 1H), 3.90 (d, J = 17.6 Hz, 1H), 3.74 (d, J = 17.8 Hz, 1H), 3.26 (d, J = 12.8 Hz, 1H), 3.14 (d, J = 12.8 Hz, 1H), 2.46 (s, 3H), 2.44 – 2.39 (m, 1H), 2.13 (dd, J = 14.6, 7.8 Hz, 1H), 2.06 – 1.96 (m, 1H), 1.95 – 1.86 (m, 1H), 1.85 – 1.75 (m, 2H), 1.59 – 1.55 (m, 2H), 1.52 – 1.44 (m, 1H), 1.39 – 1.32 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 165.0, 148.6, 144.7, 132.1, 130.2, 127.7, 115.8, 87.9, 51.2, 46.3, 38.5, 32.9, 31.2, 29.7, 22.6, 21.6. HRMS (ESI) calcd for C₁₈H₂₃NO₄S [M+H]⁺350.1426, found 350.1429.

4. Transformations

Procedure for synthesis of 6 and characterization data.

Under air, **3ia** (71.5 mg, 0.2 mmol, 1 equiv) and *m*-CPBA(70%-75%, 51.7 mg, 0.3 mmol, 1.5 equiv) was added to 5 mL dry DCM and the mixture was stirred at 20 °C for 12 h. After the completion of reaction, the mixure was washed with saturated NaHCO₃ solution (5 mL, 2 times) and H₂O (5 mL, once). The organic layer was collected and dried over Na₂SO₄. The solvent was then evaporated and purification by chromatography (PE:EA = 3:1) gave pure product 6 as white gummy oil (dr = 4:1 (C2 and C3), 65.0 mg, 87% overall yield; 46.8 mg isolated for major isomer, 10.5 mg isolated for minor isomer). For major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.2 Hz, 2H), 7.39 – 7.29 (m, 5H), 7.20 (d, J = 6.8 Hz, 2H), 4.08 - 3.93 (m, 3H), 3.83 (d, J = 14.6 Hz, 1H), 3.41 (dd, J = 12.4, 3.8 Hz, 1H), 3.29 (d, J = 4.8 Hz, 1H), 3.81H), 3.20 (dd, J = 14.6, 11.4 Hz, 1H), 2.69 (d, J = 4.8 Hz, 1H), 2.46 (s, 3H), 1.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 138.4, 138.1, 130.1, 128.6, 128.4, 127.1, 125.7, 76.0, 63.7, 55.6, 53.9, 52.7, 48.2, 21.6, 20.3. For minor isomer: ¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.40 – 7.27 (m, 7H), 4.30 (d, *J* = 12.4 Hz, 1H), 4.22 (dd, *J* = 11.2, 3.2 Hz, 1H), 3.84 (dd, *J* = 13.8, 3.2 Hz, 1H), 3.67 (dd, *J* = 12.4, 4.4 Hz, 1H), 3.47 (d, *J* = 4.2 Hz, 1H), 3.23 (dd, *J* = 13.8, 11.2 Hz, 1H), 2.97 (d, *J* = 4.8 Hz, 1H), 2.57 (d, J = 4.8 Hz, 1H), 2.45 (s, 3H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 138.5, 137.4, 129.9, 128.6, 128.4, 127.0, 125.9, 77.2, 67.3, 57.5, 55.5, 55.2, 48.1, 21.6, 20.6. HRMS (ESI) calcd for C₂₀H₂₃NO₄S [M+H]⁺ 374.1426, found 374.1440.

Procedure for synthesis of 7 and characterization data.

