OrganocatalyticAsymmetricMannich reaction for the Synthesis of 3,3-Disubstituted 3,4-Dihydro-2-quinolones

Soumendranath Mukhopadhyay and Subhas Chandra Pan* Department of Chemistry, IIT Guwahati, North Guwahati, Assam, 781039

Table of contents

A.	General information	S2
B.	General procedure for the synthesis of compound 3	\$3
C.	Optimization table for amidosulfones	S3-S4
D.	General procedure for the synthesis $3a$ with preformed N-Boc imines	S5
E.	Crystal structure of compound 3v	S5-S6
F.	Characterization data for compounds (3a-3y)	S6-S18
G.	General procedure and the characterization data of compound 5	S18-S19
H.	General procedure and the characterization data of compound 6	S19-S20
I.	References	S20
J.	NMR spectra for compounds (3a-3y)	S21-S44
K.	NMR spectra for compounds 5 and 6	S45-S46
L.	HPLC chromatograms for compounds (3a-3y)	S47-S70
M.	HPLC chromatograms for compounds 5 and 6	

A.General information:

All the reagents used are of commercial grade and used without purification. Organic solvents that are used for reactions were dried using standard methods. Reactions were monitored by silica gel 60 F254 (0.25mm). NMR spectra were recorded in CDCl₃ and tetramethylsilane as the internal standard for ¹H NMR (600 MHz) and CDCl₃ solvent as the internal standard for ¹³C NMR (150 MHz). Chemical shifts are reported in ppm tetramethylsilane (CDCl₃: δ 7.26, for ¹H NMR and CDCl₃: δ 77.23, for ¹³C NMR). For ¹H NMR, datareported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = double doublet, t =triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz) and integration. HRMS spectra were recorded using APCI and ESI mode. HPLC data were recorded using Dionex (Ultimate 3000) HPLC Instruments.

Amidosulfones and N-Boc imines were prepared according to literature procedures.¹Dihydroquinolones**1a-e** were prepared according to the literature procedure.²Thiourea catalysts were prepared according to the reported procedures.³Squaramide catalyst was prepared according to the reported procedure.⁴

B. General procedure for the synthesis of compound 3:

Under argon atmosphere, compound **1** dihydro-3-cyano-2-quinolone (0.15 mmole), amidosulfone**2** (0.23 mmole) and catalyst **V** (10 mol %) were placed in a round bottom flask, benzene (2.5 ml) and 75 μ l saturated Na₂CO₃ solution were added to it. Then the reaction mixture stirred at room temperature under argon atmosphere. After the reaction was completed monitored by TLC. The reaction mixture was filtered through a sinter funnel and the filtrate was evaporated. the crude reaction mixture was subjected to column chromatography on silica gel (100-200 mesh) and (230-400 mesh) using 15-20% ethyl acetate in hexane to afford the corresponding productswith both diastereomer separated.

C. Optimization of reaction condition of Mannich reaction of activated carbonyl compounds with in situ generated *N*-Boc imines from amidosulfones:

Entry ^a	catalyst	Yield (%) ^b	d.r ^c	$\mathbf{ee}(\%)^d$
1	Ι	60	3:1	36
2	II	62	1.5:1	34
3	III	70	4:1	56
4	IV	70	4:1	75
5	V	72	5:1	79
6	VI	68	4:1	77
7	VII	61	3:1	40
8	VIII	65	3:1	50
9	IX	55	3:1	30

^{*a*} Reaction condition: 0.15 mmol of **1a** with 0.23 mmol of **2a** in 2.5 ml solvent using 10 mol% catalyst and 75 μ L sat. sodium carbonate. ^{*b*}Isolated combined yield after silica gel column chromatography.^{*c*}Determined by ¹H NMR.^{*d*}Determined by chiral HPLCand of the major diastereomer.

Solvent screening:

Entry ^a	Solvent	Yield (%) ^b	dr ^c	$\mathbf{ee}(\%)^d$
1	Toluene	72	5:1	79
2	PhCF ₃	71	5:1	73
3	DCM	70	5:1	65
4	o-xylene	70	5:1	75
5	mesitylene	68	5:1	65
6	Benzene	75	5:1	98
7 ^e	Benzene	73	5:1	96
8 ^f	Benzene	75	5:1	97

9^g	Benzene	74	5:1	91
10^{h}	Benzene	70	5:1	85

^{*a*} Reaction condition:0.15 mmol of **1a** with 0.23 mmol of **2a** in 2.5 ml solvent using 10 mol% catalyst and 75 uL sat. sodium carbonate. ^{*b*}Isolated combined yield after silica gel column chromatography.^cDetermined by ¹H NMR.^{*d*}Determined by chiral HPLCand of the major diastereomer.^{*e*}Reaction carried out 5 mol% catalyst. ^{*f*}Reaction carried out with 20 mol% catalyst. ^{*s*}Reaction was performed with sat. Potassium carbonate solution. ^{*h*}Reaction was performed with sat. Sodium bicarbonate solution.

