Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting information

Nickel-Catalysed Radical Tandem Cyclization/Arylation: Practical

Synthesis of 4-Benzyl-3,3-Difluoro-γ-Lactams

Wen-Peng Mai,^a*Fei Wang,^aXiao-FengZhang,^a Shi-Min Wang,^aQun-Peng Duan,^a Kui Lu^{a,b}*

^a School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, 450006, China

^b School of Chemical Engineering and Food Science, Zhengzhou Institute of Technology, Zhengzhou, 450044, China

General Information	S2
Table of the Optimization of Radical Cascade Reaction Conditions	S3
Typical Procedures for the Synthesis of Substrates	S4
General Procedure for the Radical Tandem Cyclization-Arylation	S5
Screening of other substrates	56-S10
X-ray structures and data	S11
References	S12
Characterization Data	513-530
¹ H, ¹⁹ F, and ¹³ C NMR SpectraS	31-889

1. General Information:

All experiments were carried out using common flaskin N2. All substrates were purchased from commercial suppliers and used asreceived directly otherwise All solvents unless noted. and othercommercially availablereagents were purchased from J&Kor TCI companies and used directly. Reactions were monitored by thin layer chromatography(TLC) (Qingdao Haiyang Chemical Co. Ltd. Silica gel 60 F254). Products were detected using a UV/Vis lamp (254nm). Column chromatography was performed on Qingdao Haiyang Chemical Co. Ltd. Gel 60 (200-300 mesh). The ¹H and ¹³C NMR spectras were obtained on a Bruker 400 MHz NMR Fourier transform spectrometer. ¹H NMR data were reported as: chemical shift (δppm), multiplicity, coupling constant (Hz), and integration. ¹³C NMR data were reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz).¹⁹F NMR data were reported in terms of chemical shift (δ ppm) and multiplicity. The spectra are referenced against the internal solvent (CDCl₃, δ ¹H= 7.26 ppm, ¹³C= 77.0 ppm). ¹H, ¹³C and ¹⁹F spectra were recorded on a Varian Mercury-400 MHz (400 MHz for ¹H, 376 MHz for ¹⁹F, 100 MHz for ¹³C). ESI-MS spectra were recorded on a Bruker Esquire 3000. High resolution mass spectra (HR MS) were obtained on a Waters Micromass Q-TofMicroTM instrument using the ESI technique.

$Ar - B(OH)_{2} + \bigcup_{OMe} \underbrace{[Ni]5\%-7.5\%}_{OMe} + \underbrace{[Ni]5\%-7.5\%}_{OMe} + \underbrace{[Ni]5\%-7.5\%}_{OMe} + \underbrace{[Ni]5\%-7.5\%}_{OMe} + \underbrace{[Ni]5\%-7.5\%}_{OMe} + \underbrace{[Ni]5\%-7.5\%}_{OMe} + \underbrace{[Ni]5\%-7.5\%}_{N L2} + [Ni]5\%-$					
Substrate	Ni catalyst	Ligand	Solvent	Isolatedvield	
	(mol %)	(mol %)	Sorvent	Isolateuyielu	
	$Ni(NO_3)_2 \cdot 6H_2O(5)$	L1(5)	1,4-dioxane	33	
	$Ni(NO_3)_2 \cdot 6H_2O(5)$	L2(5)	1,4-dioxane	51	
⇒ B(OH)₀	$Ni(NO_3)_2 \cdot 6H_2O(5)$	L3 (5)	1,4-dioxane	55	
	$Ni(NO_3)_2 \cdot 6H_2O(5)$	L4(5)	1,4-dioxane	trace	
	NiCl ₂ ·DME (5)	L3 (5)	1,4-dioxane	36	
	NiCl ₂ ·DME (5)	L3(5)/A1(10)	1,4-dioxane	30	
	$Ni(OTf)_2(5)$	L3 (5)	1,4-dioxane	64	
EtOOC B(OH)2	$Ni(NO_3)_2 \cdot 6H_2O(5)$	L3 (5)	1,4-dioxane	0	
	NiCl ₂ ·DME (5)	L3 (5)	1,4-dioxane	trace	
	NiCl ₂ ·DME (5)	L3(5)/A1(10)	1,4-dioxane	16	
	NiCl ₂ ·DME (5)	L3 (5)/ A2 (5)	1,4-dioxane	trace	
	$Ni(OTf)_2(5)$	L3 (5)	1,4-dioxane	37	
B(OH) ₂	$Ni(NO_3)_2 \cdot 6H_2O(5)$	L3(5)	1,4-dioxane	57	
	NiCl ₂ ·DME (5)	L3(5)	1,4-dioxane	48	
	$Ni(OTf)_2(5)$	L3 (5)	1,4-dioxane	70	
	$Ni(acac)_2(5)$	L3 (5)	1,4-dioxane	0	
	$Ni(OAc)_2 \cdot 4H_2O(5)$	L3 (5)	1,4-dioxane	0	
B(OH) ₂	$Ni(OTf)_2(5)$	$L3(5)/PPh_{3}(5)$	1,4-dioxane	79	
	$Ni(OTf)_2(5)$	L3 (5)/PPh ₃ (10)	1,4-dioxane	83	
	Ni(OTf) ₂ $(7.5)^{b}$	L3 (7.5)/PPh ₃ (15)	1,4-dioxane	88	
	Ni(OTf) ₂ $(7.5)^{b}$	L3 (7.5)/PPh ₃ (15)	1,4-dioxane	92	
	Ni(OTf) ₂ $(7.5)^{b}$	PPh ₃ (15)	1,4-dioxane	0	
EtOOC B(OH) ₂	Ni(OTf) ₂ $(7.5)^{b}$	L3 (7.5)/PPh ₃ (15)	1,4-dioxane	77	
	Ni(OTf) ₂ $(7.5)^{b}$	L3 (7.5)/PCy ₃ (15)	1,4-dioxane	74	

2. Table S1. The Optimization of Radical Cascade Reaction Conditions^a

^{*a*}1: 2a = $1.5:1^{b}1:2a=2.0:1$, K₂CO₃ (3.0 equiv) as base.

