Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

"Choose-a-Size" Control in the Synthesis of Sucrose Based Urea and Thiourea Macrocycles

Katarzyna Łęczycka-Wilk,* Filip Ulatowski, Piotr Cmoch, Sławomir Jarosz*

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. Contact e-mail: SJ: slawomir.jarosz@icho.edu.pl, KŁW: kleczycka@icho.edu.pl

Supporting Information

Contents

1.	SYNTHETIC PROCEDURES	2
2.	COPIES OF THE NMR SPECTRA	3
3.	TITRATION EXPERIMENTS	15
4.	SINGLE CRYSTAL X-RAY MEASUREMENT	20
5.	REFERENCES	20

1. The synthesis of monomeric macrocyclic derivative 3 in a flow mode

2. The synthesis of monomeric macrocyclic derivative 5 in a flow mode

2. Copies of NMR spectra

Fig. S1. ¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra of compound 2a in DMF- d_6 .

Fig. S2. COSY ($^{1}H-^{1}H$) spectra of compound 2a in DMF- d_{6} .

Fig. S3. HSQC ($^{1}H^{-13}C$) spectra of compound **2a** in DMF-*d*₆.

Fig. S4. ¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra of compound 2b in acetone-d₆.

b)

Fig. S5. COSY ($^{1}H^{-1}H$) spectra of compound **2b** in acetone- d_{6} .

Fig. S6. HSQC ($^{1}H^{-13}C$) spectra of compound **2b** in acetone- d_{6} .

Fig. S7. ¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra of compound 3 in acetone- d_6 .

Fig. S8. COSY ($^{1}H^{-1}H$) spectra of compound **3** in acetone- d_{6} .

Fig. S9. HSQC ($^{1}\text{H}-^{13}\text{C}$) spectra of compound **3** in acetone- d_{6} .

Fig. S10. ¹H NMR (600 MHz) and ¹³C NMR (151 MHz) spectra of compound 3 in acetone- d_6 .

Fig. S11. COSY ($^{1}H^{-1}H$) spectra of compound **5** in acetone-*d*₆.

Fig. S12. HSQC ($^{1}H^{-13}C$) spectra of compound **5** in acetone- d_{6} .

3. Titration experiments

All solutions were prepared in the HPLC gradient-grade acetronitrile. TBA salts (TBACl, TBAH₂PO₄, CH₃COOTBA, and PhCOOTBA) were dried overnight at room temperature under high vacuum (1 mbar) directly before use. A 1 cm cuvette was filled with ~2.2 mL of the host solution and aliquots of the guest solution were added by a syringe pump. UV-Vis spectrum was recorded after each step once the mixture was homogenised by magnetic stirrer (30 s). The collected data were then analysed by HyperSpec. In case of hosts **3** and **5**, addition of guest had no effect on the spectra. In case of **2a** and **2b** the data were fitted with 1:1 and 1:1+1:2 models. Low values of the residuals are obtained with simple 1:1 model and no significant improvement in fitting quality is observed with 1:1+1:2 model. The residuals are most likely to arise from small errors in concentrations of the reagents. .

Fig. 13 Plots of UV-Vis titration of host 2a with TBACl.

Fig. 14 Plots of UV-Vis titration of host 2a with AcOTBA.

Fig. 15 Plots of UV-Vis titration of host 2b with TBACl.

Fig. 16 Plots of UV-Vis titration of host 2b with AcOTBA.

4. Single crystal X-ray measurement

Single crystal X-ray diffraction measurements were carried out on a Agilent Supernova diffractometer, at 100K with monochromated Mo K α radiation (0.7107Å). The data reduction was made by using CrysAlisPRO [1] software. The structures were solved by direct methods and refined on F² by full-matrix least-squares by using SHELXS97 and SHELXL97 [2]. All non-hydrogen atoms were refined as anisotropic while hydrogen atoms were placed in calculated positions, and refined in riding mode.

Crystal of 3. orthorhombic, P212121, a= 11.1611(7), b=18.4375(11), c= 23.2735(12)Å, V= 4789.3(5)Å ³, Z=4, D_{calc} =1.385g cm⁻¹, μ =1.782 mm⁻¹, R1=0.0635 for 6643 [Fo > 4 σ (Fo)] and 0. 1075 for all data, wR2=0. 1795, S=0. 911

CCDC 1584391 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

5. References

- [1] Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- [2] Sheldrick, G. M. (2008) Acta Cryst. A64 112-122.