D. General procedure for the synthesis of compound 3a with preformed N-Boc imine:

E. Crystal data and structure refinement for chiral compound (CCDC No. 1831432) (3v):

Empirical formula	$C_{22}H_{22}FN_3O_3$
Formula weight	395.4
CCDC Number	1831432
Crystal habit, colour	Needle, White
Crystal size, mm ³	$0.18 \times 0.12 \times 0.08$
Temperature, T	293(2)
Wavelength, $\lambda(\text{Å})$	0.71073
Crystal system	monoclinic
Space group	P2(1)/c
Unit cell dimensions	<i>a</i> = 11.8968(11)Å

	b = 18.4254(17)Å c = 10.7033(8)Å
	$\alpha = 90.00^{\circ}, \beta = 103.556(8)^{\circ}$
	$\gamma = 90.00^{\circ}$
Volume, $V(A^3)$	2280.8(3)
Z	4
Calculated density, Mg·m ⁻³	1.242
Absorption coefficient, $\mu \text{ (mm}^{-1}\text{)}$	0.091
<i>F</i> (000)	900.0
θ range for data collection	2.95 to 25°
Limiting indices	$-14 \le h \le 10, -14 \le k \le 21, -11 \le l \le 12$
Reflection collected/unique	8912/4015[<i>R</i> (int)=0.0329]
Completeness to θ	99.81% (θ = 25.00°)
Max. and min. transmission	0.993/0.987
Refinement method	'SHELXL-97(Sheldrick, 1997)'
Data/restraints/parameters	4015/0/285
Goodness–of–fit on F^2	1.051
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0567, wR_2 = 0.1208$
R indices (all data)	R1 = 0.0982, $wR2 = 0.1468$
Largest diff. peak and note	$0.44 \text{ and } -0.21 \text{e} \cdot \text{A}^{-3}$

F. Characterization data for compounds (3a-3y):

Tert-butyl ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(phenyl)methyl)carbamat (3a)

White sticky solid (42.4 mg, yield: 75%); **Diastereomeric ratio**: 5:1; ¹**H NMR (600 MHz, CDCl₃)**: δ 8.43 (s, 1H), 7.45 – 7.35 (m, 3H), 7.32 (t, *J* = 7.7 Hz, 1H), 7.26 (d, *J* = 6.3 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 5.64 (d, *J* = 9.0 Hz, 1H), 4.94 (d, *J* = 7.4 Hz, 1H), 3.35 (d, *J* = 16.1 Hz, 1H), 2.72 (d, *J* = 16.1 Hz, 1H), 1.35 (s, 9H);¹³**C NMR(125 MHz, CDCl₃)**: δ 164.4, 154.9, 136.0, 135.7, 129.4, 129.3, 129.1, 128.9, 127.7, 124.6, 118.3, 117.5, 116.4, 80.8, 54.8, 51.0, 33.8, 28.3;**HRMS** (+**ESI)**: Calc for C₂₂H₂₄N₃O₃ [M+H]⁺ 378.1812; found378.1817; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (90:10 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 13.5$ min, $\tau_{major} = 24.0$ min); Enatiomeric excess: 98%;

Tert-butyl ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(4-isopropylphenyl)methyl)carbamate (3b)

White sticky solid (46.5 mg, yield: 74%);**Diastereomeric ratio**: 5:1; ¹**H NMR** (600 **MHz**, **CDCl**₃): δ 8.67 (s, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.20 (d, J = 8.1 Hz, 2H), 7.14 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 7.1 Hz, 1H), 7.01 (d, J = 7.9 Hz, 1H), 5.63 (d, J = 8.8 Hz, 1H), 4.96 (d, J = 8.4 Hz, 1H), 3.37 (d, J = 16.1 Hz, 1H), 2.95 (dt, J = 13.8, 6.9 Hz, 1H), 2.78 (d, J = 16.1 Hz, 1H), 1.36 (s, 9H), 1.28 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 154.9, 150.1, 136.1, 133.0, 129.2, 128.9, 127.7, 127.1, 124.5, 118.4, 116.4, 80.6, 54.6, 51.3, 34.0, 33.8, 28.3, 24.1, 24.0; **HRMS** (+**ESI**): Calc for C₂₂H₃₀N₃O₃ [M+H]⁺ 420.2282; found 420.2280; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 7.1$ min, $\tau_{major} = 18.4$ min); Enatiomeric excess: 94%;

Tert-butyl ((*R*)-(4-(*tert-butyl*)*phenyl*)((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3yl)methyl)carbamate (3c)