After the screening of solvents such as DCE, CH₃CN, DMF, THF, DMSO and 1,4-dioxane, 1,4dioxane is the best choice.

3. Typical Procedures for the Synthesis of Substrates 2 <u>**2a** as an example</u>:

To a 50mLround bottom flask, 4-methoxyaniline (1.23g, 10.0 mmol), ethyl bromodifluoroacetate(1.56 mL, 12.0 mmol) and La $(OTf)_3$ (117 mg, 0.2mmol) were added. The reaction mixture was stirred at 70 °C and monitored by TLC. After the amine was exhausted, the mixture was washed by aqueous HCl solution and then purified by silica gel column chromatography to give the pale yellow solid**2a'** (2.66g, 95%).

To a solution of **2a'** (5.0 mmol) in acetonitrile (50 mL) was added K_2CO_3 (3.0 equiv) and 3bromoprop-1-ene (15 mmol). The reaction mixture was heated to reflux and stirred for 24 hours. Then the solvent was evaporated under reduced pressure followed by quenched with H₂O and extracted with EtOAc (3x10 mL). The organic layers were combined and dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash chromatography using petroleum ether :EtOAc (50 : 1 to 10 :1) as eluent. The yield of product **2a** is 1.28g (80%).

4. General Procedure for the Radical Tandem Cyclization-Arylation <u>3aaas an example</u>:

To a 25 mL of Schlenck tube were added phenylboronic acid **1a** (1.0mmol, 0.122g, 2.0equiv), **2a** (0.5 mmol, 0.16g), Ni(OTf)₂ (7.5 mmol %, 13 mg), DTBPy (7.5 mmol %, 10 mg), PPh₃ (15 mmol %, 19.6 mg) under air, followed by K_2CO_3 (1.5 mmol, 3.0 equiv). The mixture wasthen evacuated and backfilled with N₂ (3 times), dioxane (3 mL) were added subsequently. The tube was put into a preheated oil bath (80 °C). After stirring for 8 h,the reaction mixture was cooled to roomtemperature and was evaporated under reduced pressure. The residue was extracted with EtOAc (15 mlx 2) and then dried by Na₂SO₄.After removing EtOAc, the residue was purified with silica gel chromatography to give product **3aa** in 92% yield.

5. Screening of other substrates

unsuccessful boronic acids :

Scheme S1

Scheme S2. Information of failed ortho-substituted aryl boronic acids

Some *ortho*-substituted aryl boronic acids (shown in Scheme S2) do not perform well in this reaction under current conditions. The reason is mainly due to their hindrance plus the steric effect of the other substrate. The other reason is the ligand's efficiency. In addition, we found alkyl radical coupling with aryl boronic acid catalyzed by copper has similar results. (See: *ACS catal*, 2016, 6, 1329-1333.)

Scheme S3. Limitation of the substrate 2

As shown in Scheme S3, when different isomeric methylallyl analogues such as **2k-2m** reacted with phenyl boronic acid under the standard conditions, the results are disappointing. <u>After referring to many literatures</u>, we found secondary or tertiary alkyl radical have rarely been employed in alkyl–aryl cross-coupling using a Ni-Suzuki <u>protocol</u> (*Angew. Chem. Int .Ed.* 2017, 56, 3319-3323). For **2k-2m**, the intermediates are secondary or tertiary alkyl radicals after cyclization, thus the cross-couplings catalyzed by Ni-Suzuki protocol do not proceed.

6. X-ray structures and data

Crystal data and structure	refinement for 20180137.
Identification code	20180137
Empirical formula	$C_{19}H_{15}F_{2}NO_{2}$
Formula weight	327.32
Temperature/K	293 (2)
Crystal system	triclinic
Space group	P-1
a/Å	9. 5617 (18)
b/Å	9.7384(18)
c/Å	10.228(2)
α /°	75.270(17)
β/°	68.659(18)
$\gamma / ^{\circ}$	61. 422 (19)
Volume/Å ³	775.2(3)
Ζ	2
$\rho_{calc}g/cm^3$	1.402
μ / mm^{-1}	0.902

Continued:	
F (000)	340.0
Crystal size/mm ³	$0.2 \times 0.16 \times 0.14$
Radiation	CuK a ($\lambda = 1.54184$)
2⊖ range for data collection/°	9.328 to 134.13
Index ranges	$-7 \leq h \leq 11, -11 \leq k \leq 11, -10$ $\leq 1 \leq 12$
Reflections collected	5510
Independent reflections	2767 $[R_{int} = 0.0232, R_{sigma} = 0.0342]$
Data/restraints/parameters	2767/0/217
Goodness-of-fit on F ²	1. 093
Final R indexes [I>=2σ (I)]	$R_1 = 0.0582, wR_2 = 0.1635$
Final R indexes [all data]	$R_1 = 0.0719, wR_2 = 0.1824$
Largest diff. peak/hole / e \AA^{-3}	0. 33/-0. 30

7. References

- 1. An, L.; Xu, C.; Zhang, X. Nat. Commun. 2017, 8, 1460.
- 2. Wu, Y.; Zhang, H.-R.; Cao, Y.-X.; Lan, Q.; Wang, X.-S. Org. Lett. 2016, 18, 5564
- 3. Sheng, J.; Ni, H.-Q.; Liu, G.; Li, Y.; Wang, X.-S. Org. Lett. 2017, 19, 4480.

4. Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Angew. Chem., Int. Ed. 2016, 55, 12270.

5. Li, G.; Wang, T.; Fei, F.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S.*Angew.Chem., Int. Ed.* **2016**, *55*, 3491.

Morimoto,H.; Fujiwara, Risa.; Shimizu, Y.; Morisaki, K.; Ohshima, T. Org. Lett.
2014, 16, 2018.