Under N₂ atmosphere, naphthalene (1.0 g, 7.8 mmol) and Na (170.0 mg, 7.4 mmol) were dissolved in 15 mL dry THF and the resulting mixture wad vigrously stirred for 3 h at room temperature. Under N₂ atmosphere, **3ja** (71.5 mg, 0.2 mmol, 1 equiv) was dissolved in 2 mL dry THF and the resulting solution was cooled to 0 °C. To the solution was added the above Na/naphthalene mixture (1.9 mL, 5.0 equiv) at 0 °C and the mixture was further stirred for 1 h with temperature maintaining. After the completion of reaction, the mixure was quenched with saturated NH₄Cl solution (2 mL) and extraced with EA (5 mL, 3 times). The organic layer was collected and dried over Na₂SO₄. The solvent was then evaporated and purification by chromatography (PE:EA = 8:1) gave pure product **7** as white gummy oil (31.1 mg, 77% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.28 (m, 5H), 5.18 – 5.13 (m, 1H), 4.92 – 4.88 (s, 1H), 4.03 (dd, *J* = 10.2, 3.0 Hz, 1H), 3.85 (ddd, *J* = 32.6, 10.8, 2.8 Hz, 2H), 3.59 – 3.47 (m, 1H), 3.30 (td, *J* = 10.6, 4.2 Hz, 2H), 1.83 – 1.77 (m, 4H).¹³**C NMR** (100 MHz, CDCl₃) δ 144.2, 140.6, 128.5, 127.8, 127.3, 111.8, 73.4, 71.3, 61.4, 60.5, 20.1. HRMS (ESI) calcd for C₁₃H₁₇NO [M+H]⁺ 204.1388, found 204.1377.

Procedure for synthesis of 8 and characterization data.

Under N₂ atmosphere, **3ab** (53.5 mg, 0.2 mmol, 1 equiv) and Grubbs II Catalyst (8.4 mg, 0.01 mmol, 0.05 equiv) were added to 3 mL of dry toluene and the resulting mixture was stirred for 15 min at room temperature. Afterwards, the mixure was heated to 80 °C followed by the dropwise addition of 4-propylhept-1-ene (84.8 mg, 0.6 mmol, 3 equiv). The resulting mixture was stirred at 80 °C for 24 h. After the completion of the reaction, the solvent was evaporated and purification by flash column chromatography (PE:EA = 5:1) provided the product **8** as white gummy oil (47.6 mg, 63% yield). ¹**H NMR** (400 MHz, CDCl3) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 5.65 – 5.54 (m, 1H), 5.46 (dd, *J* = 15.6, 7.6 Hz, 1H), 4.18 – 4.06 (m, 1H), 3.81 (dt, *J* = 11.4, 3.0 Hz, 1H), 3.69 (qd, *J* = 11.4, 3.0 Hz, 2H), 3.63 – 3.54 (m, 1H), 3.36 (dt, *J* = 12.4, 2.6 Hz, 1H), 3.30 – 3.17 (m, 1H), 2.42 (s, 3H), 1.95 – 1.87 (m, 1H), 1.81 (dt, *J* = 14.2, 7.2 Hz, 1H), 1.38 – 1.27 (m, 3H), 1.23 – 1.08 (m, 6H), 0.86 (td, *J* = 7.2, 2.8 Hz, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 136.2, 133.8, 129.5, 127.7, 125.3, 71.5, 66.6, 56.1, 42.2, 36.9, 36.4, 35.9, 35.7, 21.5, 19.8, 19.7, 14.5, 14.5. HRMS (ESI) calcd for C₂₁H₃₃NO₃S [M+H]⁺380.2295, found 380.2298.

Procedure for synthesis of 9 and characterization data.