White sticky solid (46.8 mg, yield: 72%); **Diastereomeric ratio**: 5:1; ¹**H NMR (600 MHz, CDCl**₃) δ 8.51 (s, 1H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 7.0 Hz, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 5.62 (d, *J* = 8.7 Hz, 1H), 4.95 (d, *J* = 8.3 Hz, 1H), 3.35 (d, *J* = 16.1 Hz, 1H), 2.76 (d, *J* = 16.2 Hz, 1H), 1.36 (s, 9H), 1.33 (s, 9H); ¹³**C NMR (150 MHz, CDCl**₃): δ 164.4, 155.0, 152.4, 136.1, 132.6, 129.2, 128.9, 127.4, 126.0, 124.5, 118.5, 117.7, 116.3, 80.7, 54.5, 51.3, 34.9, 33.9, 31.5, 28.4;**HRMS (+ESI):** Calc for C₂₆H₃₂N₃O₃ [M+H]⁺434.2438; found 434.2435; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 6.7 \text{ min}, \tau_{major} = 12.4 \text{ min}$;Enatiomeric excess: 96%;

Tert-butyl ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(4methoxyphenyl)methyl)carbamate (3d)

White sticky solid (42.1 mg, yield: 69%);**Diastereomeric ratio**: 5:1; ¹**H NMR** (600 **MHz**, **CDCl**₃): δ 7.31 (t, J = 7.7 Hz, 1H), 7.17 (d, J = 8.6 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 7.4 Hz, 1H), 6.91 (t, J = 7.1 Hz, 3H), 5.55 (d, J = 8.6 Hz, 1H), 4.88 (d, J = 8.3 Hz, 1H), 3.83 (s, 3H), 3.35 (d, J = 16.1 Hz, 1H), 2.73 (d, J = 16.2 Hz, 1H), 1.37 (s, 9H); ¹³**C NMR** (150 **MHz**, **CDCl**₃): δ 164.1, 160.3, 154.9, 135.9, 129.3, 128.9, 128.9, 127.8, 124.6, 118.4, 117.6, 116.1, 114.4, 80.7, 55.6, 54.3, 51.3, 33.8, 28.4; **HRMS** (+**ESI**): Calc for C₂₃H₂₆N₃O₄ [M+H]⁺ 408.1918; found 408.1921; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 11.0$ min, $\tau_{major} = 17.6$ min)Enatiomeric excess: 86%;

Tert-butyl ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(4-fluorophenyl)methyl)carbamate (3e)

White sticky solid (45.6 mg, yield: 77%); **Diastereomeric ratio**: 5:1; ¹**H NMR (600 MHz, CDCl3):** δ 8.43 (s, 1H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.11 (t, *J* = 8.5 Hz, 2H), 7.05 (d, *J* = 7.3 Hz, 1H), 6.99 (d, *J* = 7.9 Hz, 1H), 5.67 (d, *J* = 8.1 Hz, 1H), 4.93 (d, *J* = 7.6 Hz, 1H), 3.39 (d, *J* = 16.2 Hz, 1H), 2.73 (d, *J* = 16.2 Hz, 1H), 1.37 (s, 9H); ¹³**C NMR (150 MHz, CDCl3**): δ 164.1 (d, *J* = 16.5), 162.4, 154.9, 135.9, 131.8, 129.6 (d, *J* = 9), 129.4, 128.8, 124.8, 118.2, 117.3, 116.4, 116.1 (d, *J* = 21), 80.9, 54.3, 50.9, 33.8, 28.3; **HRMS (+ESI):** Calc for C₂₂H₂₃FN₃O₃ [M+H]⁺ 396.1718; found 396.1722; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 9.3 min$, $\tau_{major} = 14.5 min$); Enatiomeric excess: 92%. *Tert-butyl ((R)-(4-chlorophenyl)((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-*

yl)methyl)carbamate(3f)

White sticky solid (46.3 mg, yield: 75%);**Diastereomeric ratio**: 5:1; ¹**H NMR** (400 MHz, **CDCl₃)**: δ 8.23 (s, 1H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 7.04 (d, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 1H), 5.66 (d, *J* = 8.4 Hz, 1H), 4.89 (d, *J* = 8.4 Hz, 1H), 3.37 (d, *J* = 16.2 Hz, 1H), 2.73 (d, *J* = 16.3 Hz, 1H), 1.36 (s, 9H); ¹³**C NMR(100 MHz, CDCl₃)**: δ 163.7, 154.6, 135.6, 135.2, 134.2, 129.2, 129.1, 128.9, 128.7, 124.6, 118.0, 116.9, 116.1, 80.8, 54.2, 50.5, 33.6, 28.2; **HRMS** (+**ESI**): Calc for C₂₂H₂₃ClN₃O₃ [M+H]⁺ 412.1422; found 412.1422; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, τ_{minor} = 9.4 min, τ_{major} = 16.2 min); Enatiomeric excess: 79%.

