Supporting Information

Direct C-OH/P(O)-H Dehydration Coupling Forming Phosphine

Oxides

Long Chen,^a Yueyue Zhu,^a Tieqiao Chen,^{*a,b} Ji-Shu Zhang^a and Li-Biao Han^{*c}

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

^b Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Materials and Chemical Engineering, Hainan University, Haikou, 570228, China.

^c National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

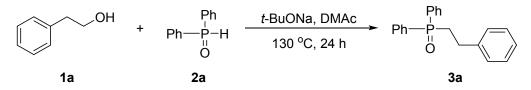
E-mail: chentieqiao@hnu.edu.cn; libiao-han@aist.go.jp

Table of Contents

- 1) General information
- 2) Procedures for the base-promoted dehydration coupling of P(O) –

H compounds with phenylethanol

- 3) Characterization and analytical data of products 3
- 4) References
- 5) Copies of ¹H NMR, ¹³C NMR and ³¹P NMR spectra

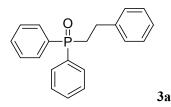

1. General information

All reactions were carried out in dry Schlenk tubes under N₂ atmosphere. Dry solvents were obtained by purification according to standard methods. Reagents were used as received unless otherwise noted. Column chromatography was performed using Silica Gel 60 (particle size 37–54 μ m). The pure products were obtained by means of column chromatography. ¹H NMR, ¹³C NMR and ³¹P NMR data were acquired on a Bruker-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, and 162 MHz for ³¹P NMR spectroscopy). Chemical shifts for ¹H NMR are referred to internal Me₄Si (0 ppm) and reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration.

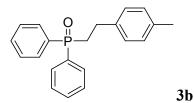
2. Procedures for the base-promoted dehydration coupling of P(O)-H

compounds with phenylethanol

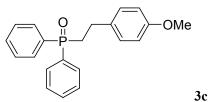
1) A Typical procedure.

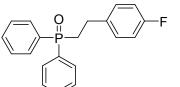


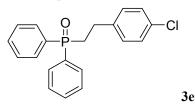
Under the Nitrogen atmosphere, 0.5 mmol phenylethanol **1a**, 0.2 mmol diphenylphosphine oxide **2a**, 0.2 mmol sodium *tert*-butoxide and 1 mL DMAc were charged into a 25 mL Schleck tube, and the mixture was heated at 130 °C for 24 h. After being cooled to room temperature, the mixture was added to 10 mL CH₂Cl₂ and washed by 10 mL water for three times. After removal of the volatiles in vacuum, the residues were passed through a short silica chromatography (particle size 37–54 μ m, ethyl acetate/petroleum ether as eluent) to afford analytically pure **3a** in 80% isolated yield.

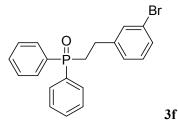

2) 10 mmol scale experiment

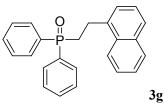
Under the Nitrogen atmosphere, 25 mmol phenylethanol **1a** (3.0541 g), 10 mmol diphenylphosphine oxide **2a** (2.0220 g), 10 mmol sodium *tert*-butoxide and 40 mL DMAc were charged into a 100 mL Schleck tube, and the mixture was heated at 130 °C for 24 h. After being cooled to room temperature, the mixture was added to 200 mL CH₂Cl₂ and washed by 100 mL water for three times. After removal of the volatiles in vacuum, the residues were passed through a silica chromatography (particle size 37–54 μ m, ethyl acetate/petroleum ether as eluent) to afford analytically pure **3a** in 85% isolated yield (2.6041 g). When the experiment was conducted in the absence of solvent DMAc, **3a** was obtained in 76% isolated yield according to a similar procedure (2.3281 g).


3. Characterization and analytical data of products 3

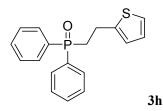

phenethyldiphenylphosphine oxide (3a). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded **3a** (49.0 mg, 80% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.79–7.74 (m, 4H), 7.56–7.44 (m, 6H), 7.28–7.24 (m, 2H), 7.19–7.15 (m, 3H), 2.98–2.88 (m, 2H), 2.63–2.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 141.2 (d, *J*_{*C-P*} = 15.3 Hz), 132.7 (d, *J*_{*C-P*} = 97.8 Hz), 131.9 (d, *J*_{*C-P*} = 2.6 Hz), 130.8 (d, *J*_{*C-P*} = 9.2 Hz), 128.8, 128.7 (d, *J*_{*C-P*} = 6.5 Hz), 128.1, 126.4, 31.9 (d, *J*_{*C-P*} = 69.6 Hz), 27.5 (d, *J*_{*C-P*} = 3.0 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 31.69. This compound is known.¹


(4-methylphenethyl)diphenylphosphine oxide (3b). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded 3b (46.8 mg, 73% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.81–7.71 (m, 4H), 7.55–7.43 (m, 6H), 7.05 (m, 4H), 2.92–2.86 (m, 2H), 2.60–2.53 (m, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.1 (d, *J*_{C-P} = 15.3 Hz), 135.9, 132.8 (d, *J*_{C-P} = 97.6 Hz), 131.8 (d, *J*_{C-P} = 2.6 Hz), 130.8 (d, *J*_{C-P} = 9.3 Hz), 129.3, 128.7 (d, *J*_{C-P} = 11.5 Hz), 128.0, 32.0 (d, *J*_{C-P} = 69.3 Hz), 27.1 (d, *J*_{C-P} = 3.1 Hz), 21.0; ³¹P NMR (162 MHz, CDCl₃): δ 31.66. This compound is known.¹

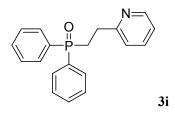

(4-methoxyphenethyl)diphenylphosphine oxide (3c). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded 3c (47.1 mg, 70% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.82–7.71 (m, 4H), 7.55–7.48 (m, 6H), 7.09-7.07 (m, 2H), 6.81–6.79 (m, 2H), 3.77 (s, 3H), 2.91–2.85 (m, 2H), 2.59–2.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃); δ 158.1, 133.2 (d, $J_{C-P} = 15.6$ Hz), 132.8 (d, $J_{C-P} = 97.5$ Hz), 131.8 (d, $J_{C-P} = 2.6$ Hz), 130.8 (d, $J_{C-P} = 9.3$ Hz), 129.0, 128.7 (d, $J_{C-P} = 11.5$ Hz), 114.0, 55.3, 32.1 (d, $J_{C-P} = 69.2$ Hz), 26.7 (d, $J_{C-P} = 3.1$ Hz); ³¹P NMR (162 MHz, CDCl₃): δ 31.62. This compound is known.²


(4-fluorophenethyl)diphenylphosphine oxide(3d). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (2/1) afforded 3d (38.3 mg, 59% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.72–7.64 (m, 4H), 7.48–7.36 (m, 6H), 7.06–7.00 (m, 2H), 6.84 (m, 2H), 2.83 (m, 2H), 2.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.5 (d, $J_{F-C} =$ 244.4 Hz), 136.7 (dd, $J_{C-P} = 15.0$ Hz, $J_{C-F} = 3.1$ Hz), 132.7 (d, $J_{C-P} = 98.3$ Hz), 131.9 (d, $J_{C-P} = 2.6$ Hz), 130.8 (d, $J_{C-P} = 9.3$ Hz), 129.5 (d, $J_{C-F} = 7.9$ Hz), 128.8 (d, $J_{C-P} = 11.6$ Hz), 115.4 (d, $J_{C-F} =$ 21.3 Hz), 32.0 (d, $J_{C-P} = 69.8$ Hz), 26.8 (d, $J_{C-P} = 2.9$ Hz); ³¹P NMR (162 MHz, CDCl₃): δ 31.43. This compound is known.²

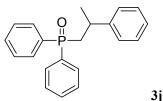
(4-chlorophenethyl)diphenylphosphine oxide (3e). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded 3e (60.7 mg, 89% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.80–7.70 (m, 4H), 7.53–7.48 (m, 6H), 7.21–7.20 (m, 2H), 7.09–7.07 (m, 2H), 2.94–2.88 (m, 2H), 2.58–2.52 (m, 2H);¹³C NMR (100 MHz, CDCl₃): δ 139.6 (d, $J_{C-P} = 15.0$ Hz), 132.6 (d, $J_{C-P} = 98.4$ Hz), 132.1, 131.9 (d, $J_{C-P} = 2.6$ Hz), 130.8 (d, $J_{C-P} = 9.3$ Hz), 129.5, 128.8 (d, $J_{C-P} = 11.6$ Hz), 128.7, 31.8 (d, $J_{C-P} = 69.5$ Hz), 27.0 (d, $J_{C-P} = 2.9$ Hz);³¹P NMR (162 MHz, CDCl₃): δ 31.30. This compound is known.²

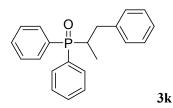


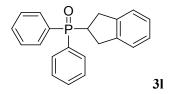
(3-bromophenethyl)diphenylphosphine oxide (3f). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded 3f (67.8 mg, 88% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.74 (m, 4H), 7.55–7.46 (m, 6H), 7.29–7.27 (m, 2H), 7.13–7.08 (m, 2H), 2.94–2.88 (m, 2H), 2.59–2.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 143.4 (d, $J_{C-P} = 14.9$ Hz), 132.5 (d, $J_{C-P} = 98.1$ Hz), 131.9 (d, $J_{C-P} = 2.7$ Hz), 131.1, 130.8 (d, $J_{C-P} = 9.3$ Hz), 130.2, 129.5, 128.8 (d, $J_{C-P} = 11.6$ Hz), 126.9, 122.6, 31.6 (d, $J_{C-P} = 69.5$ Hz), 27.3 (d, $J_{C-P} = 2.9$ Hz); ³¹P NMR (162 MHz, CDCl₃): δ 31.20. This compound is known.