Under air, 5ea (74.3 mg, 0.2 mmol, 1 equiv) was added to 2 mL CHCl₃ and the resulting mixure was stirred at 0 °C. Br₂ (0.02 mL, 0.3 mmol, 1.5 equiv) was dissolved in 2 mL CHCl₃. The resulting Br₂ solution was added to the above mixuture dropwise at 0 °C with vigrous stirring. After the addition, the system was heated up to 20 °C and stirred for 12 h. After the completion of the reaction, saturated Na₂SO₃ solution (0.5 mL) was added to the reaction and the resulting mixture was extracted with DCM (5 mL, 2 times) and washed with H₂O (5 mL, 2 times). The organic layer was collected and dried over Na₂SO₄. The solvent was evaporated to give the product 9 as white gummy oil (dr = 4:1 (C2 and C3), 100.9 mg, 95% overall yield; 76.3 mg isolated for major isomer, 16.8 mg isolated for minor isomer), which was pure enough. For major isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 6.2Hz, 2H), 7.46 – 7.35 (m, 5H), 5.74 (s, 1H), 4.32 (dd, J = 11.2, 3.6 Hz, 1H), 4.04 (dd, J = 11.8, 3.6 Hz, 1H), 3.72 (d, *J* = 11.2 Hz, 1H), 3.66 (d, *J* = 11.2 Hz, 1H), 3.50 (t, *J* = 11.4 Hz, 1H), 2.45 (s, 3H), 1.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 165.8, 144.9, 133.7, 133.2, 130.2, 129.5, 129.0, 127.5, 125.5, 76.3, 61.9, 60.1, 44.3, 38.9, 26.3, 21.7. For minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.47 – 7.35 (m, 5H), 5.73 (s, 1H), 4.25 (dd, J = 11.2, 3.8 Hz, 1H), 4.07 (d, J = 10.2 Hz, 1H), 3.84 (dd, J = 11.8, 3.8 Hz, 1H), 3.63 (dd, J = 23.8, 10.8 Hz, 2H), 2.45 (s, 3H), 1.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 165.5, 145.0, 133.5, 133.1, 130.3, 129.5, 129.1, 127.6, 125.7, 74.6, 62.8, 60.3, 45.2, 38.8, 26.6, 21.7. HRMS (ESI) calcd for C₂₀H₂₁Br₂NO₄S [M+H]⁺529.9636, found 529.9644.

Procedure for synthesis of 10 and characterization data.⁴

Under N₂ atmosphere, **5ac** (61.9 mg, 0.2 mmol, 1 equiv) was added to 10 mL dry THF. The solution was then cooled to -40 °C. With vigrous stirring, DIBAL-H (1.0 mol/L in toluene, 0.5 mL, 0.5 mmol, 2.5 equiv) was added to the mixture dropwise. The resulting mixture was then stirred under at -40 °C for 2 h. After the completion of the reaction, H₂O was added to the mixture carefully to quench the reaction and the mixture was extracted with EA (10 mL, 3 times). Then the combined organic layer were collected and dried over Na_2SO_4 . The solvent was evaporated and purification by preparative TLC (PE:EA = 5:1) afforded the product 10 as white solid (dr = 2.5:1, 57.9 mg, 93% overall yield). Mp = $171 \sim 172$ °C. For major isomer: ¹**H** NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 5.21 – 5.16 (m, 1H), 5.11 – 5.07 (m, 1H), 4.99 (br, 1H), 3.91 (d, *J* = 12.0 Hz, 1H), 3.70 (d, *J* = 10.4 Hz, 1H), 2.87 (d, *J* = 5.6 Hz, 1H), 2.45 (s, 3H), 2.11 (d, *J* = 11.6 Hz, 1H), 2.06 – 1.95 (m, 1H), 1.79 (s, 3H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ144.1, 143.8, 132.0, 129.9, 127.8, 114.4, 88.9, 76.1, 51.0, 50.3, 26.4, 21.6, 18.7. For minor isomer: ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 5.18 (br, 1H), 5.14 – 5.11 (m, 1H), 4.93 – 4.89 (m, 1H), 3.39 (d, J = 12.4 Hz, 1H), 3.15 – 3.07 (m, 2H), 2.83 (d, J = 11.6 Hz, 1H), 2.45 (s, 3H), 2.06 – 1.95 (m, 1H), 1.82 (s, 3H), 1.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 147.6, 144.2, 132.2, 129.9, 127.7, 111.3, 89.4, 76.1, 52.1, 51.0, 22.3, 18.8. HRMS (ESI) calcd for C₁₅H₂₁NO₄S [M+H]⁺ 312.1270, found 312.1278.