8. Characterization Data

4-benzyl-3,3-difluoro-1-(4-methoxyphenyl)pyrrolidin-2-one

White solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, J = 12.0 Hz, 2H), 7.30-7.36 (m, 2H), 7.26-7.30 (m, 3H), 6.93 (dd, J = 8.0, 4.0 Hz, 2H), 3.82 (s, 3H), 3.69 (t, J = 8.0 Hz, 1H), 3.60 (t, J = 8.0 Hz, 1H), 3.30 (dd, J = 16.0, 8.0 Hz, 1H), 2.95-2.99 (m, 1H), 2.79-2.85 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.13 (t), 157.67, 136.96, 129.92, 128.97, 128.73, 127.10, 121.73, 114.95 (t, J = 257 Hz), 114.18, 55.48, 48.54, 41.67 (t, J = 21 Hz), 31.53; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.44(d, J = 266.96 Hz), -117.03 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₈H₁₈F₂NO₂ [M+H]⁺: 318.1300; found: 318.1308.

4-(3-acetylbenzyl)-3,3-difluoro-1-(4-methoxyphenyl)pyrrolidin-2-one

White solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 4H), 6.92 (d, J = 8.0 Hz, 2H), 3.81 (s, 3H), 3.72 (t, J = 8.0 Hz, 1H), 3.59 (t, J = 8.0 Hz, 1H), 3.33 (dd, J = 12.0, 4.0 Hz, 1H), 2.97-3.02 (m, 1H), 2.88-2.94 (m, 1H), 2.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 197.90, 161.93 (t), 157.72, 137.72, 133.48, 129.27, 128.22, 127.37, 121.75, 117.35 (t, J = 247 Hz), 114.32, 55.49, 48.49, 41.30 (t, J = 21 Hz), 31.45, 26.71; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.13 (d, J = 266.96 Hz), -116.60 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₂₀H₂₀F₂NO₃ [M+H]⁺: 360.1406; found: 360.1411.

4-(3,5-dimethoxybenzyl)-3,3-difluoro-1-(4-methoxyphenyl)pyrrolidin-2-one

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.40 (s, 3H), 3.82 (s, 9H), 3.71 (t, *J* = 8.0 Hz, 1H), 3.57 (t, *J* = 8.0 Hz, 1H), 3.24 (dd, *J* = 16.0, 4.0 Hz, 1H), 2.91-2.96 (m, 1H), 2.70-2.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.79, 161.20, 157.67, 139.24, 130.97, 121.75, 117.37 (t, *J* = 244 Hz), 114.29, 106.81, 98.63, 55.50, 48.53, 41.51 (t, *J* = 21 Hz), 31.77; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.44 (d, *J* = 366.96 Hz), -116.97 (d, *J* = 366.96 Hz); HRMS (ESI) calcd for C₂₀H₂₂F₂NO₄ [M+H]⁺: 378.1511; found: 378.1514.

methyl4-((4,4-difluoro-1-(4-methoxyphenyl)-5-oxopyrrolidin-3-

yl)methyl)benzoate

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (d, *J* = 8.0 Hz, 2.0Hz), 7.50 (d, *J* = 8.0 Hz, 2.0Hz), 7.36 (d, *J* = 8.0 Hz, 2.0Hz), 6.92 (d, *J* = 8.0 Hz, 2.0Hz), 3.94 (s, 3H), 3.81 (s, 3H), 3.72 (t, *J* = 8.0 Hz, 1H), 3.59 (t, *J* = 8.0 Hz, 1H), 3.34 (dd, *J* = 16.0, 4.0 Hz, 1H), 2.94-2.98 (m, 1H), 2.86-2.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.72, 161.89 (t), 157.72, 142.28, 130.85, 130.25, 129.18, 128.81, 121.69, 117.14 (t, *J* = 255 Hz), 114.32, 55.49, 52.18, 48.43 (d), 41.40 (t, *J* = 21 Hz), 31.57; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.24 (d, *J* = 266.96 Hz), -116.68 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₂₀H₂₀F₂NO₄ [M+H]⁺: 376.1355, found: 376.1355.

ethyl3-((4,4-difluoro-1-(4-methoxyphenyl)-5-oxopyrrolidin-3-yl)methyl)benzoate white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.95-7.99 (m, 2H), 7.44-7.50 (m, 4H), 6.91 (d, *J* = 8.0 Hz), 4.43 (q, *J* = 8.0 Hz, 2H), 3.80 (s, 3H), 3.69 (t, *J* = 8.0 Hz, 1H), 3.59 (t, *J* = 8.0 Hz, 1H), 3.33 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.94-3.00 (m, 1H), 2.86-2.92 (m, 1H), 1.42 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.31, 162.29 (t), 157.70, 137.32, 133.22, 130.88, 129.65, 129.04, 128.34, 121.75, 117.45 (t, *J* = 233 Hz), 114.30, 61.18, 55.48, 48.47 (d), 41.51 (t, *J* = 21 Hz), 31.33, 14.34; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.28 (d, *J* = 266.96 Hz), -116.67 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₂₁H₂₂F₂NO₄ [M+H]⁺: 390.1511, found: 390.1515.

tert-butyl(4-((4,4-difluoro-1-(4-methoxyphenyl)-5-oxopyrrolidin-3-yl)methyl)phenyl)carbamate

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.51 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.58 (s, 1H), 3.81 (s, 3H), 3.69 (t, *J* = 8.0 Hz, 1H), 3.56 (t, *J* = 8.0 Hz, 1H), 3.24 (dd, *J* = 12.0, 8.0 Hz, 1H), 2.85-2.93 (m, 1H), 2.72-2.78 (m, 1H), 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.16 (t), 157.64, 152.83, 137.42, 131.33, 130.98, 129.24, 121.69, 119.86, 117.55 (t, *J* = 231 Hz), 114.29, 80.64, 55.49, 48.49, 41.70 (t, *J* = 21 Hz), 30.82, 28.34; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.26 (d, *J* = 266.96 Hz), -116.99 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₂₃H₂₇F₂N₂O₄ [M+H]⁺: 433.1933, found: 433.1930.