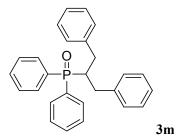


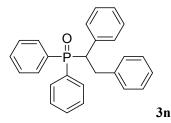
(2-(naphthalen-1-yl)ethyl)diphenylphosphine oxide(3g). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded 3g (64.9 mg, 91% yield) as a pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.89–7.80 (m, 6H), 7.73–7.71 (m, 1H), 7.58–7.48 (m, 8H), 7.39–7.32 (m, 2H), 3.45–3.39 (m, 2H), 2.75–2.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 137.3 (d, *J*_{C-P} = 14.6 Hz), 133.9, 132.8 (d, *J*_{C-P} = 97.7 Hz), 131.9 (d, *J*_{C-P} = 2.7 Hz), 131.3, 130.8 (d, *J*_{C-P} = 9.3 Hz), 128.9, 128.7 (d, *J*_{C-P} = 11.5 Hz), 127.2, 126.2,

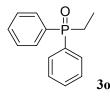

125.8, 125.7, 125.6, 123.3, 31.2 (d, $J_{C-P} = 69.1$ Hz), 24.8 (d, $J_{C-P} = 2.8$ Hz); ³¹P NMR (162 MHz, CDCl₃): δ 31.69. This compound is known.¹

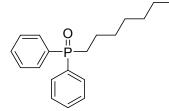

diphenyl(2-(thiophen-2-yl)ethyl)phosphine oxide(3h). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded **3h** (48.7 mg, 78% yield) as a white solid;¹H NMR (400 MHz, CDCl₃): δ 7.79–7.74 (m, 4H), 7.54–7.49 (m, 6H), 7.11 (s, 1H), 6.88 (s, 1H), 6.79 (s, 1H), 3.18–3.13 (m, 2H), 2.89–2.63 (m, 2H);¹³C NMR (100 MHz, CDCl₃): δ 143.9 (d, $J_{C-P} = 17.5$ Hz), 132.5 (d, J = 99.3 Hz), 132.0 (d, $J_{C-P} = 2.7$ Hz), 130.8 (d, $J_{C-P} = 9.3$ Hz), 128.8 (d, $J_{C-P} = 11.6$ Hz), 126.9, 124.6, 123.6, 32.2 (d, $J_{C-P} = 69.2$ Hz), 22.2 (d, $J_{C-P} = 2.1$ Hz);³¹P NMR (162 MHz, CDCl₃): δ 31.07.This compound is known.¹


diphenyl(2-(pyridin-2-yl)ethyl)phosphine oxide(3i). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/1) afforded **3i** (40.0 mg, 65% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 8.49–8.48 (m, 1H), 7.81–7.78 (m, 4H), 7.55–7.44 (m, 7H), 7.14–7.12 (m, 1H), 7.10–7.07 (m, 1H), 3.15–3.09 (m, 2H), 2.82–2.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 160.2 (d, $J_{C-P} = 14.4$ Hz), 149.3, 136.5, 132.8 (d, $J_{C-P} = 98.2$ Hz), 131.8 (d, J = 2.7 Hz), 130.8 (d, $J_{C-P} = 9.4$ Hz), 128.7 (d, $J_{C-P} = 11.7$ Hz), 123.11, 121.51 , 29.7 (d, $J_{C-P} = 2.7$ Hz), 29.2 (d, $J_{C-P} = 71.2$ Hz); ³¹P NMR (162 MHz, CDCl₃): δ 32.39. This compound is known.²

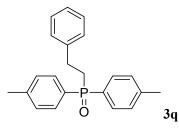

diphenyl(2-phenylpropyl)phosphine oxide (3j). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded **3j** (48.7 mg, 76% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.77–7.72 (m, 2H), 7.68–7.63 (m, 2H), 7.49–7.35 (m, 6H), 7.21–7.17 (m, 2H), 7.13–7.09 (m, 3H), 3.38–3.27 (m, 1H), 2.63–2.54 (m, 2H), 1.38–1.37 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.0 (d, $J_{C-P} = 10.2$ Hz), 134.4 (d, $J_{C-P} = 97.2$ Hz), 132.8 (d, $J_{C-P} = 97.6$ Hz), 131.6 (d, $J_{C-P} = 2.7$ Hz), 131.5 (d, $J_{C-P} = 2.7$ Hz), 130.8 (d, $J_{C-P} = 9.1$ Hz), 130.5 (d, $J_{C-P} = 9.2$ Hz), 128.6 (d, $J_{C-P} = 23.9$ Hz), 128.55 (d, $J_{C-P} = 1.6$ Hz), 128.5, 126.6, 126.4, 38.4 (d, $J_{C-P} = 69.0$ Hz), 34.3 (d, $J_{C-P} = 3.1$ Hz), 23.5 (d, $J_{C-P} = 5.2$ Hz); ³¹P NMR (162 MHz, CDCl₃): δ 30.30. This compound is known.²


diphenyl(1-phenylpropan-2-yl)phosphine oxide (3k). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded **3k** (36.5 mg, 57% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.91–7.81 (m, 4H), 7.55–7.45 (m, 6H), 7.28–7.24 (m, 2H), 7.20–7.17 (m, 1H), 7.12–7.10 (m, 2H), 3.09–3.02 (m, 1H), 2.87–2.59 (m, 2H), 1.09–1.04 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.6 (d, $J_{C-P} = 14.7$ Hz), 132.2 (d, $J_{C-P} = 94.1$ Hz), 132.2 (d, $J_{C-P} = 96.2$ Hz), 131.7 (d, $J_{C-P} = 2.8$ Hz), 131.6 (d, $J_{C-P} = 2.6$ Hz), 131.1, 131.0 (d, $J_{C-P} = 8.6$ Hz), 129.0, 128.70, 128.7 (d, $J_{C-P} = 23.5$ Hz), 128.5, 126.4, 35.0, 34.5 (d, $J_{C-P} = 70.6$ Hz), 11.7 (d, $J_{C-P} = 2.5$ Hz); ³¹P NMR (162 MHz, CDCl₃): δ 36.16. This compound is known.⁴

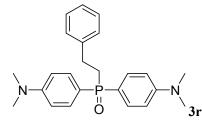

(2,3-dihydro-1H-inden-2-yl)diphenylphosphine oxide(3l). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/1) afforded 3l (45.2 mg, 71% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.84–7.80 (m, 4H), 7.54–7.46 (m, 6H), 7.12 (s, 4H), 3.46–3.10 (m, 3H), 3.06–3.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 141.7 (d, $J_{C-P} = 9.9$ Hz), 132.8 (d, $J_{C-P} = 96.8$ Hz), 131.8 (d, $J_{C-P} = 2.6$ Hz), 131.0 (d, $J_{C-P} = 8.9$ Hz), 128.7 (d, $J_{C-P} = 11.3$ Hz), 126.7, 124.3, 37.8 (d, $J_{C-P} = 75.7$ Hz), 33.1; ³¹P NMR (162 MHz, CDCl₃) δ : 33.38. Melting point: 170.8-176.3 °C. HRMS: Cal. for C₂₁H₁₉OP 318.1174. Found 318.1182. IR: 3021, 1435, 1183, 1118, 746, 722, 695 cm⁻¹.


(1,3-diphenylpropan-2-yl)diphenylphosphine oxide(3m). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/1) afforded **3m** (36.5 mg, 46% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.79–7.74 (m, 4H), 7.43–7.34 (m, 6H), 7.05–7.04 (m, 6H), 6.81–6.79 (m, 4H), 3.10–3.02 (m, 2H), 2.93–2.79 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.7 (d, $J_{C-P} = 9.1$ Hz), 132.6 (d, $J_{C-P} = 93.9$ Hz), 131.4 (d, $J_{C-P} = 2.6$ Hz), 130.8 (d, $J_{C-P} = 8.7$ Hz), 129.0, 128.5 (d, $J_{C-P} = 11.3$ Hz), 128.2, 126.1, 42.2 (d, $J_{C-P} = 68.9$ Hz), 33.8; ³¹P NMR (162 MHz, CDCl₃): δ 34.59. This compound is known.⁷

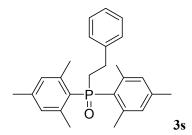
(1,2-diphenylethyl)diphenylphosphine oxide(3n). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/1) afforded 3n (24.7 mg, 32% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 8.01–7.97 (m, 2H), 7.59 (s, 3H), 7.46–7.42 (m, 2H), 7.33–7.30 (m, 1H), 7.24–7.17 (m, 4H), 7.12–7.07 (m, 6H), 6.83–6.81 (m, 2H), 3.68–3.63 (m, 1H), 3.37–3.24 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) : δ 139.4 (d, *J*_{C-P} = 14.1 Hz), 135.4 (d, *J*_{C-P} = 5.3 Hz), 132.1 (d, *J*_{C-P} = 98.7 Hz), 132.0 (d, *J*_{C-P} = 94.1 Hz), 131.6 (d, *J*_{C-P} = 59.1 Hz), 131.7 (d, *J*_{C-P} = 59.1 Hz), 131.2 (d, *J*_{C-P} = 53.9 Hz), 128.2, 128.2, 128.0 (d, *J*_{C-P} = 11.6 Hz), 127.0 (d, *J*_{C-P} = 2.4 Hz), 126.2, 49.2 (d, *J*_{C-P} = 66.1 Hz), 36.0.³¹P NMR (162 MHz, CDCl₃): δ 32.86. This compound is known.⁸