5. Preliminary mechanism study

In situ ¹H NMR Spectroscopy of Substrate 1a

Scheme S1. The speculative equilibrium for substrate 1a

Figure S1. The in situ ¹H NMR in d-DMSO with time

The speculative equilibrium in *d*-DMSO was shown in Scheme S1. Reaction of Pd(OAc)₂ (4.4 mg, 0.02 mmol, 0.5 equiv.) and substrate **1a** (8.6 mg, 0.04 mmol, 1 equiv.) in *d*-DMSO with time was monitored by ¹H NMR spectroscopy (Figure S1). Pd(OAc)₂ was reacted with substrate **1a** in *d*-DMSO (0.5 mL) at 20 °C. The NMR spectra were recorded at 20 °C. The *in situ* ¹H NMR shows that the amount of a new complex was increased with time, and the equilibrium was stable until 30 min. These results show that a new Pd(II)-complex was formed in the equilibrium.

Figure S2. The *in situ* ¹H NMR with different amount of Pd(OAc)₂ for substrate 1a

Reactions of different amounts of $Pd(OAc)_2$ and substrate **1a** (8.6 mg, 0.04 mmol, 1 equiv.) were monitored by ¹H NMR spectroscopy (Figure S2). $Pd(OAc)_2$ was reacted with substrate **1a** in *d*-DMSO (0.5 mL) at 20 °C for 60 min. The NMR specta were recorded at 20 °C. These results show the amount
of substrate **1a** reduced and the amount of new complex increased with the amount of $Pd(OAc)_2$. We found that the peak areas of active hydrogens (H¹ and H²) in substrate **1a** are always almost the same and the peak area of AcOH is double of those of the new complex (entry 7). This suggests that bidentate complex **11** is likely to be formed.

Figure S3. The in situ ¹H NMR at different tempratures for substrate 1a

Reactions of $Pd(OAc)_2$ (4.4 mg, 0.02 mmol, 0.5 equiv.) and substrate **1a** (8.6 mg, 0.04 mmol, 1 equiv.) were monitored by ¹H NMR spectroscopy in different tempratures (Figure S3). $Pd(OAc)_2$ was reacted with substrate **1a** in *d*-DMSO (0.5 mL) at different tempratures for 60 min. The peaks are almost unchanged at 70 °C (compared with 20 °C).

Figure S4. The *in situ* ¹H NMR for substrate 1a

 $Pd(OAc)_2$ (4.4 mg, 0.02 mmol, 0.5 equiv.) was reacted with substrate **1a** (8.6 mg, 0.04 mmol, 1 equiv.) in *d*-DMSO (0.5 mL) in a NMR tube at 20 °C for 60 min. The NMR specta were recorded at 20 °C (Figure S4, entry 1). Then the mixture was evaporated and vacuum drying, and *d*-DMSO was added again (Figure S4, entry 2). The peaks of AcOH disappeared (the peaks of $Pd(OAc)_2$ also reduced a lot along with the removal of AcOH due to the chemical equilibrium shift), and the rest peaks of are almost unchanged. These results further exclude the the possibility of forming monodentate complex.

In situ ¹H NMR Spectroscopy of substrate 4a

Scheme S2. The speculative equilibrium in *d*-DMSO for substrate 4a

Figure S5. The *in situ* ¹H NMR with time for substrate 4a

The speculative equilibrium in *d*-DMSO was shown in Scheme S2. Reaction of Pd(OAc)₂ (4.4 mg, 0.02 mmol, 0.5 equiv.) and substrate **4a** (9.2 mg, 0.04 mmol, 1 equiv.) in *d*-DMSO with time was monitored by ¹H NMR spectroscopy (Figure S5). Pd(OAc)₂ was reacted with substrate **4a** in *d*-DMSO (0.5 mL) in a NMR tube at 20 °C. The NMR spectra were recorded at 20 °C. The *in situ* ¹H NMR shows that the reaction reached the equilibrium quickly.

Figure S6. The in situ ¹H NMR with different amount of Pd(OAc)₂ for substrate 4a

Reactions of different amounts of $Pd(OAc)_2$ and substrate **1a** (9.2 mg, 0.04 mmol, 1 equiv.) were monitored by ¹H NMR spectroscopy (Figure S6). $Pd(OAc)_2$ was reacted with substrate **4a** in *d*-DMSO (0.5 mL) in a NMR tube at 20 °C for 30 min. The NMR specta were recorded at 20 °C. The new complex was increased along with the amount of $Pd(OAc)_2$. We found that the substrate **4a** almost disppeared and the peak area of AcOH is double of those of the new complex (entry 7). This suggests that bidentate complex **15** is likely to be formed.