3,3-difluoro-1-(4-methoxyphenyl)-4-(4-(methylsulfonyl)benzyl)pyrrolidin-2-one Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.95 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 4H), 6.93 (d, J = 8.0 Hz, 2H), 3.82 (s, 3H), 3.75 (t, J = 8.0 Hz, 1H), 3.58 (t, J = 8.0 Hz, 1H), 3.36 (dd, J = 12.0, 4.0 Hz, 1H), 3.08 (s, 3H), 2.93-3.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.69 (t), 157.79, 143.51, 139.53, 130.71, 129.81, 128.07, 121.71, 117.24 (t, J = 248 Hz), 114.36, 55.51, 48.38, 44.48, 41.26 (t, J = 21 Hz), 31.59; ¹⁹F NMR (376 MHz, CDCl₃) δ : -108.85 (d, J = 266.96 Hz), -116.31 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₉H₂₀F₂NO₄S [M+H]⁺: 396.1076, found: 396.1080.

4-(4-(tert-butyl)benzyl)-3,3-difluoro-1-(4-methoxyphenyl)pyrrolidin-2-one

White solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 3.82 (s, 3H), 3.72 (t, *J* = 8.0 Hz, 1H), 3.56 (t, *J* = 8.0 Hz, 1H), 3.28 (dd, *J* = 16.0, 12.0 Hz, 1H), 2.91-2.99 (m, 1H), 2.76-2.82 (m, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.20 (t), 157.67, 150.03, 133.80, 131.04, 128.39, 125.86, 121.80, 117.60 (t, *J* = 235 Hz), 114.29, 55.49, 48.65, 41.46 (t, *J* = 21 Hz), 34.49, 31.35; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.31 (d, *J* = 266.96 Hz), -117.16 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₂₂H₂₆F₂NO₂ [M+H]⁺: 374.1926; found: 374.1923.

3,3-difluoro-4-(4-fluorobenzyl)-1-(4-methoxyphenyl)pyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.51 (d, J = 8.0 Hz, 2H), 7.22-7.23 (m, 2H), 7.05 (t, J = 8.0 Hz, 2H), 6.91-6.94 (m, 2H), 3.82 (s, 3H), 3.71 (t, J = 8.0 Hz, 1H), 3.56 (t, J = 8.0 Hz, 1H), 3.25 (dd, J = 12.0, 4.0 Hz, 1H), 2.87-2.95 (m, 1H), 2.78-2.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.14 (d, J = 244 Hz), 162.02 (t), 157.71, 132.64, 130.92, 130.19, 121.71, 117.40 (t, J = 243 Hz), 115.72, 114.32, 55.49, 48.47, 41.53 (t, J = 21 Hz), 30.80; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.14 (d, J = 266.96 Hz), -115.54, -116.90 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₈H₁₇F₃NO₂ [M+H]⁺: 336.1206, found: 336.1211.

3,3-difluoro-1-(4-methoxyphenyl)-4-(3-methylbenzyl)pyrrolidin-2-one

Pale white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, J = 8.0 Hz, 2H), 7.24-7.28 (m, 1H), 7.05-7.10 (m, 3H), 6.94 (d, J = 12.0 Hz, 2H), 3.82 (s, 3H), 3.69 (t, J = 8.0 Hz, 1H), 3.57 (t, J = 8.0 Hz, 1H), 3.28 (dd, J = 16.0, 4.0 Hz, 1H), 2.91-2.98 (m, 1H), 2.74-2.80 (m, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.19, 157.65, 138.68, 136.87, 131.01, 129.48, 128.84, 127.84, 125.70, 121.75, 117.48 (t, J = 242 Hz), 55.50, 48.59, 41.69 (t, J = 21 Hz), 31.42, 21.42; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.48 (d, J = 266.96 Hz), -117.07 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₉H₂₀F₂NO₂ [M+H]⁺: 332.1457, found: 332.1460.

4-(4-chlorobenzyl)-3,3-difluoro-1-(4-methoxyphenyl)pyrrolidin-2-one

White solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.51 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0, 4.0 Hz, 2H), 3.82 (s, 3H), 3.73 (t, *J* = 8.0 Hz, 1H), 3.57 (t, *J* = 8.0 Hz, 1H), 3.27 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.88-2.95 (m, 1H), 2.78-2.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.95 (t), 157.71, 135.39, 133.03, 130.87, 130.08, 129.13, 121.70, 119.87 (t, *J* = 269 Hz), 114.33, 55.51, 48.43, 41.58 (t, *J* = 21 Hz), 30.97; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.07 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₈H₁₇ClF₂NO₂ [M+H]⁺: 352.0910, found: 352.0915.

3,3-difluoro-4-(3-fluoro-4-methylbenzyl)-1-(4-methoxyphenyl)pyrrolidin-2-one white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, *J* = 12 Hz, 2.0Hz), 7.17 (t, *J* = 8.0 Hz, 1H), 6.91-6.95 (m, 4H), 3.82 (s, 3H), 3.71 (t, *J* = 12 Hz, 1H), 3.58 (t, *J* = 12 Hz, 1H), 3.25 (dd, *J* = 12.0, 8.0 Hz, 1H), 2.87-2.93 (m, 1H), 2.75-2.81 (m, 1H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.63, 162.03 (t, *J* = 32 Hz), 160.19, 157.69, 136.5(d), 131.96, 130.93, 124.11, 123.51, 121.72, 117.26 (t, *J* = 252 Hz), 115.35(d), 114.31, 55.49, 48.47, 41.54 (t, *J* = 21 Hz), 30.97(d), 14.22(d); ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.26 (d, *J* = 266.96 Hz), -116.74, -116.86 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₉H₁₉F₃NO₂ [M+H]⁺: 350.1362, found: 350.1366.