 $Tert-butyl\ ((R)-(4-bromophenyl)((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl) methyl) carbamate\ (3g)$

White sticky solid (49.9 mg, yield: 73%);**Diastereomeric ratio**: 5:1; ¹**H NMR** (600 **MHz**, **CDCl**₃): δ 8.35 (s, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.33 (t, J = 7.7 Hz, 1H), 7.14 (dd, J = 14.0, 7.9 Hz, 3H), 7.04 (d, J = 7.3 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H), 5.65 (d, J = 8.1 Hz, 1H), 4.88 (d, J = 7.4 Hz, 1H), 3.37 (d, J = 16.2 Hz, 1H), 2.72 (d, J = 16.3 Hz, 1H), 1.35 (s, 9H); ¹³**C NMR** (150 **MHz**, **CDCl**₃): δ 164.1, 154.9, 135.8, 134.9, 132.2, 129.5, 129.4, 128.8, 124.8, 123.6, 118.2, 117.1, 116.4, 81.0, 54.4, 50.7, 33.8, 28.3; **HRMS** (+**ESI**): Calc for C₂₂H₂₃BrN₃O₃ [M+H]⁺ 456.0917; found 456.0908; The enantiomeric ratio was determined by HPLC analysis using Daicel ChiralpakIA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 10.0$ min, $\tau_{major} = 17.0$ min); Enatiomeric excess: 81%;

 $Tert-butyl\ ((R)-((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(4-cyanophenyl)methyl) carbamate\ (3h)$

White sticky solid (40.4 mg, yield: 67%);**Diastereomeric ratio**: 4:1; ¹**H NMR (600 MHz, CDCl₃)**: δ 7.91 (s, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 7.36 (t, J = 7.7 Hz, 1H), 7.16 (t, J = 7.3 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1H), 5.73 (d, J = 8.1 Hz, 1H), 4.94 (d, J = 7.4 Hz, 1H), 3.41 (d, J = 16.3 Hz, 1H), 2.72 (d, J = 16.3 Hz, 1H), 1.36 (s, 9H); ¹³**C NMR(150 MHz, CDCl₃)**: δ 163.3, 154.8, 141.1, 135.6, 132.8, 129.7, 128.8, 128.7, 125.1, 118.4, 118.0, 116.7, 116.4, 113.4, 81.4, 54.7, 50.2, 33.8, 28.3; **HRMS (+ESI)**: Calc for C₂₃H₂₂N₄NaO₄ [M+Na]⁺ 425.1584; found 425.1594; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 14.6$ min, $\tau_{major} = 26.0$ min); Enatiomeric excess: 84%.

Tert-butyl ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(4-nitrophenyl)methyl)carbamate (3i)

White sticky solid (44.3 mg, yield: 70%); **Diastereomeric ratio**: 5:1; ¹**H NMR** (400 MHz, **CDCl₃)**: δ 8.47 (s, 1H), 8.27 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.09 (s, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 5.87 (d, *J* = 4.0 Hz, 1H), 5.01 (d, *J* = 7.9 Hz, 1H), 3.42 (d, *J* = 16.3 Hz, 1H), 2.75 (d, *J* = 16.4 Hz, 1H), 1.35 (s, 9H); ¹³**C NMR** (100 MHz, **CDCl₃)**: δ 163.6, 154.8, 148.5, 143.1, 135.6, 129.7, 129.0, 128.8, 125.2, 124.2, 118.1, 116.6, 116.5, 81.4, 54.6, 50.1, 33.8, 28.3; **HRMS** (+**ESI**): Calc for C₂₂H₂₃N₄O₅ [M+H]⁺ 423.1663; found 423.1662; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 14.8 \min$, $\tau_{major} = 23.8 \min$); Enatiomeric excess: 89%;

Tert-butyl((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(4-(trifluoromethyl)phenyl)methyl)carbamate (3j)

White sticky solid (52.1 mg, yield: 78%); **Diastereomeric ratio**: 5:1; ¹**H NMR** (400 MHz, **CDCI**₃): δ 8.25 (s, 1H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.8 Hz, 1H), 5.75 (d, *J* = 4.5 Hz, 1H), 4.98 (d, *J* = 7.8 Hz, 1H), 3.40 (d, *J* = 16.3 Hz, 1H), 2.73 (d, *J* = 16.3 Hz, 1H), 1.36 (s, 10H); ¹³C **NMR** (100 MHz, CDCI₃): δ 163.8, 154.8, 139.9, 135.7, 131.8, 129.6, 128.9 (q, *J*_{C-F} = 251.2 Hz), 128.8, 128.3, 126.9, 126.0 (q, *J*_{C-F} = 10.5 Hz), 125.0, 118.2, 116.9, 116.4, 81.2, 54.6, 50.5, 33.8, 28.4; **HRMS** (+**ESI**): Calc for C₂₃H₂₃F₃N₃O₃ [M+H]⁺ 446.1686; found 446.1689; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, τ_{minor} = 7.9 min, τ_{major} = 12.4 min); Enatiomeric excess: 93%;