Figure S7. The in situ ¹H NMR at different tempratures for substrate 4a

Reactions of $Pd(OAc)_2$ (4.4 mg, 0.02 mmol, 0.5 equiv.) and substrate **4a** (9.2 mg, 0.04 mmol, 1 equiv.) were monitored by ¹H NMR spectroscopy at different tempratures (Figure S7). $Pd(OAc)_2$ was reacted with substrate **4a** in *d*-DMSO (0.5 mL) at different tempratures for 60 min. The peaks are almost unchanged at 70 °C.

Figure S8. The in situ ¹H NMR in d-DMSO

 $Pd(OAc)_2$ (4.4 mg, 0.02 mmol, 0.5 equiv.) was reacted with substrate **4a** (9.2 mg, 0.04 mmol, 1 equiv.) in *d*-DMSO (0.5 mL) in a NMR tube at 20 °C for 60 min. The NMR specta were recorded at 20 °C (Figure S8, entry 1). Then the mixture was evaporated and vacuum drying, and *d*-DMSO was added again (Figure S8, entry 2). The peaks of AcOH almost disappeared and the peaks of **15** are almost unchanged. These results further exclude the the possibility of forming monodentate complex.

6. NMR spectra

200 190 180

 130 120

f1 (ppm)

S44

Ph OH Ph NHTs (1d)

S50

,OH

∕ОН

NHMe(1n)

S56

S59

S103

S104

S110

S114

7. X-ray crystal structure analysis

The structure of 3ba, 3ga', 3ia, 5da, 5ea and 5ab were determined by X-ray single crystal diffraction analysis. CCDC 1832181 (3ba), CCDC 1833770 (3ga'), CCDC 1832183 (3ia), CCDC 1832184 (5da), CCDC 1832182 (5ea) and CCDC 1836399 (5ab) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre viawww.ccdc.cam.ac.uk/data_request/cif.

A suitable crystal was selected and mounted on a Xcalibur, Atlas, Gemini ultra diffractometer. Using Olex2⁵, the structure was solved with the ShelXS⁶ structure solution program using Direct Methods and refined with the ShelXL⁶ refinement package using Least Squares minimisation.

X-Ray Crystallography Data for 3ba (CCDC 1832181): A colorless crystal suitable for X-ray crystallography was obtained from a *n*-hexane/dichloromethane solution at room temperature under air.

Bond precision:	C-C = 0.0031 A	Wavelength=0.71073	
Cell: Temperature:	a=11.6879(8) alpha=90 293 K	b=18.2014(11) beta=102.767(5)	c=8.4879(4) gamma=90
Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000' h,k,lmax Nref Tmin,Tmax Tmin'	Calculated 1761.04(18) P 21/c -P 2ybc C18 H25 N 03 S C18 H25 N 03 S 335.45 1.265 4 0.198 720.0 720.80 14,21,10 3218 0.931,0.955 0.920	Reported 1761.03(17 P 1 21/c 1 -P 2ybc C18 H25 N C18 H25 N 335.45 1.265 4 0.198 720.0 14,21,10 3211 0.927,1.00) 03 S 03 S
Correction method= # Reported T Limits: Tmin=0.927 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 0.998 Theta(max)= 25.350			
R(reflections) = 0.0432(2382) wR2(reflections) = 0.1221(3211) S = 1.037 Npar= 210			

X-Ray Crystallography Data for **3ga**' (CCDC 1833770): A colorless crystal suitable for X-ray crystallography was obtained from a *n*-hexane/dichloromethane solution at room temperature under air.