3,3-difluoro-1-(4-methoxyphenyl)-4-(4-(trifluoromethyl)benzyl)pyrrolidin-2-one White solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 3.82 (s, 3H), 3.73 (t, *J* = 8.0 Hz, 1H), 3.62 (t, *J* = 8.0 Hz, 1H), 3.34 (dd, *J* = 8.0, 4.0 Hz, 1H), 2.88-2.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.79 (t), 157.76, 141.07, 130.79, 129.13, 125.88 (d, *J* = 4.0 Hz), 121.72, 117.18 (t, *J* = 274 Hz), 114.35, 55.50, 48.41, 41.24 (t, *J* = 20 Hz), 31.47; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.53, -109.15 (d, *J* = 266.96 Hz), -116.66 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₉H₁₇F₅NO₂ [M+H]⁺: 386.1174; found: 386.1172.

3,3-difluoro-1-(4-methoxyphenyl)-4-(naphthalen-2-ylmethyl)pyrrolidin-2-one white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.83-7.88 (m, 3H), 7.72 (s, 1H), 7.50-7.52 (m, 4H), 7.41 (d, *J* = 12 Hz, 1H), 6.92 (d, *J* = 12 Hz, 2H), 3.81 (s, 3H), 3.59-3.70 (m, 2H), 3.48 (dd, *J* = 12.0, 4.0 Hz, 1H), 3.06-3.11 (m, 1H), 2.98-3.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.13 (t), 157.65, 134.38, 133.55, 132.45, 130.98, 128.82, 127.75, 127.53, 127.37, 126.49, 125.97, 121.68, 117.31 (t, J = 214 Hz), 114.29, 55.49, 48.55, 41.59 (t, *J* = 21 Hz), 31.70; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.29 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₂₂H₂₀F₂NO₂ [M+H]⁺: 368.1457, found: 368.1455.

3,3-difluoro-4-(4-methoxybenzyl)-1-(4-methoxyphenyl)pyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.93 (t, J = 8.0 Hz, 2H), 3.82 (s, 3H), 3.69 (t, J = 8.0 Hz, 1H), 3.58 (t, J = 8.0 Hz, 1H), 3.25 (dd, J = 16.0, 8.0 Hz, 1H), 2.85-2.94 (m, 1H), 2.73-2.79 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.19 (t), 158.65, 157.64, 131.02, 129.71, 128.82, 121.70, 121.61, 117.58 (t, J = 244 Hz), 114.34, 114.29, 55.50 (d, J = 20 Hz), 48.53, 41.85 (t, J = 20 Hz), 30.65; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.25 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₉H₂₀F₂NO₃ [M+H]⁺: 348.1406, found: 348.1406.

4-(benzofuran-2-ylmethyl)-3,3-difluoro-1-phenylpyrrolidin-2-one

Pure crystal; ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.40-7.47 (m, 3H), 7.24-7.32 (m, 3H), 6.60 (s, 1H), 3.96 (t, *J* = 8.0 Hz, 1H), 3.76 (t, *J* = 8.0 Hz, 1H), 3.43 (dd, *J* = 16.0, 4.0 Hz, 1H), 3.15-3.22 (m, 1H), 3.05-3.11 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.02 (t), 154.96, 153.69, 137.80, 129.22, 128.33, 126.29, 124.14, 123.01, 120.76, 120.01, 117.17 (t, *J* = 241 Hz), 111.01, 104.54, 48.28 (d), 38.94 (t, *J* = 21 Hz), 24.89; ¹⁹F NMR (376 MHz, CDCl₃) δ : -110.64 (d, *J* = 266.96 Hz), -118.80 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₉H₁₆F₂NO₂ [M+H]⁺: 328.1144, found: 328.1141.

4-(4-chlorobenzyl)-3,3-difluoro-1-phenylpyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.62 (d, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.21-7.28 (m, 3H), 3.76 (t, *J* = 8.0 Hz, 1H), 3.59 (t, *J* = 8.0 Hz, 1H), 3.28 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.89-2.97 (m, 1H), 2.79-2.85 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.25 (t), 137.81, 135.32, 133.07, 130.08, 129.21, 129.15, 126.26, 119.96, 117.18 (t, *J* = 249 Hz), 48.04, 41.32 (t, *J* = 21 Hz), 30.92; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.17 (d, *J* = 266.96 Hz), -117.49 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₇H₁₅ClF₂NO [M+H]⁺: 322.0805, found: 322.0801.

4-benzyl-3,3-difluoro-1-phenylpyrrolidin-2-one

Pure crystal; ¹H NMR (400 MHz, CDCl₃) δ : 7.63 (d, J = 8.0 Hz, 2H), 7.33-7.41 (m, 4H), 7.23-7.29 (m, 4H), 3.74 (t, J = 8.0 Hz, 1H), 3.62 (t, J = 8.0 Hz, 1H), 3.32 (dd, J = 12.0, 4.0 Hz, 1H), 2.92-3.01 (m, 1H), 2.80-2.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.87 (t), 137.91, 136.89, 129.17, 129.01, 128.72, 127.15, 126.18, 119.99, 117.33 (t, J = 21 Hz), 48.16 (d), 41.65 (t, J = 21 Hz), 31.48 (d); ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.57 (d, J = 266.96 Hz), -117.24 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₇H₁₆F₂NO [M+H]⁺: 288.1194, found: 288.1192.

S20

4-benzyl-1-(3,5-dimethylphenyl)-3,3-difluoropyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.41 (t, *J* = 8.0 Hz, 2H), 7.27-7.33 (m, 3H), 7.21 (s, 2H), 6.90 (s, 1H), 3.74 (t, *J* = 8.0 Hz, 1H), 3.61 (t, *J* = 8.0 Hz, 1H), 3.32 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.90-3.00 (m, 1H), 2.79-2.85 (m, 1H), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.68 (t), 138.93, 137.76, 136.98, 128.99, 128.74, 128.01, 127.10, 118.00, 117.42 (t, *J* = 245 Hz), 48.44, 41.68 (t, *J* = 21 Hz), 31.55, 21.43; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.50 (d, *J* = 266.96 Hz), -117.29 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₉H₂₀F₂NO [M+H]⁺: 316.1507, found: 316.1504.