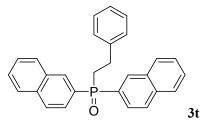


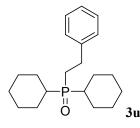
ethyldiphenylphosphine oxide(3o). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/1) afforded **3o** (16.1 mg, 35% yield) as a white solid;¹H NMR (400 MHz, CDCl₃): δ 7.76–7.72 (m, 4H), 7.54–7.45 (m, 6H), 2.33–2.24 (m, 2H), 1.26–1.24 (m, 1H), 1.20–1.16 (m, 2H);¹³C NMR (100 MHz, CDCl₃): δ 132.9 (d, *J*_{C-P} = 97.5 Hz), 131.7 (d, *J*_{C-P} = 2.8 Hz), 130.9 (d, *J*_{C-P} = 9.1 Hz), 128.6 (d, *J*_{C-P} = 11.5 Hz), 22.7 (d, *J*_{C-P} = 72.5 Hz), 5.6 (d, *J*_{C-P} = 5.1 Hz);³¹P NMR (162 MHz, CDCl₃): δ 34.06. This compound is known.³

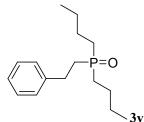


3p


heptyldiphenylphosphine oxide(3p). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/1) afforded 3p (22.8 mg, 38% yield) as a white solid;¹H NMR (400 MHz, CDCl₃): δ 7.68–7.63 (m, 4H), 7.45–7.36 (m, 6H), 2.21–2.14 (m, 2H), 1.59–1.49 (m, 2H), 1.32–1.27 (m, 2H), 1.18–1.15 (m, 6H), 0.78–0.75 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 133.2 (d, $J_{C-P} = 97.2$ Hz), 131.6 (d, $J_{C-P} = 2.6$ Hz), 130.8 (d, $J_{C-P} = 9.2$ Hz), 128.6 (d, $J_{C-P} = 9.4$ Hz), 31.6, 31.0 (d, $J_{C-P} = 14.6$ Hz), 29.7 (d, $J_{C-P} = 76.9$ Hz), 28.7, 22.6, 21.4 (d, $J_{C-P} = 3.8$ Hz), 14.0; ³¹P NMR (162 MHz, CDCl₃): δ 32.66. This compound is known.⁵

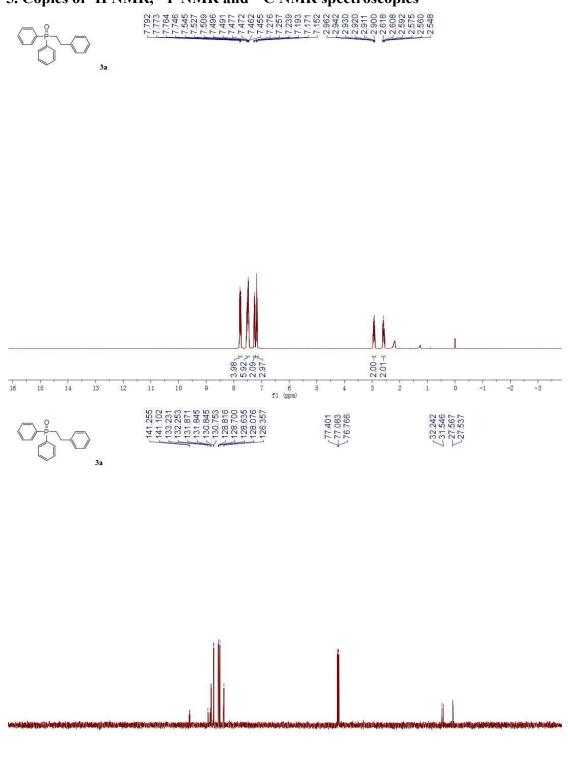

phenethyldi-p-tolylphosphine oxide(3q). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded 3q (50.8 mg, 76% yield) as a whitesolid; ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.54 (m, 4H), 7.21–7.17 (m, 6H), 7.12–7.08 (m, 3H), 2.86–2.80 (m, 2H), 2.50–2.43 (m, 2H), 2.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 142.2 (d, $J_{C-P} = 2.6$ Hz), 141.4 (d, $J_{C-P} = 15.2$ Hz), 130.8 (d, $J_{C-P} = 9.6$ Hz), 129.6 (d, $J_{C-P} = 100.2$ Hz), 129.5 (d, $J_{C-P} = 12.0$ Hz), 128.6, 128.1, 126.3, 32.1 (d, $J_{C-P} = 70.1$ Hz), 27.6 (d, $J_{C-P} = 2.9$ Hz), 21.6; ³¹P NMR (162 MHz, CDCl₃): δ 32.01. This compound is known.¹


bis(4-(dimethylamino)phenyl)(phenethyl)phosphine oxide(3r). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/1) afforded 3r (65.9 mg, 84% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.59–7.54 (m, 4H), 7.27–7.24 (m, 2H), 7.18–7.15 (m, 3H), 6.73–6.70 (m, 4H), 3.00 (s, 12H), 2.93–2.87 (m, 2H), 2.50–2.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.2 (d, $J_{C-P} = 2.3$ Hz), 142.1 (d, $J_{C-P} = 15.5$ Hz), 132.2 (d, $J_{C-P} = 10.4$ Hz), 128.3 (d, $J_{C-P} = 39.0$ Hz), 126.0, 118.9, 117.8, 111.5 (d, $J_{C-P} = 12.3$ Hz), 40.0, 32.6 (d, $J_{C-P} = 70.8$ Hz), 29.0 (d, $J_{C-P} = 2.7$ Hz); ³¹P NMR (162 MHz, CDCl₃): δ 32.84. Melting point: 177.5-179.1 °C. HRMS: Cal. for C₂₄H₂₉N₂OP 392.2018. Found 392.2025. IR: 2943, 2861, 1452, 1400, 1165, 1118, 817, 740 cm⁻¹.

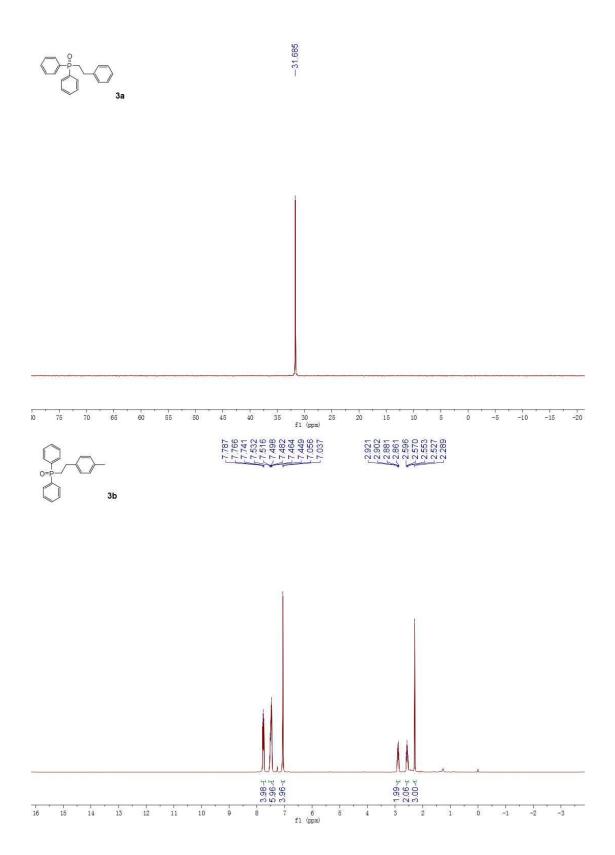

dimesityl(phenethyl)phosphine oxide(3s). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded **3s** (55.5 mg, 71% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.19–7.16 (m, 2H), 7.11–7.04 (m, 3H), 6.75 (s, 4H), 2.79–2.73 (m, 2H), 2.64–2.58 (m, 2H), 2.30 (s, 12H), 2.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 142.0 (d, $J_{C-P} = 16.8$ Hz), 141.2 (d, $J_{C-P} = 10.0$ Hz), 140.7 (d, $J_{C-P} = 2.6$ Hz), 131.1 (d, $J_{C-P} = 11.0$ Hz), 130.0 (d, $J_{C-P} = 94.1$ Hz), 128.4 (d, $J_{C-P} = 28.2$ Hz), 126.1, 38.2 (d, $J_{C-P} = 64.7$ Hz), 28.8 (d, $J_{C-P} = 2.5$ Hz), 22.9 (d, $J_{C-P} = 4.1$ Hz), 20.9; ³¹P NMR (162 MHz, CDCl₃): δ 40.39. Melting point: 219.8-223.5 °C. HRMS: Cal. for C₂₆H₃₁OP 390.2113. Found 390.2116. IR: 2918, 1400, 1200, 1169, 764, 735, 699, 646 cm⁻¹.

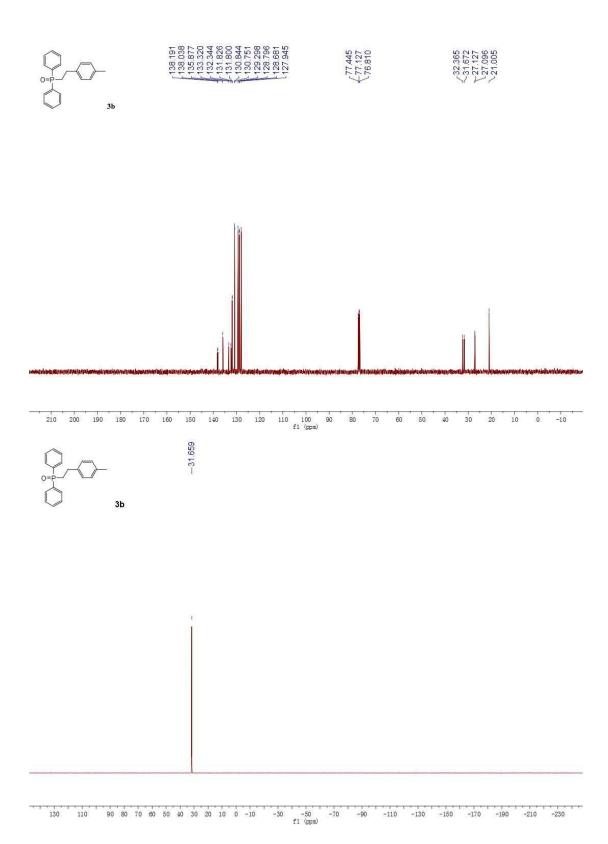
di(naphthalen-2-yl)(phenethyl)phosphine oxide(3t). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/2) afforded **3t** (56.1 mg, 69% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 8.37–8.34 (m, 2H), 7.81–7.79 (m, 4H), 7.74–7.72 (m, 2H), 7.64–7.59 (m, 2H), 7.47–7.40 (m, 4H), 7.15–7.11 (m, 2H), 7.08–7.02 (m, 3H), 2.93–2.87 (m, 2H), 2.70–2.63 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 141.2 (d, *J*_{*C-P*} = 15.2 Hz), 134.7 (d, *J*_{*C-P*} = 2.3 Hz), 132.9 (d, *J*_{*C-P*} = 8.5 Hz), 132.7 (d, *J*_{*C-P*} = 12.5 Hz), 129.9 (d, *J*_{*C-P*} = 98.2 Hz), 128.9, 128.8, 128.7, 128.3, 128.2, 127.9,127.1, 126.4, 125.6 (d, *J*_{*C-P*} = 10.5 Hz), 31.8 (d, *J*_{*C-P*} = 69.5 Hz), 27.7 (d, *J*_{*C-P*} = 3.0 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 31.99. Melting point: 233.4-236.1 °C. HRMS: Cal. for C₂₈H₂₃OP 406.1487. Found 406.1482. IR: 3094, 1452, 1440, 1167, 1094, 700, 653 cm⁻¹.