Bond precision:	C-C = 0.0025 A	Wavelength=1.54178		
Cell:	a=9.1241(2) alpha=90	b=13.2825(2) beta=94.118) (1)	c=25.2487(5) gamma=90
Temperature:	173 K		(-)	,
	Calculated	R	eported	
Volume	3052.01(10)	3	052.01(1	0)
Space group	P 21/c	P	21/c	
Hall group	-P 2ybc	-1	P 2ybc	
Moiety formula	C15 H21 N O3 S	C	15 H21 N	03 S
Sum formula	C15 H21 N O3 S	C	15 H21 N	03 S
Mr	295.39	2	95.39	
Dx,g cm-3	1.286	1	.286	
Z	8	8		
Mu (mm-1)	1.944	1	.944	
F000	1264.0	12	264.0	
F000'	1270.12			
h,k,lmax	10,15,30	10	0,15,30	
Nref	5389	5	383	
Tmin, Tmax	0.911,0.943			
Tmin'	0.907			
Correction metho	od= Not given			
Data completeness= 0.999		Theta(max) = 66.587		
R(reflections)=	0.0344(4672)	wR2(refle	ctions)=	0.0910(5383)
S = 1.059	Npar=	367		

X-Ray Crystallography Data for **3ia** (CCDC 1832183): A colorless crystal suitable for X-ray crystallography was obtained from a *n*-hexane/dichloromethane solution at room temperature under air.

Bond precision:	C-C = 0.0051	A	Wavelength	1=0.71073
Cell:	a=27.193(3) alpha=90	b=8.6013(7)))2 (11)	c=16.5250(17)
Temperature:	293 K	2000 101.0	(11)	gamma 90
	Calculated		Reported	
Volume	3790.2(7)		3790.2(7)	
Space group	C 2/c		C 1 2/c 1	L
Hall group	-C 2yc		-C 2yc	
Moiety formula	C20 H23 N O3 S		C20 H23 N	1 03 S
Sum formula	C20 H23 N O3 S		C20 H23 N	1 03 S
Mr	357.45		357.45	
Dx,g cm-3	1.253		1.253	
Z	8		8	
Mu (mm-1)	0.189		0.189	
F000	1520.0		1520.0	
F000'	1521.63			
h,k,lmax	32,10,19		32,10,19	
Nref	3478		3471	
Tmin, Tmax	0.941,0.985		0.679,1.0	000
Tmin'	0.941			
Correction metho AbsCorr = MULTI	od= # Reported -SCAN	T Limits: T	min=0.679	Tmax=1.000
Data completeness= 0.998 Theta(max)= 25.350				
R(reflections) = 0.0554(2089) wR2(reflections) = 0.1687(3471)				
S = 1.048	Npa	r= 228		

X-Ray Crystallography Data for **5da** (CCDC 1832184): A colorless crystal suitable for X-ray crystallography was obtained from a *n*-hexane/dichloromethane solution at room temperature under air.

Bond precision	d precision: C-C = 0.0039 A Wavelength=0.71073		th=0.71073
Cell:	a=8.2097(6) alpha=63.440(8)	b=11.3718(10) beta=84.691(6)	c=11.4320(9) gamma=84.975(7)
Temperature:	293 К		
	Calculated	Reporte	ed
Volume	949.27(15)	949.27	(15)
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C18 H25 N O4 S	C18 H25	5 N 04 S
Sum formula	C18 H25 N O4 S	C18 H25	5 N 04 S
Mr	351.45	351.45	
Dx,g cm-3	1.230	1.230	
Z	2	2	
Mu (mm-1)	0.191	0.191	
F000	376.0	376.0	
F000'	376.42		
h,k,lmax	9,13,13	9,13,13	3
Nref	3475	3462	
Tmin,Tmax	0.929,0.948	0.837,1	.000
Tmin'	0.926		
Correction method= # Reported T Limits: Tmin=0.837 Tmax=1.000 AbsCorr = MULTI-SCAN			
Data completeness= 0.996 Theta(max)= 25.349			
R(reflections) = 0.0524(2133) wR2(reflections) = 0.1075(3462)			
S = 0.952	Npar=	232	

X-Ray Crystallography Data for **5ea** (CCDC 1832182): A colorless crystal suitable for X-ray crystallography was obtained from a *n*-hexane/dichloromethane solution at room temperature under air.