Tert-butyl ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(*m*-tolyl)methyl)carbamate (3k)

White sticky solid (44.6 mg, yield: 76%); **Diastereomeric ratio**: 5:1; ¹**H NMR** (400 MHz, **CDCl₃):** δ 8.10 (s, 1H), 7.30 (dd, *J* = 15.2, 7.7 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.04 (s, 2H), 7.02 – 6.96 (m, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 5.58 (d, *J* = 9.1 Hz, 1H), 4.90 (d, *J* = 8.7 Hz, 1H), 3.35 (d, *J* = 16.1 Hz, 1H), 2.72 (d, *J* = 16.1 Hz, 1H), 2.36 (s, 3H), 1.37 (s, 9H); ¹³C **NMR(150 MHz, CDCl₃):** δ 164.4, 154.9, 138.8, 136.0, 135.6, 130.2, 129.3, 129.0, 128.9, 128.4, 124.8, 124.5, 118.4, 117.5, 116.3, 80.7, 54.8, 51.1, 33.9, 28.4, 21.7; **HRMS** (+**ESI**): Calcfor C₂₃H₂₆N₃O₃ [M+H]⁺ 392.1963; found 392.1962; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (90:10 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 10.4 \text{ min}, \tau_{major} = 18.7 \text{ min}$);Enatiomeric excess: 98%;

 $Tert-butyl\ ((R)-((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(3-fluorophenyl)methyl) carbamate\ (3l)$

White sticky solid (45.6 mg, yield: 77%); **Diastereomeric ratio**: 5:1; ¹**H NMR** (400 **MHz**, **CDCl**₃): δ 8.18 (s, 1H), 7.36 (dt, *J* = 15.1, 7.8 Hz, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.12 – 7.03 (m, 3H), 6.99 (d, *J* = 9.5 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 1H), 5.66 (d, *J* = 8.5 Hz, 1H), 4.91 (d, *J* = 8.2 Hz, 1H), 3.38 (d, *J* = 16.2 Hz, 1H), 2.76 (d, *J* = 16.3 Hz, 1H), 1.37 (s, 9H); ¹³**C NMR** (100 **MHz,CDCl**₃): δ 164..0 (d, *J* = 46.5), 161.7, 154.9, 135.8, 130.7 (d, *J* = 12), 129.5, 128.9, 124.9, 123.5, 123.5, 118.3, 116.6, 116.3, 115.0 (d, *J* = 33), 81.1, 54.5, 50.7, 33.8, 28.4; **HRMS** (+**ESI**): Calc for C₂₂H₂₃FN₃O₃[M+H]⁺ 396.1718; found 396.1718; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{major} = 11.3 \text{ min}, \tau_{minor} = 13.7 \text{ min}$);Enatiomeric excess: 89%;

 $Tert-butyl\ ((R)-(3-chlorophenyl)((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)methyl) carbamate\ (3m)$

White sticky solid (45.7 mg, yield: 74%); **Diastereomeric ratio**: 5:1; ¹**H NMR** (400 **MHz**, **CDCl**₃): δ 8.54 (s, 1H), 7.39 – 7.30 (m, 3H), 7.22 (d, *J* = 7.2 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.06 (d, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 5.70 (d, *J* = 7.7 Hz, 1H), 4.90 (d, *J* = 8.2 Hz, 1H), 3.38 (d, *J* = 16.2 Hz, 1H), 2.75 (d, *J* = 16.3 Hz, 1H), 1.36 (s, 9H);¹³**C NMR** (100 **MHz**, **CDCl**₃): δ 164.1, 154.8, 137.9, 135.8, 134.9, 130.4, 129.6, 129.5, 128.9, 128.2, 125.8, 124.9, 118.2, 117.0, 116.5, 81.1, 54.6, 50.6, 33.9, 28.4; **HRMS** (+**ESI**): Calc for C₂₂H₂₃ClN₃O₃ [M+H]⁺412.1422; found 412.1428; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 8.0 \text{ min}$, $\tau_{maior} = 15.2 \text{ min}$;Enatiomeric excess: 87%;

 $Tert-butyl\ ((R)-(3-bromophenyl)((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl) methyl) carbamate\ (3n)$

White sticky solid (49.2 mg, yield: 72%); **Diastereomeric ratio**: 5:1; ¹**H NMR** (400 MHz, **CDCl3**): δ 8.21 (s, 1H), 7.53 (d, J = 7.0 Hz, 1H), 7.33 (d, J = 11.5 Hz, 2H), 7.28 (d, J = 7.3 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H), 5.65 (d, J = 8.5 Hz, 1H), 4.88 (d, J = 8.2 Hz, 1H), 3.38 (d, J = 16.2 Hz, 1H), 2.74 (d, J = 16.3 Hz, 1H), 1.37 (s, 9H); ¹³C **NMR(100 MHz, CDCl3**): δ 163.9, 154.8, 138.1, 135.8, 132.5, 131.2, 130.7, 129.5, 128.9, 126.1, 124.9, 123.0, 118.2, 117.0, 116.4, 81.1, 54.5, 50.7, 33.9, 28.4; **HRMS** (+**ESI**): Calc for C₂₂H₂₃BrN₃O₃ [M+H]⁺456.0917; found 456.0916; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 8.1$ min, $\tau_{major} = 15.8$ min);Enatiomeric excess: 87%;