4-benzyl-3,3-difluoro-1-(4-fluorophenyl)pyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.60 (q, J = 4.0 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.27-7.31 (m, 3H), 7.12 (t, J = 8.0 Hz, 2H), 3.71 (t, J = 8.0 Hz, 1H), 3.60 (t, J = 8.0 Hz, 1H), 3.32 (dd, J = 16.0, 8.0 Hz, 1H), 2.91-3.04 (m, 1H), 2.80-2.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.36 (t), 161.6 (d, J = 245 Hz), 136.78, 133.97, 129.03, 128.72, 127.19, 121.90, 117.30 (t, J = 249 Hz), 116.09, 115.87, 48.40, 41.42 (t, J = 21 Hz), 31.44; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.63 (d, J = 266.96 Hz), -115.10, -117.14 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₇H₁₅F₃NO [M+H]⁺: 306.1100, found: 306.1108.

4-benzyl-1-(4-chlorophenyl)-3,3-difluoropyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, *J* = 8.0 Hz, 2H), 7.31-7.40 (m, 5H), 7.28 (d, *J* = 8.0 Hz, 2H), 3.71 (t, *J* = 8.0 Hz, 1H), 3.59 (t, *J* = 8.0 Hz, 1H), 3.32 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.92-2.98 (m, 1H), 2.80-2.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.44 (t), 136.70, 136.45, 131.44, 129.23, 129.05, 128.71, 127.22, 117.13 (t, *J* = 241 Hz), 48.05 (d), 41.55 (t, *J* = 21 Hz), 31.42 (d); ¹⁹F NMR (376 MHz, CDCl₃) δ : -111.20 (d, *J* = 266.96 Hz), -118.70 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₇H₁₅ClF₂NO [M+H]⁺: 322.0805, found: 322.0800.

4-benzyl-3,3-difluoro-1-(p-tolyl)pyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.50 (d, J = 8.0 Hz, 2H), 7.40 (t, J = 8.0 Hz, 2H), 7.27-7.33 (m, 3H), 7.20 (d, J = 8.0 Hz, 2H), 3.74 (t, J = 8.0 Hz, 1H), 3.61 (t, J = 8.0 Hz, 1H), 3.32 (dd, J = 16.0, 8.0 Hz, 1H), 2.89-3.02 (m, 1H), 2.79-2.85 (m, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.49 (t), 136.95, 136.07, 135.40, 129.68, 128.99, 128.73, 127.12, 119.98, 114.92 (t, J = 252 Hz), 48.26, 41.66 (t, J = 21 Hz), 31.52, 20.96; ¹⁹F NMR (376 MHz, CDCl₃) δ : -111.00 (d, J = 266.96 Hz), -118.73 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₈H₁₈F₂NO [M+H]⁺: 302.1351, found: 302.1357.

4-benzyl-3,3-difluoro-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.78 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 8.0 Hz, 2H), 7.28-7.34 (m, 3H), 3.78 (t, *J* = 8.0 Hz, 1H), 3.64 (t, *J* = 8.0 Hz, 1H), 3.33 (dd, *J* = 12.0, 4.0 Hz, 1H), 2.94-3.09 (m, 1H), 2.82-2.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.79 (t), 140.79, 136.59, 129.07, 128.70, 127.27, 126.37 (q), 116.96 (t, *J* = 244 Hz), 47.88, 41.30 (t, *J* = 21 Hz), 31.36; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.46, -109.87 (d, *J* = 266.96 Hz), -117.29 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₈H₁₅F₅NO [M+H]⁺: 356.1068, found: 356.1065.

1-(4-acetylphenyl)-4-benzyl-3,3-difluoropyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.98 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.27-7.33 (m, 3H), 3.79 (t, J = 8.0 Hz, 1H), 3.65 (t, J = 8.0 Hz, 1H), 3.32 (dd, J = 12.0, 4.0 Hz, 1H), 2.92-3.03 (m, 1H), 2.81-2.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.80, 163.11 (t), 141.75, 141.76, 136.61, 134.26, 129.52, 129.07, 128.71, 127.25, 119.12, 117.04 (t, J = 249 Hz), 47.86, 41.26 (t, J = 21 Hz), 31.37, 26.55; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.82 (d, J = 266.96 Hz); -117.17 (d, J = 266.96 Hz); HRMS (ESI) calcd for C₁₉H₁₈F₂NO₂ [M+H]⁺: 330.1300,

found: 330.1308.

4-benzyl-3,3-difluoro-1-(3-fluoro-4-methylphenyl)pyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.17-7.46 (m, 8H), 3.71 (t, *J* = 8.0 Hz, 1H), 3.57 (t, *J* = 8.0 Hz, 1H), 3.30 (dd, *J* = 12.0, 4.0 Hz, 1H), 2.91-2.99 (m, 1H), 2.79-2.85 (m, 1H), 2.28 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.79 (t), 162.24 (d, *J* = 243 Hz), 136.93, 131.62, 129.03, 128.71, 127.19, 122.81, 117.25 (t, *J* = 248 Hz), 114.82, 107.36, 107.07, 48.08, 41.31 (t, *J* = 21 Hz), 31.45, 14.19; ¹⁹F NMR (376 MHz, CDCl₃) δ : -111.15 (d, *J* = 266.96 Hz), -115.99, -118.66 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₈H₁₇F₃NO [M+H]⁺: 320.1257, found: 320.1253.

4-benzyl-1-(4-chloro-3-methoxyphenyl)-3,3-difluoropyrrolidin-2-one

white solid; ¹H NMR (400 MHz, CDCl₃) δ : 7.74 (s, 1H), 7.27-7.33 (m, 6H), 6.78 (d, *J* = 8.0 Hz, 1H), 3.93 (s, 3H), 3.74 (t, *J* = 8.0 Hz, 1H), 3.59 (t, *J* = 8.0 Hz, 1H), 3.32 (dd, *J* = 16.0, 4.0 Hz, 1H), 2.91-2.98 (m, 1H), 2.80-2.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.55 (t), 155.30, 137.63, 136.69, 130.06, 129.05, 128.71, 127.22, 119.82, 117.29 (t, *J* = 236 Hz), 111.36, 104.81, 56.30, 48.19, 41.27 (t, *J* = 21 Hz), 31.44; ¹⁹F NMR (376 MHz, CDCl₃) δ : -109.48 (d, *J* = 266.96 Hz), -117.48 (d, *J* = 266.96 Hz); HRMS (ESI) calcd for C₁₈H₁₇ClF₂NO₂ [M+H]⁺: 352.0910, found: 352.0913.