Bond precision:	C-C = 0.0036 A	Wavelength=0.71073	
Cell:	a=17.4085(10)	b=6.2355(3)	c=17.4828(11)
	alpha=90	beta=99.565(6)	gamma=90
Temperature:	293 K		
	Calculated	Reported	L
Volume	1871.39(19)	1871.38(19)
Space group	P 21/c	P 1 21/c	1
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C20 H21 N O4 S	C20 H21	N 04 S
Sum formula	C20 H21 N O4 S	C20 H21	N 04 S
Mr	371.44	371.44	
Dx,g cm-3	1.318	1.318	
Z	4	4	
Mu (mm-1)	0.198	0.198	
F000	784.0	784.0	
F000'	784.86		
h,k,lmax	20,7,21	20,7,21	
Nref	3426	3415	
Tmin, Tmax	0.915,0.961	0.949,1.	000
Tmin'	0.915		
Correction meth	od= # Reported T :	Limits: Tmin=0.949	Tmax=1.000
ADSCOTT - MOLIT	-SCAN		
Data completene	ss= 0.997	Theta(max) = 25.3	50
R(reflections)=	0.0462(2519)	wR2(reflections)	= 0.1228(3415)
S = 1.023	Npar=	237	

X-Ray Crystallography Data for **5ab** (CCDC 1836399): A colorless crystal suitable for X-ray crystallography was obtained from a *n*-hexane/dichloromethane solution at room temperature under air.

8. References

(a) A. R. O. Venning, M. R. Kwiatkowski, J. E. R. Peña, B. C. Lainhart, A. A. Guruparan and E. J. Alexanian, J. Am. Chem. Soc., 2017, 139, 11595; (b) L. Copey, L. Jean-Gerard, E. Framery, G. Pilet, V. Robert and B. Andrioletti, Chem. Eur. J., 2015, 21, 9057; (c) P. V. Balaji, and S. Chandrasekaren, Chem. Commun., 2014, 50, 70; (d) Y. Qin, C. Wang, Z. Huang, X. Xiao and Y. Jiang, J. Org. Chem., 2004, 69, 8533; (e) T. Kang, H. Kim, J. G. Kim and S. Chang, Chem. Commun., 2014, 50, 12073; (f) M. Yar, E. M. McGarrigle and V. K. Aggarwal, Angew. Chem., Int. Ed., 2008, 47, 3784; (g) X. Tang, L. Huang, C. Qi, X. Wu, W. Wu and H. Jiang, Chem. Commun., 2013, 49, 6102; (h) J. Llaveria, A. Espinoza, G. Negrón, M. I. Matheu and S. Castillón, Tetrahedron Lett., 2012, 53, 2525; (i) K. Yamada, M. Nakano, M. Maekawa, T. Akindele and K. Tomioka, Org. Lett., 2008, 10, 3805.

(a) D. I. Ugwu, U. C. Okoro, P. O. Ukoha, S. Okafor, A. Ibezim and N. M. Kumar, *Eur. J. Med. Chem.*,
2017, **135**, 349; (b) W. Liu, D. Wang, Y. Zhao, F. Yi and J. Chen, *Adv. Synth. Catal.*, 2016, **358**, 1968;
(c) C. S. Schultz, S. D. Dreher, N. Ikemoto, J. M. Williams, E. J. J. Grabowski, S. W.Krska, Y. Sun, P.
G. Dormer and L. DiMichele, *Org. Lett.*, 2005, **7**, 3405; (d) G. Gao, C. Lv, Q. Li, L. Ai and J. Zhang,
Tetrahedron Lett., 2015, **56**, 6742; (e) N. Jain, M. B. Mandal and A. V. Bedekar, *Tetrahedron*, 2014, **70**,
4343; (f) Rozentsveig, Levkovskaya, Mirskova and Kashik, *Russ. J. Org. Chem.*, 2000, **36**, 1760.

3. Z. Lu and S. S. Stahl, Org. Lett., 2012, 14, 1234.

4. Y. Brunel and G. Rousseau, J. Org. Chem., 1996, 61, 5793.

- 5. O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- 6. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.