Tert-butyl ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(3-cyanophenyl)methyl)carbamate (30)

White sticky solid (39.2 mg, yield: 65%); **Diastereomeric ratio**: 4:1; ¹**H NMR (600 MHz, CDCl**₃): δ 8.42 (s, 1H), 7.70 (dd, J = 7.6, 1.2 Hz, 1H), 7.62 (d, J = 6.9 Hz, 1H), 7.59 – 7.47 (m, 2H), 7.36 (t, J = 7.7 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 7.3 Hz, 1H), 6.96 (d, J = 7.8 Hz, 1H), 5.79 (d, J = 6.4 Hz, 1H), 4.95 (d, J = 7.5 Hz, 1H), 3.42 (d, J = 16.3 Hz, 1H), 2.74 (d, J = 16.3Hz, 1H), 1.36 (s, 9H); ¹³**C NMR (150 MHz, CDCl**₃): δ 163.7, 154.8, 137.8, 135.6, 133.0, 132.1, 131.6, 130.0, 129.7, 128.7, 125.3, 118.3, 118.1, 116.7, 116.5, 113.2, 81.4, 54.5, 50.2, 33.9, 28.3; **HRMS** (+**ESI):** Calc for C₂₃H₂₂N₄NaO₄ [M+H]⁺ 403.1765; found 403.1781; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{major} = 12.4$ min, $\tau_{minor} = 19.0$ min); Enatiomeric excess: 93%; *Tert-butyl* ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(3-nitrophenyl)methyl)carbamate (3p)

White sticky solid (41.8 mg, yield: 66%); **Diastereomeric ratio**: 4:1; ¹**H NMR** (600 **MHz**, **CDCl**₃): δ 8.43 (s, 1H), 8.27 (d, *J* = 8.1 Hz, 1H), 8.12 (s, 1H), 7.76 (d, *J* = 6.2 Hz, 1H), 7.64 (t, *J* = 8.0 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 7.13 (d, *J* = 7.1 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 5.89 (s, 1H), 5.04 (d, *J* = 7.9 Hz, 1H), 3.43 (d, *J* = 16.3 Hz, 1H), 2.79 (d, *J* = 16.2 Hz, 1H), 1.37 (s, 9H); ¹³**C NMR** (150 MHz, CDCl₃): δ 163.7, 154.9, 148.3, 138.2, 135.5, 133.5, 130.3, 129.7, 128.9, 125.3, 124.3, 123.3, 118.1, 116.6, 81.4, 54.6, 50.2, 33.9, 28.3; **HRMS** (+**ESI**): Calc for C₂₂H₂₃N₄O₅ [M+H]⁺423.1662; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, τ_{minor} = 13.1 min, τ_{major} = 20.6 min);Enatiomeric excess: 90%;

tert-butyl ((R)-((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(3-(trifluoromethyl)phenyl)methyl)carbamate (3q)

White sticky solid (52.7 mg, yield: 79%); **Diastereomeric ratio**: 5:1; ¹**H NMR** (400 **MHz**, **CDCl**₃): δ 8.24 (s, 1H), 7.64 (dd, J = 36.2, 6.0 Hz, 3H), 7.38 (dd, J = 17.1, 9.5 Hz, 2H), 7.24 – 7.12 (m, 1H), 7.06 (s, 1H), 7.02 – 6.90 (m, 1H), 5.75 (d, J = 7.5 Hz, 1H), 5.00 (d, J = 2.8 Hz, 1H), 3.41 (d, J = 16.2 Hz, 1H), 2.69 (d, J = 16.5 Hz, 1H), 1.38 (s, 9H); ¹³**C NMR** (150 **MHz**, **CDCl**₃): δ 163.8, 154.9, 136.9, 135.8, 131.3, 131.1, 130.7, 129.8, 129.6, 128.9, 126.2 (q, $J_{C-F} = 6$ Hz), 125.7 (q, $J_{C-F} = 262.5$ Hz), 125.3 (q, $J_{C-F} = 3$ Hz), 118.1, 116.9, 116.4, 81.2, 54.7, 50.7, 33.9, 28.3; **HRMS** (+**ESI**): Calc for C₂₃H₂₃F₃N₃O₃ [M+H]⁺ 446.1686; found 446.1687; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 6.4$ min, $\tau_{major} = 10.4$ min); Enatiomeric excess: 90%;

Tert-butyl ((R)-((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(o-tolyl)methyl)carbamate (3r)