S25 N-allyl-2-bromo-2,2-difluoro-N-(4-methoxyphenyl)acetamide

Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ : 7.19 (d, *J* = 8.0 Hz, 2H); 6.92 (d, *J* = 8.0 Hz, 2H); 5.84-5.92 (m, 1H), 5.13-5.22 (m, 2H), 4.29 (d, *J* = 8.0 Hz, 2H); 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.64, 159.02 (t), 132.12, 130.92, 129.91, 119.77, 114.16, 111.50 (t, *J* = 310 Hz), 55.63, 55.44; ¹⁹F NMR (376 MHz, CDCl₃) δ : -51.97; HRMS (ESI) calcd for C₁₂H₁₃BrF₂NO₂ [M+H]⁺: 320.0092, found: 320.0099.

N-allyl-2-bromo-2,2-difluoro-N-phenylacetamide

Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ : 7.44 (d, *J* = 8.0 Hz, 3H), 7.27 (d, *J* = 8.0 Hz, 2H), 5.85-5.95 (m, 1H), 5.26 (d, *J* = 12 Hz, 1H), 5.19 (d, *J* = 20 Hz, 1H), 4.34 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.82 (t), 139.61, 130.79, 129.18, 128.96, 128.71, 119.86, 111.58 (t, *J* = 320 Hz), 55.54; ¹⁹F NMR (376 MHz, CDCl₃) δ : -51.94; HRMS (ESI) calcd for C₁₁H₁₁BrF₂NO [M+H]⁺: 289.9987, found: 289.9980.

N-allyl-2-bromo-N-(3,5-dimethylphenyl)-2,2-difluoroacetamide

Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ : 7.03 (s, 1H), 6.88 (s, 2H), 5.85-5.94 (m, 1H), 5.17-5.26 (m, 2H), 4.30 (d, J = 4.0 Hz, 2H), 2.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.83, 139.52, 138.89, 130.96, 130.49, 126.03, 119.51, 111.67 (t, *J* = 316 Hz), 55.52, 21.16; ¹⁹F NMR (376 MHz, CDCl₃) δ : -51.79; HRMS (ESI) calcd for C₁₃H₁₅BrF₂NO [M+H]⁺: 318.0300, found: 318.0303.

S26

N-allyl-2-bromo-2,2-difluoro-N-(4-fluorophenyl)acetamide

Pale yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.24-7.28 (m, 2H), 7.11 (t, *J* = 8.0 Hz, 2H), 5.84-5.92 (m, 1H), 5.27 (d, *J* = 12 Hz, 1H), 5.18 (d, *J* = 16 Hz, 1H), 4.31 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.68 (d, *J* = 248 Hz), 158.81 (t), 135.43, 130.73, 120.15, 116.27, 116.04, 111.48 (t, *J* = 318 Hz), 55.54; ¹⁹F NMR (376 MHz, CDCl₃) δ : -53.56, -113.14; HRMS (ESI) calcd for C₁₁H₁₀BrF₃NO [M+H]⁺: 307.9892, found: 307.9895.

N-allyl-2-bromo-N-(4-chlorophenyl)-2,2-difluoroacetamide

Pale yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.42 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 5.83-5.93 (m, 1H), 5.27 (d, *J* = 8.0 Hz, 1H), 5.18 (d, *J* = 16 Hz, 1H), 4.31 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.05 (t), 137.99, 135.02, 130.51, 130.17, 129.48, 120.31, 111.37 (t, *J* = 330 Hz), 55.49; ¹⁹F NMR (376 MHz, CDCl₃) δ : -53.65; HRMS (ESI) calcd for C₁₁H₁₀BrClF₂NO [M+H]⁺: 323.9597, found: 323.9591.

N-allyl-2-bromo-2,2-difluoro-N-(p-tolyl)acetamide

Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.23 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 5.85-5.93 (m, 1H), 5.25 (d, J = 12.0 Hz, 1H), 5.19 (d, J = 20.0 Hz, 1H), **S27**

4.31 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.18 (t), 138.98, 136.98, 130.91, 129.75, 128.43, 119.72, 111.56 (t, J = 316 Hz), 55.57, 21.17; ¹⁹F NMR (376 MHz, CDCl₃) δ : -53.38; HRMS (ESI) calcd for C₁₂H₁₃BrF₂NO [M+H]⁺: 304.0143, found: 304.0145.

N-allyl-2-bromo-2,2-difluoro-*N*-(4-(trifluoromethyl)phenyl)acetamide

Pale yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.73 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 5.85-5.95 (m, 1H), 5.29 (d, *J* = 12.0 Hz, 1H), 5.19 (d, *J* = 16.0 Hz, 1H), 4.35 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.61, 142.75, 130.34, 129.32, 126.45, 120.48, 111.24 (t, *J* = 317 Hz), 55.39; ¹⁹F NMR (376 MHz, CDCl₃) δ : -52.23, -62.74; HRMS (ESI) calcd for C₁₂H₁₀BrF₅NO [M+H]⁺: 357.9860, found: 357.9865.

N-(4-acetylphenyl)-N-allyl-2-bromo-2,2-difluoroacetamide

Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ : 8.03 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 5.83-5.93 (m, 1H), 5.26 (d, J = 12 Hz, 1H), 5.13 (d, J = 12 Hz, 1H), 4.35 (d, J = 4.0 Hz, 2H), 2.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 196.89, 158.58

(t), 143.59, 137.18, 130.46, 129.34, 129.00, 120.37, 116.16 (t, J = 324 Hz), 55.35, 26.74; ¹⁹F NMR (376 MHz, CDCl₃) δ : -52.18; HRMS (ESI) calcd for C₁₃H₁₃BrF₂NO₂ [M+H]⁺: 332.0092, found: 332.0086.