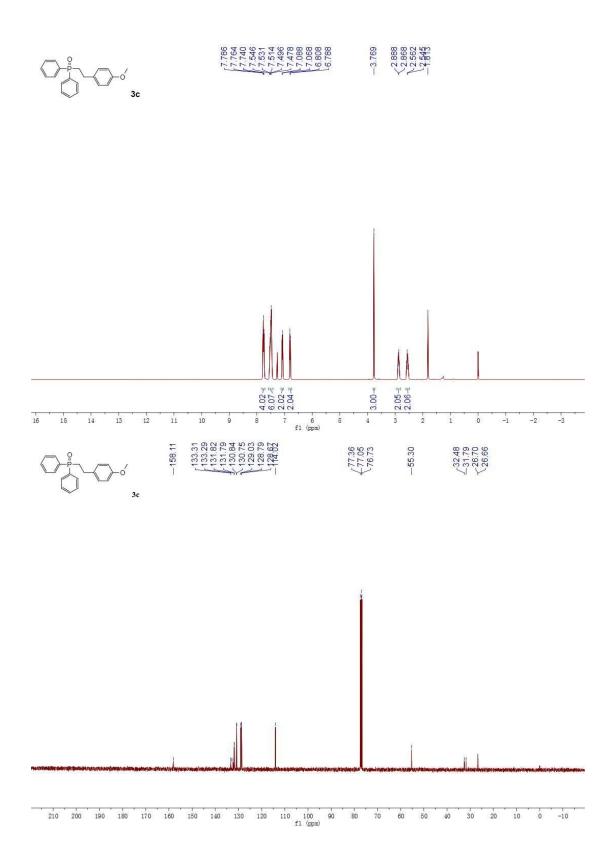
dicyclohexyl(phenethyl)phosphine oxide(3u). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (2/1) afforded 3u (38.2 mg, 60% yield) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.28 (m, 2H), 7.23–7.19 (m, 3H), 2.97–2.91 (m, 2H), 1.98–1.93 (m, 5H), 1.85–1.75 (m, 9H), 1.42–1.39 (m, 4H), 1.28–1.24 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 141.8 (d, J_{C-P} = 12.5 Hz), 128.6, 128.0, 126.3, 36.4 (d, J_{C-P} = 63.8 Hz), 28.1 (d, J_{C-P} = 3.6 Hz), 26.6 (dd, J_{C-P} = 12.1, 2.9 Hz), 26.0, 25.7 (d, J_{C-P} = 3.1 Hz), 25.6 (d, J_{C-P} = 58.4 Hz); ³¹P NMR (162 MHz, CDCl₃): δ 50.24. This compound is known.⁶

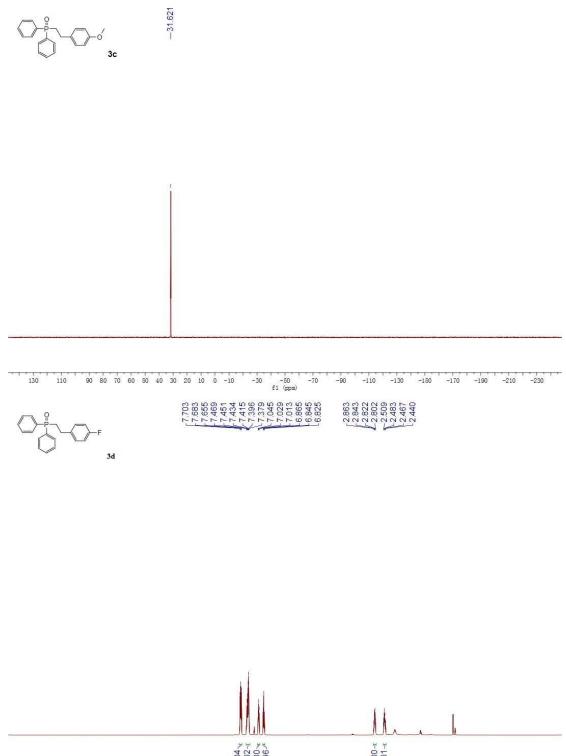


dibutyl(phenethyl)phosphine oxide(3v). Purification by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (2/1) afforded **3v** (34.6 mg, 65% yield) as a colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.28 (m, 2H), 7.24–7.20 (m, 3H), 2.96–2.90 (m, 2H), 2.05–1.99 (m, 2H), 1.75–1.68 (m, 4H), 1.60–1.50 (m, 4H), 1.46–1.37 (m, 4H), 0.946–0.910 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 141.2 (d, *J*_{*C-P*} = 13.2 Hz), 128.7, 128.1, 126.4, 29.7 (d, *J*_{*C-P*} = 62.6 Hz), 27.8 (d, *J*_{*C-P*} = 64.5 Hz), 27.7 (d, *J*_{*C-P*} = 3.1 Hz), 24.3 (d, *J*_{*C-P*} = 14.3 Hz), 23.8 (d, *J*_{*C-P*} = 3.7 Hz), 13.6; ³¹P NMR (162 MHz, CDCl₃): δ 48.17. This compound is known.¹

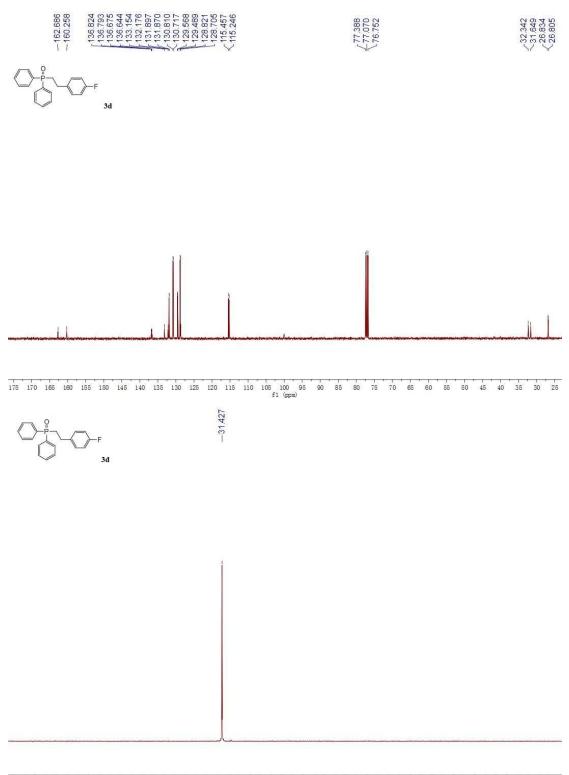

4.References:

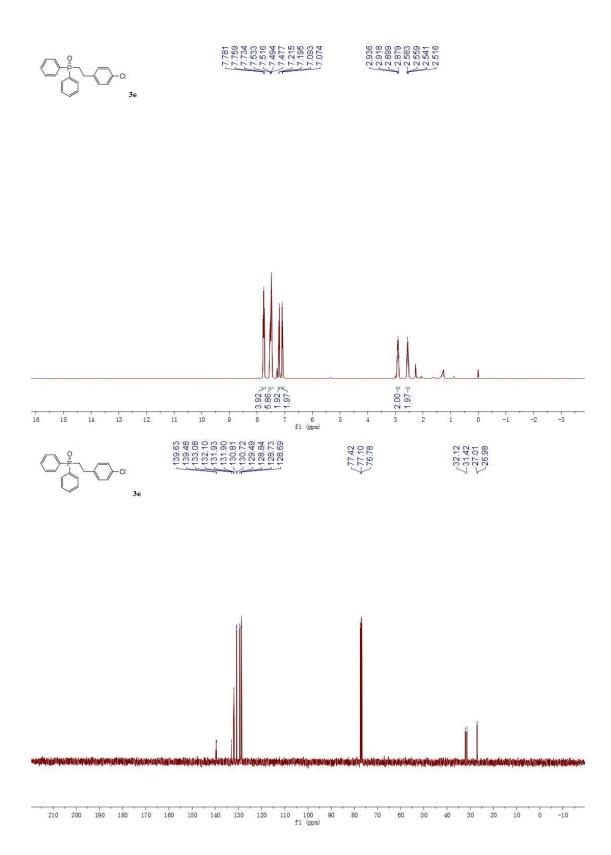

- 1. J.-S. Zhang, J.-Q. Zhang, T. Chen and L.-B. Han, Org. Biomol. Chem., 2017,15, 5462-5467.
- 2. N. A. Isley, R. T. H. Linstadt, E. D. Slack, B. H. Lipshutz, *Dalton Trans.*, 2014, 43, 13196.
- 3. G. Hu, W. Chen, T. Fu, Z. Peng, H. Qiao, Y. Gao, Y. Zhao, Org. Lett., 2013, 15, 5362-5365.
- 4. K. Takaki, G. Koshoji, K. Komeyama, M. Takeda, T. Shishido, A. Kitani, K. Takehira, J. Org. Chem., 2003, 68, 6554-6565.
- 5. S. H. Bertz, G. Dabbagh, J. Am. Chem. Soc., 1981, 103, 5932-5934.
- 6. T. Bunlaksananusorn, P. Knochel, *Tetrahedron Lett.*, 2002, **43**, 5817-5819.
- 7. S. G. Mahamulkar, I. Císařová, U. Jahn, Adv. Synth. Catal., 2015, 357, 793-700.
- 8. D. W. Allen, J. C. Tebby, Tetrahedron, 1967, 23, 2795-2801.