White sticky solid (32.3 mg, yield: 55%); **Diastereomeric ratio**: 3:1; ¹**H NMR** (600 **MHz**, **CDCl**₃): δ 8.10 (s, 1H), 7.83 (d, *J* = 7.7 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.26 – 7.23 (m, 2H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.93 (t, *J* = 8.2 Hz, 1H), 6.78 (d, *J* = 7.3 Hz, 1H), 5.37 (dd, *J* = 45.3, 8.3 Hz, 2H), 3.40 (d, *J* = 16.1 Hz, 1H), 2.79 (d, *J* = 16.1 Hz, 1H), 1.65 (s, 3H), 1.38 (s, 9H); ¹³**C NMR** (150 **MHz**, **CDCl**₃): δ 164.5, 155.0, 136.0, 134.9, 131.5, 129.2, 129.0, 128.8, 127.3, 125.8, 124.4, 118.7, 118.6, 116.1, 80.7, 50.7, 34.1, 28.4, 18.9; **HRMS** (+ESI): Calcfor C₂₃H₂₆N₃O₃ [M+H]⁺ 392.1963; found 392.1968; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 8.2 \text{ min}$, $\tau_{major} = 10.5 \text{ min}$; Enatiomeric excess: 48%;

Tert-butyl ((*R*)-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(naphthalen-2-yl)methyl)carbamate (3s)

White sticky solid (49.9 mg, yield: 78%); **Diastereomeric ratio**: 5:1; ¹**H NMR** (400 MHz, **CDCl**₃): δ 8.22 (s, 1H), 7.88 (dd, J = 12.2, 7.0 Hz, 2H), 7.84 – 7.78 (m, 1H), 7.65 (s, 1H), 7.57 – 7.47 (m, 2H), 7.45 (dd, J = 8.5, 1.6 Hz, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.15 (t, J = 7.4 Hz, 1H), 7.06 – 6.93 (m, 2H), 5.76 (d, J = 8.9 Hz, 1H), 5.11 (d, J = 8.8 Hz, 1H), 3.36 (d, J = 16.2 Hz, 1H), 2.73 (d, J = 16.2 Hz, 1H), 1.37 (s, 9H); ¹³C **NMR** (100 MHz, CDCl₃): δ 164.2, 155.0, 136.0, 133.7, 133.1, 129.4, 129.1, 129.0, 128.4, 128.0, 127.6, 127.0, 126.9, 124.6, 118.5, 117.5, 116.3, 80.9, 55.2, 53.6, 33.9, 28.4; **HRMS** (+**ESI**): Calc for C₂₆H₂₆N₃O₃ [M+H]⁺428.1969; found 412.19.70; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 10.3$ min, $\tau_{major} = 16.8$ min); Enatiomeric excess: 98%;

Tert-butyl ((R)-1-((R)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)-3-phenylpropyl)carbamate (3t)

White sticky solid (33.4 mg, yield: 55%); **Diastereomeric ratio**: 3:1; ¹**H NMR** (400 MHz, **CDCl**₃): δ 7.79 (s, 1H), 7.24 (d, *J* = 7.5 Hz, 3H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.11 (dd, *J* = 13.9, 7.4 Hz, 3H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 4.90 (d, *J* = 10.4 Hz, 1H), 4.11 – 3.99 (m, 1H), 3.35 – 3.21 (m, 2H), 2.78 (dd, *J* = 21.0, 7.1 Hz, 1H), 2.60 – 2.48 (m, 1H), 2.20 (dd, *J* = 14.6, 7.3 Hz, 2H), 1.42 (s, 9H); ¹³**C NMR** (100 MHz, **CDCl**₃): δ 163.9, 155.8, 140.7, 135.5, 129.0, 128.7, 128.6, 128.5, 126.4, 124.6, 119.7, 117.5, 115.8, 80.5, 52.2, 49.4, 34.5, 33.8, 32.5, 28.5; **HRMS** (+ESI): Calc for C₂₄H₂₈N₃O₃[M+H]⁺406.2125; found 406.2127; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak ID column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{major} = 22.3 \text{ min}$, $\tau_{minor} = 30.0 \text{ min}$;Enatiomeric excess: 71%; *Tert-butyl* ((*R*)-1-((*R*)-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)pentyl)carbamate (3u)