S28

N-allyl-2-bromo-2,2-difluoro-N-(3-fluoro-4-methylphenyl)acetamide

Pale yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.23 (d, J = 8.0 Hz, 1H), 6.95-6.98 (m, 2H), 5.84-5.94 (m, 1H), 5.27 (d, J = 12.0 Hz, 1H), 5.19 (d, J = 16.0 Hz, 1H), 4.31 (d, J = 8.0 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.93 (d, J = 246 Hz), 158.57 (t), 131.63, 131.57, 130.63, 126.26, 126.10, 124.28, 120.07, 115.79, 115.55, 111.37 (t, J = 324 Hz), 55.48, 14.42; ¹⁹F NMR (376 MHz, CDCl₃) δ : -53.63, -116.09; HRMS (ESI) calcd for C₁₂H₁₂BrF₃NO [M+H]⁺: 322.0049, found: 322.0048.

N-allyl-2-bromo-*N*-(4-chloro-3-methoxyphenyl)-2,2-difluoroacetamide

Pale yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.42 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 5.86-5.95 (m, 1H), 5.28 (d, *J* = 8.0 Hz, 1H), 5.21 (d, *J* = 20.0 Hz, 1H), 4.32 (d, *J* = 8.0 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.68 (t), 155.27, 139.01, 130.70, 130.43, 121.34, 120.25, 112.65, 111.38 (t, *J* = 324 Hz), 56.35, 55.53; ¹⁹F NMR (376 MHz, CDCl₃) δ : -52.05; HRMS (ESI) calcd for C₁₂H₁₂BrClF₂NO₂ [M+H]⁺: 353.9703, found: 353.9705.

2-bromo-N-cinnamyl-2,2-difluoro-N-(4-methoxyphenyl)acetamide

Thick yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.30-7.39 (m, 5H), 7.22 (d, J = 12.0 Hz, 2H), 6.93 (d, J = 12.0 Hz, 2H), 6.48 (d, J = 16.0 Hz, 1H), 6.24-6.32 (m, 1H), 4.46 (d, J = 8.0 Hz, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.68, 159.12 (t), 136.29, 135.20, 132.06, 130.00, 128.63, 128.08, 126.5, 121.87, 114.24, 117.57 (t, J = 323 Hz), 55.45, 55.24; ¹⁹F NMR (376 MHz, CDCl₃) δ : -51.86; HRMS (ESI) calcd for C₁₈H₁₇BrF₂NO₂ [M+H]⁺: 396.0405, found: 396.0401.

2-bromo-*N***-(but-2-en-1-yl)-2,2-difluoro-***N***-(4-methoxyphenyl)acetamide** Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.15 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 5.55 (m, 2H), 4.21 (m, 2H), 3.85 (s, 3H), 1.70 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.55, 158.90, 132.13, 131.65, 129.99, 123.58, 122.80, 114.12, 111.64 (t, *J* = 323 Hz), 55.43, 55.01, 17.79; ¹⁹F NMR (376 MHz, CDCl₃) δ : - 51.94; HRMS (ESI) calcd for C₁₃H₁₅BrF₂NO₂ [M+H]⁺: 334.0249, found: 334.0241.

2-bromo-2,2-difluoro-*N*-(**4-methoxyphenyl**)-*N*-(**3-methylbut-2-en-1-yl**)**acetamide** Yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ : 7.15 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 5.25-5.29 (m, 1H), 4.30 (d, *J* = 8.0 Hz, 2H), 3.85 (s, 3H), 1.73 (s, 3H), 1.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.92, 158.89, 138.52, 132.13, 129.97, 117.09, 114.04, 111.74 (t, *J* = 323 Hz), 55.43, 50.48, 25.76, 17.72; ¹⁹F NMR (376 MHz, CDCl₃) δ : -52.15; HRMS (ESI) calcd for C₁₄H₁₇BrF₂NO₂ [M+H]⁺: 348.0405, found: 348.0402.

S30

mai-1121 19F NMR CDC13

0

~-100.44
~-110.15
~-117.03
~-117.03
~-117.74

-10 -20 -30 -40 -50 -60 -70 -80 -90 -180 -190 -200 -100 -110 -120 -130 -140 -150 -160 -170

S36 €1.48 1.48 -80000 mai-1225 1H NMR CDC13 -75000 -70000 -65000 -60000 55000 r3.00 53.72 -50000 45000 -5000 40000 -35000 30000 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 f1 (ppm) 0 -25000 3.7 -20000 15000 10000 -5000 ÅÅ 1 -0 4.5 f1 (ppm) 4, 08-2.21J 3. 18 I 2.00---5000 8.0 7.5 9.0 4.0 2.5 8.5 7.0 6.5 6.0 5. 5 5.0 2.0 1.5 1.0 0.5 0.0

S39

S42

\$43

mai-1123 19F NMR CDC13

-20

-30

-40

-50

-60

-70

-80

-90

-100

-170

-180

-190

-200

-110

-120

-130

-140

-150

-160

S45

S51

mai-0318 19F NMR CDC13

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

-140

-150

-160

-170

-180 -190

 $\underset{\scriptscriptstyle{\mathfrak{g}}_{\mathfrak{g}},\mathfrak{g}_{\mathfrak{g}}}{\overset{\mathfrak{g}}{\underset{\mathfrak{g}}}} \rightarrow$

mai-0126 19F NMR CDC13

mai-0301
응
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
<

<162.11 162.79

mai-0302 13C NMR CDC13

 $\angle 41.86$ $\leftarrow 41.47$ $\leftarrow 41.47$ $\leftarrow 41.05$ $\leftarrow 31.30$ -26.55

S69

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

------51.86

mai-0323 19f NMR CDC13

-17.79