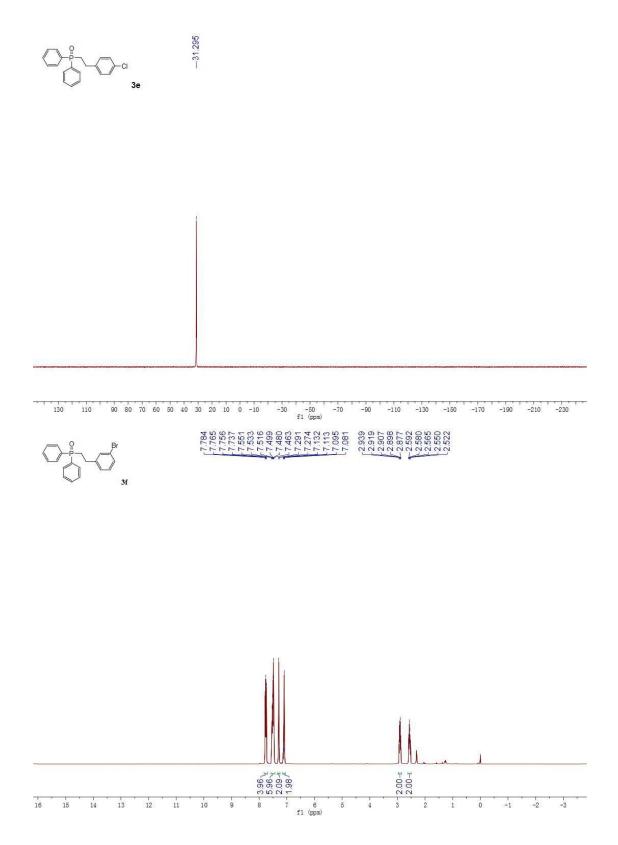


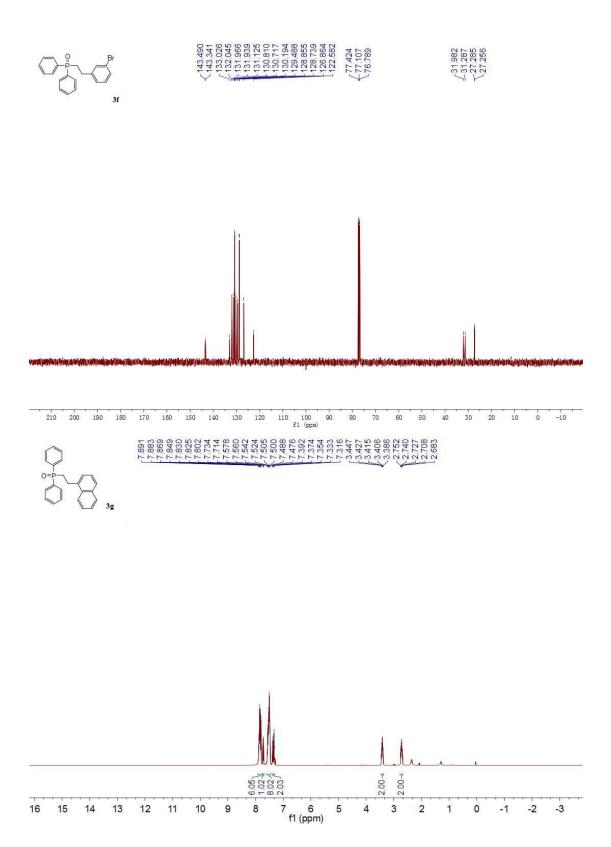


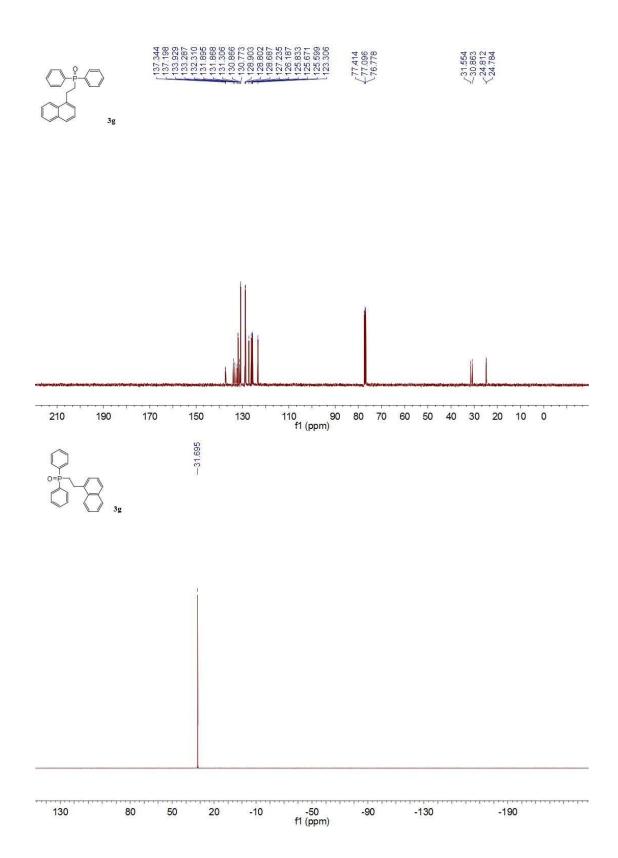
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



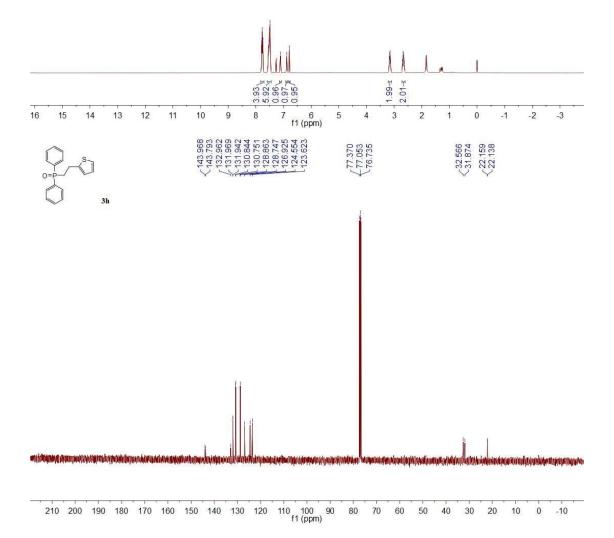


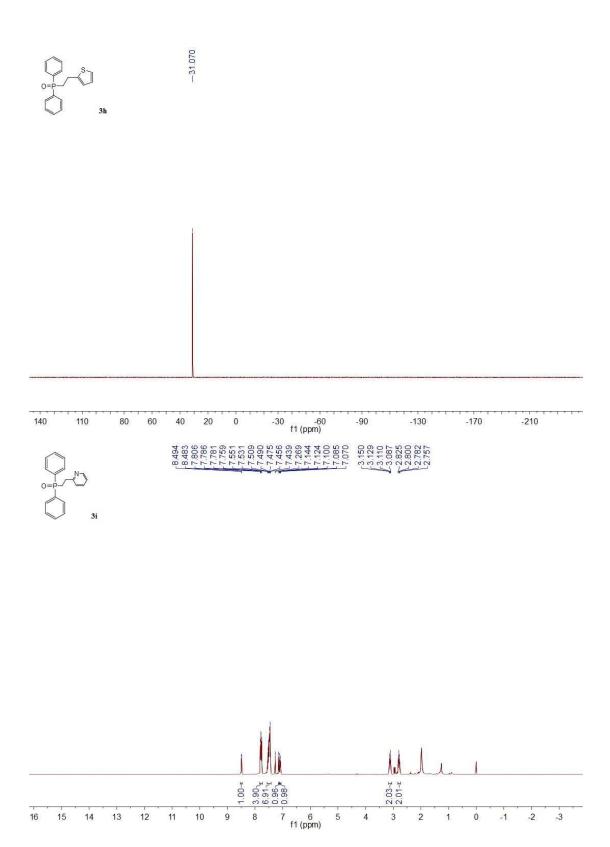


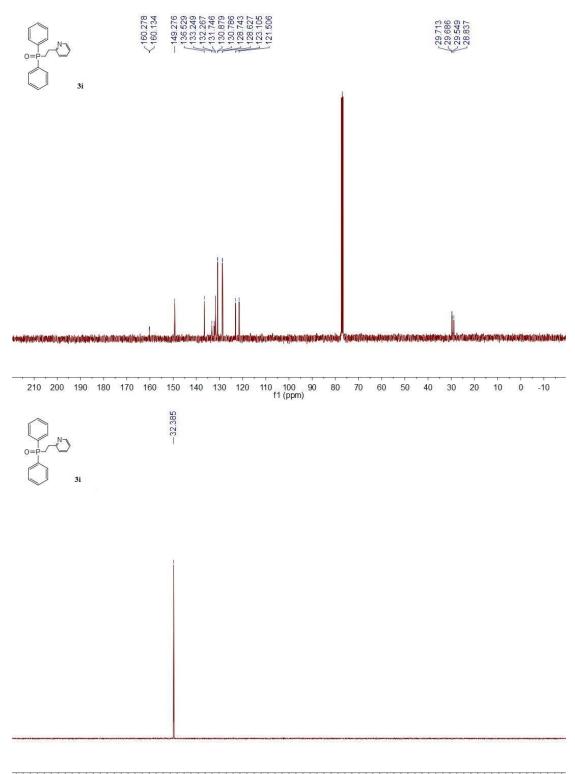

ритуч, тт 50000 - 10000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1

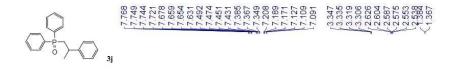


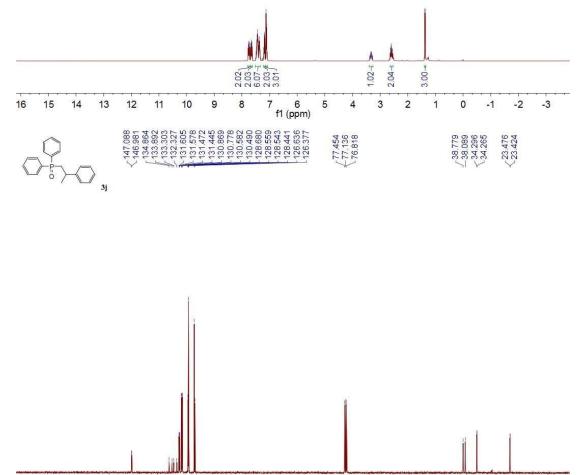
80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 f1 (ppm)

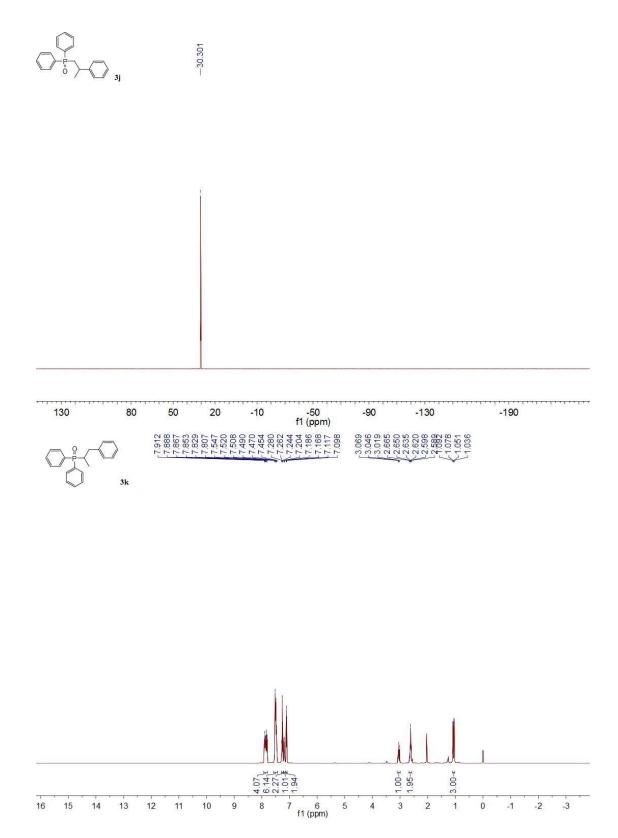


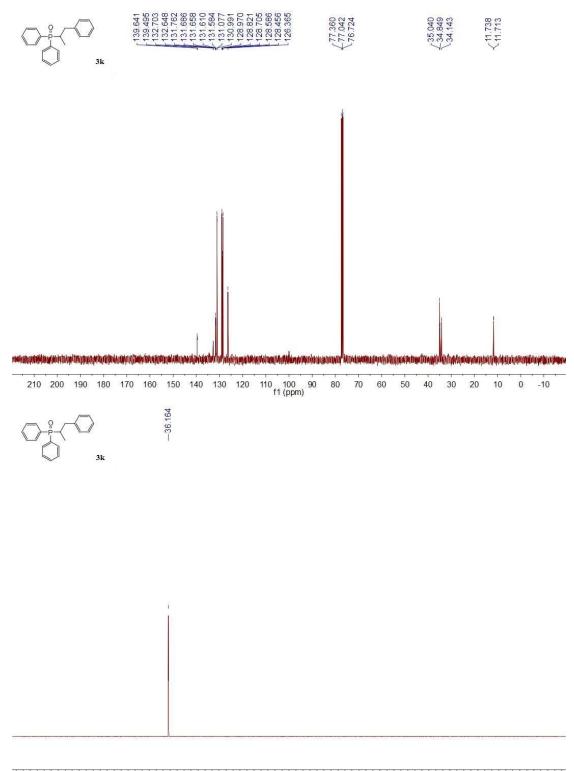


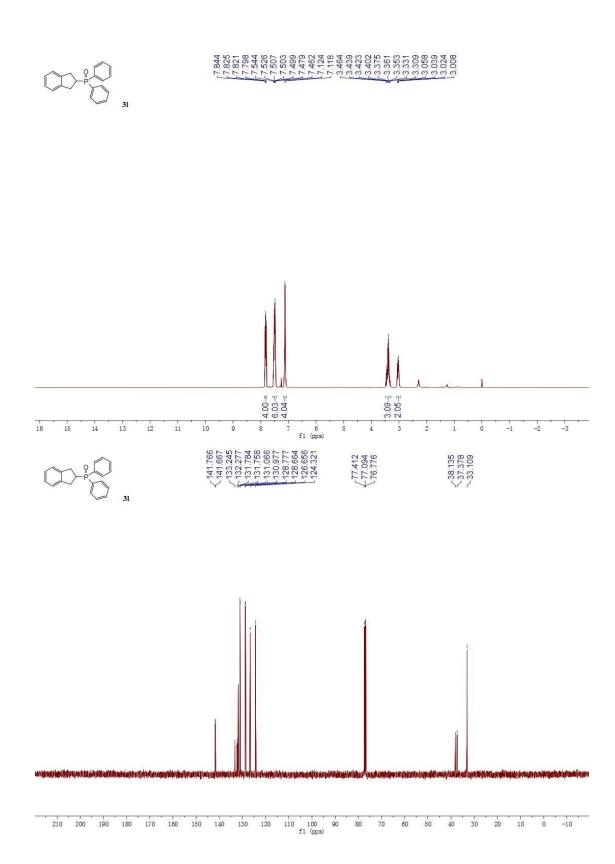


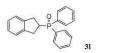




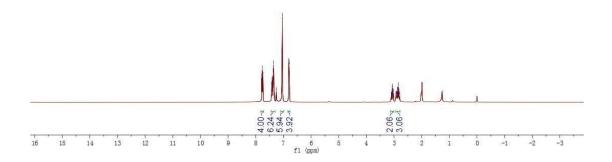


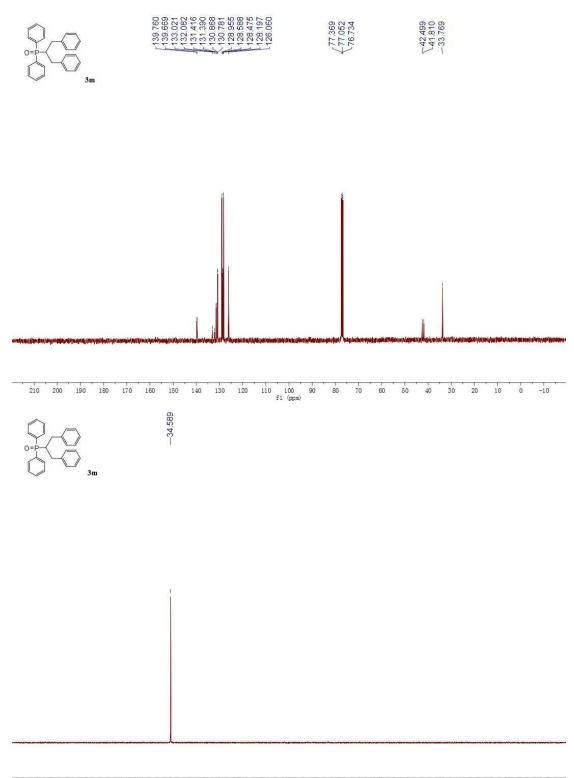

140 110 80 60 40 20 0 -30 -60 -90 -130 -170 -210 f1 (ppm)



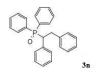

100 90 f1 (ppm)

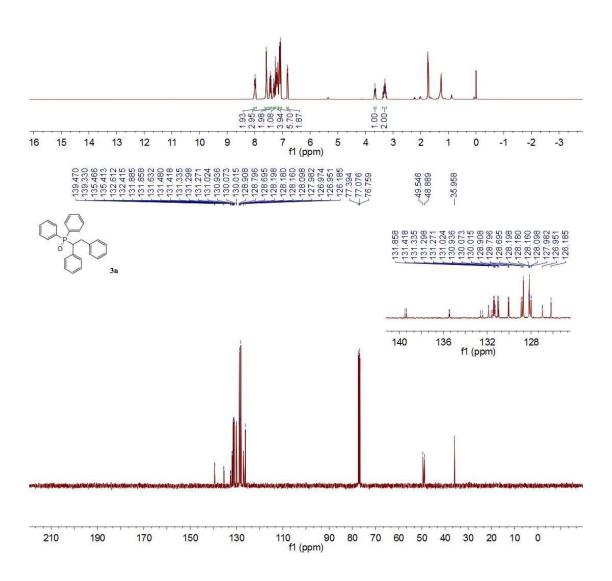
140 110 80 60 40 20 0 -30 -60 -90 -130 -170 -210 f1 (ppm)

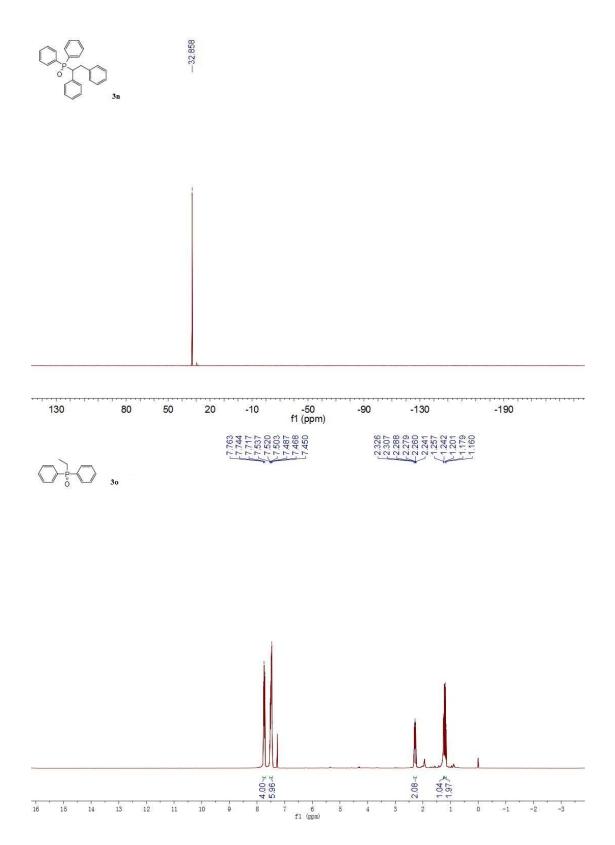


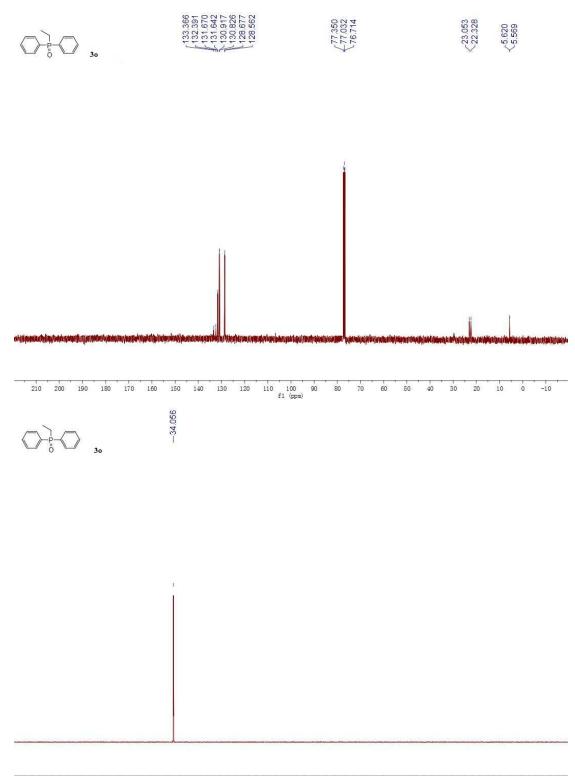


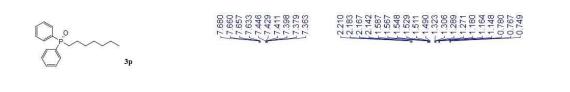
130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

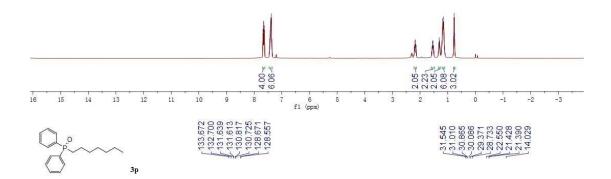


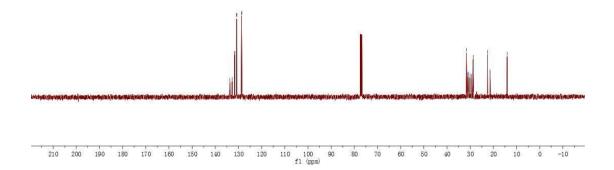


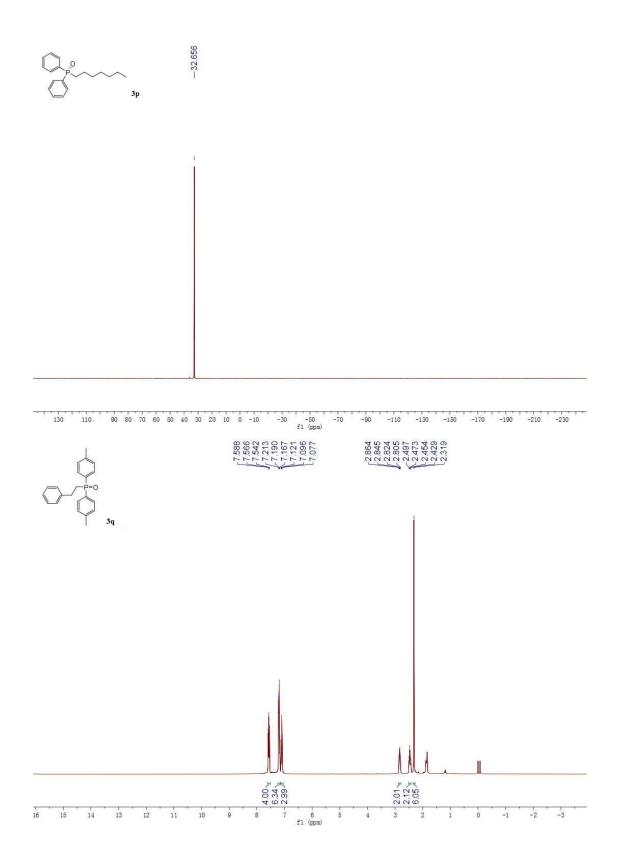


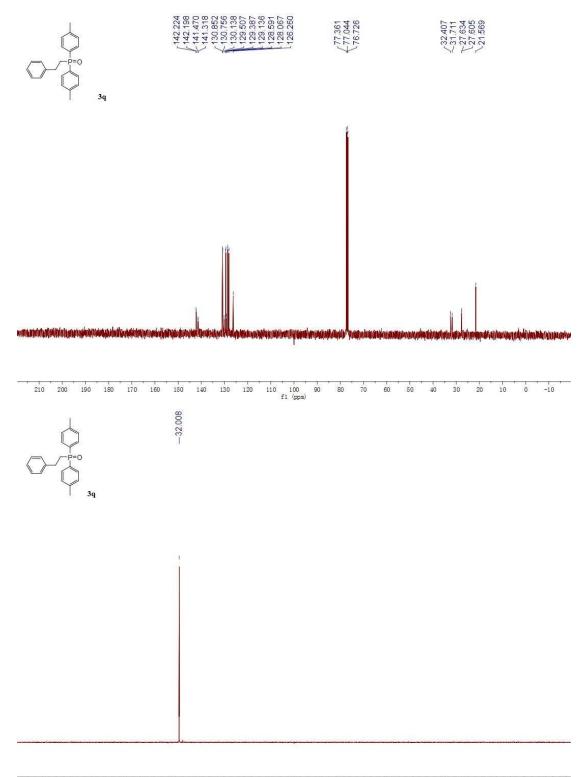

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fi (ppm)

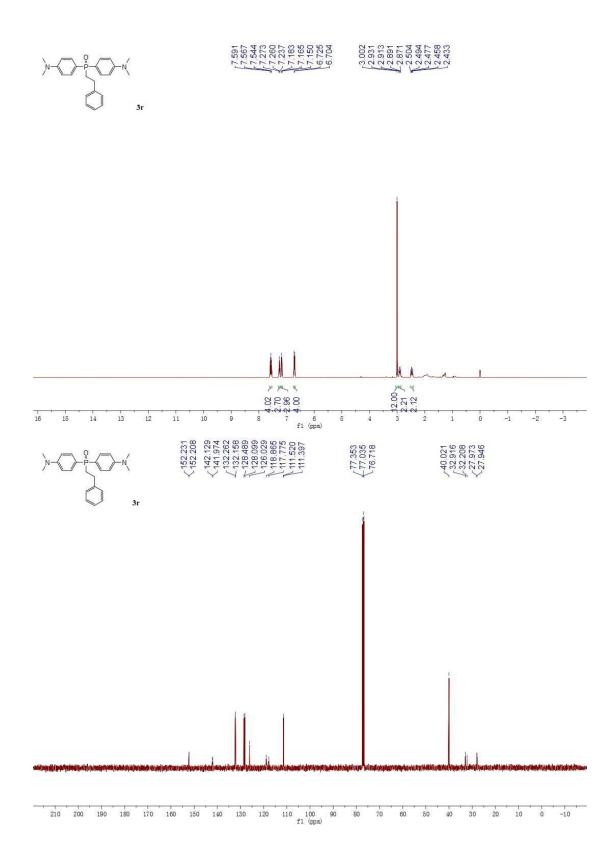


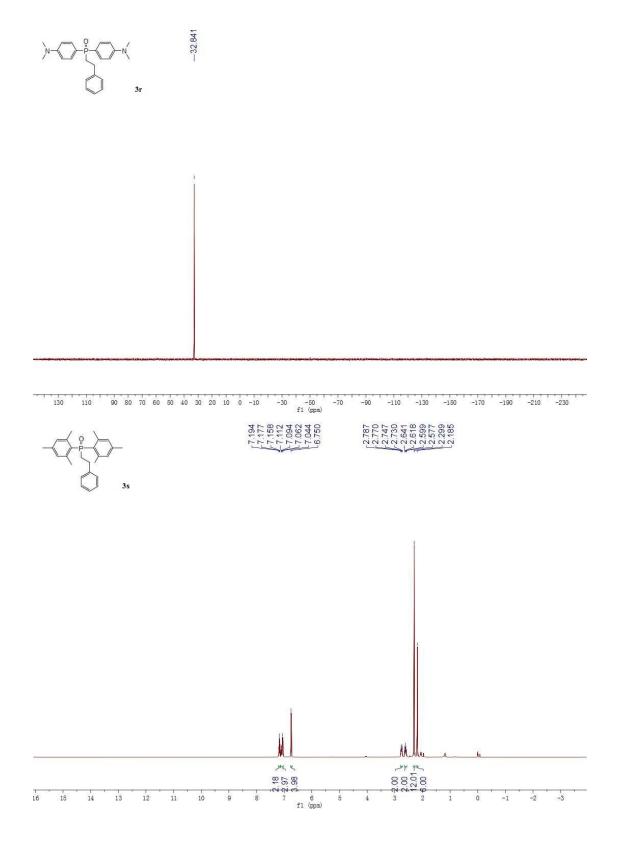


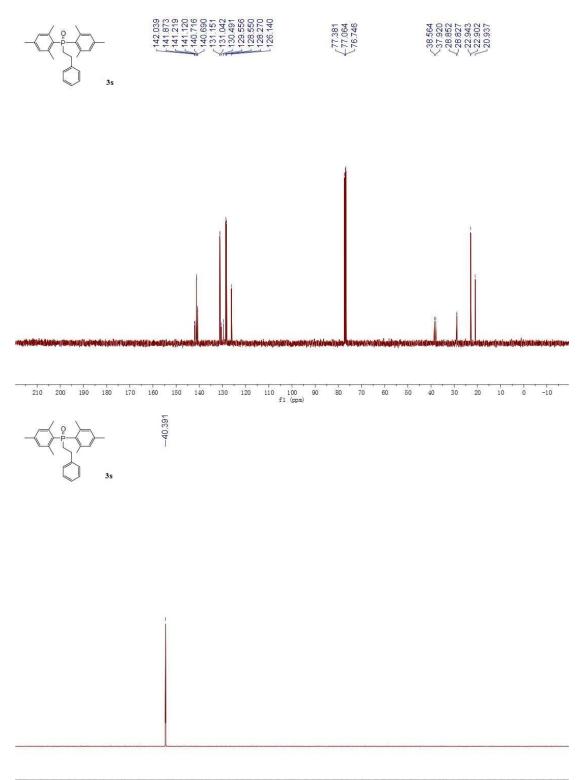


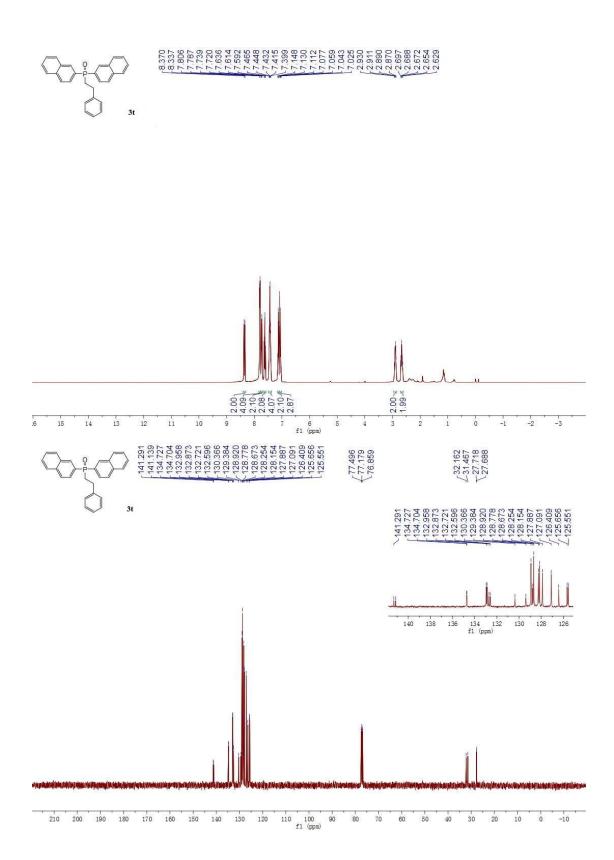


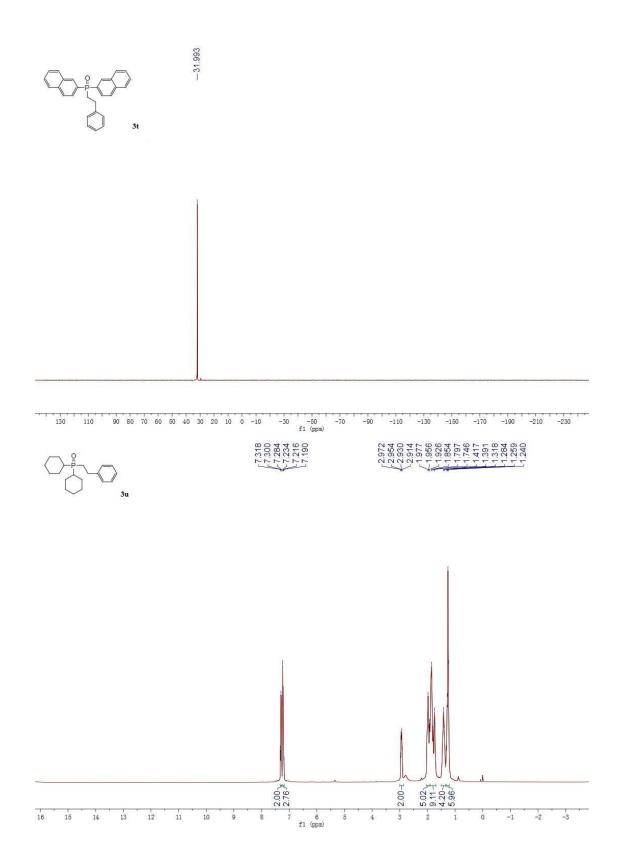

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

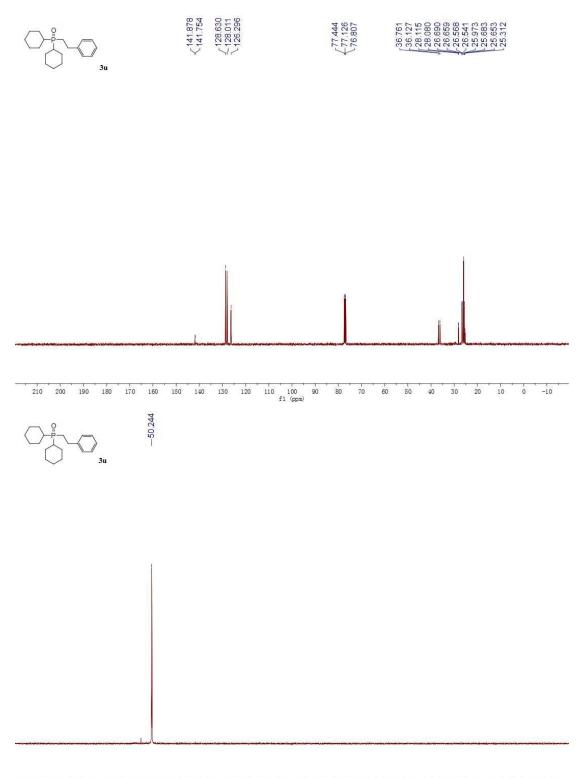


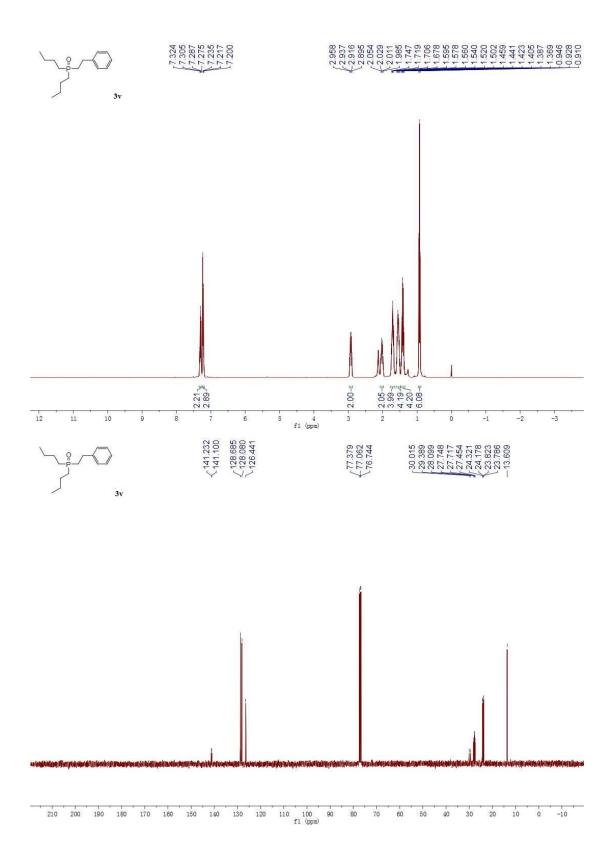


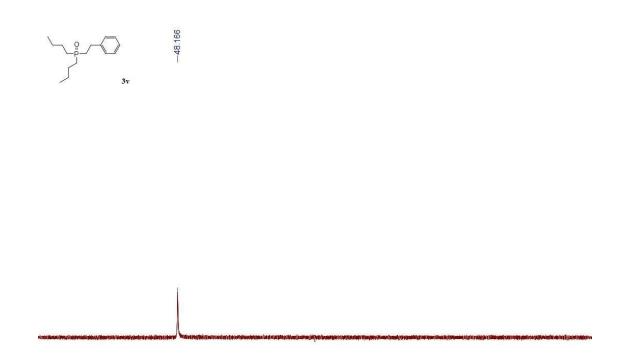



130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fi (ppm)






130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fi (ppm)



130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)