Brown sticky solid (28.9 mg, yield: 54%); **Diastereomeric ratio**: 3:1; ¹**H NMR** (400 MHz, **CDCl**₃): δ 8.02 (s, 1H), 7.28 – 7.24 (m, 2H), 7.20 (d, *J* = 7.3 Hz, 1H), 7.07 (t, *J* = 7.4 Hz, 1H), 6.85 (d, *J* = 7.8 Hz, 1H), 4.81 (d, *J* = 10.4 Hz, 1H), 4.07 – 3.94 (m, 1H), 3.33 (q, *J* = 16.0 Hz, 2H), 1.91 – 1.78 (m, 2H), 1.43 (dd, *J* = 7.9, 6.3 Hz, 2H), 1.40 (s, 9H), 1.29 (d, *J* = 4.7 Hz, 2H), 0.87 (d, *J* = 4.4 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 164.2, 156.0, 135.7, 129.1, 128.5, 124.5, 119.8, 117.7, 115.9, 80.3, 52.6, 49.5, 34.6, 31.5, 28.4, 28.3, 22.3, 14.1; **HRMS** (+**ESI**): Calc for C₂₀H₂₈N₃O₃ [M+H]⁺ 358.2125; found 358.2129; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IE column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{\text{maior}} = 20.9 \text{ min}, \tau_{\text{minor}} = 24.4 \text{ min}$); Enatiomeric excess: 67%;

Tert-butyl ((*R*)-((*R*)-3-cyano-6-fluoro-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(phenyl)methyl)carbamate (3v)

White sticky solid (44.4 mg, yield: 75%);**Diastereomeric ratio**: 5:1; ¹**H NMR** (600 **MHz**, **CDCl3**): δ 8.35 (s, 1H), 7.51 – 7.33 (m, 3H), 7.29 – 7.26 (m, 2H), 7.04 (t, *J* = 8.4 Hz, 1H), 6.94 (dt, *J* = 8.7, 4.4 Hz, 1H), 6.76 (d, *J* = 7.2 Hz, 1H), 5.60 (d, *J* = 8.9 Hz, 1H), 4.94 (d, *J* = 7.3 Hz, 1H), 3.34 (d, *J* = 16.3 Hz, 1H), 2.70 (d, *J* = 16.3 Hz, 1H), 1.36 (s, 9H); ¹³**C NMR** (150 **MHz**, **CDCl3**): δ 163.9 (d, *J* = 9 Hz), 160.2, 158.6, 155.0, 135.5, 132.3, 129.6, 129.2, 127.7, 120.2 (d, *J* = 7.5 Hz), 117.6 (d, *J* = 7.5 Hz), 116.2, 116.0, 115.9, 115.8, 80.9, 54.9, 50.8, 33.8, 28.4; **HRMS** (+**ESI**): Calc for C₂₂H₂₃FN₃O₃ [M+H]⁺ 396.1718; found 396.1724; The enantiomeric ratio was determined by HPLC analysis using Phenomenex Lux C1 column (90:10 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{major} = 10.6 min, \tau_{minor} = 13.3 min$); Enatiomeric excess: 92%;

Tert-butyl ((R)-((R)-6-chloro-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(phenyl)methyl)carbamate (3w)

White sticky solid (43.7 mg, yield: 71%); **Diastereomeric ratio**: 5:1; ¹**H** NMR (600 MHz, CDCl₃) δ 8.08 (s, 1H), 7.42 (dd, J = 5.0, 1.7 Hz, 3H), 7.30 (dd, J = 8.4, 1.7 Hz, 1H), 7.27 (s, 2H), 7.02 (s, 1H), 6.89 (d, J = 8.4 Hz, 1H), 5.56 (d, J = 9.2 Hz, 1H), 4.94 (d, J = 7.9 Hz, 1H), 3.33 (d, J = 16.3 Hz, 1H), 2.70 (d, J = 16.3 Hz, 1H), 1.36 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 163.8, 155.0, 135.4, 134.7, 129.6, 129.3, 129.3, 128.8, 127.7, 120.1, 117.4, 117.2, 80.9, 55.0, 50.9, 33.7, 28.4; HRMS (+ESI): Calc for C₂₂H₂₃ClN₃O₃ [M+H]⁺ 412.1422; found 412.1426; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (88:12*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 10.8$ min, $\tau_{major} = 23.5$ min) Enatiomeric excess: 93%. *Tert-butyl* ((*R*)-((*R*)-3-cyano-6-methoxy-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(phenyl)methyl)carbamate (3x)

White sticky solid (47.6 mg, yield: 78%); **Diastereomeric ratio**: 6:1; ¹**H NMR** (400 MHz, **CDCl**₃): δ 8.65 (s, 1H), 7.48 – 7.35 (m, 3H), 7.29 (dd, *J* = 6.6, 2.8 Hz, 2H), 6.93 (dd, *J* = 13.1, 8.7 Hz, 1H), 6.85 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.58 (s, 1H), 5.70 (d, *J* = 8.6 Hz, 1H), 4.94 (d, *J* = 8.0 Hz, 1H), 3.81 (s, 3H), 3.32 (d, *J* = 16.2 Hz, 1H), 2.69 (d, *J* = 16.3 Hz, 1H), 1.35 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃): δ 164.1, 156.7, 154.9, 135.9, 129.4, 129.0, 127.8, 119.8, 117.5, 117.4, 114.8, 114.0, 80.7, 55.9, 54.9, 50.9, 34.1, 28.4; **HRMS** (+**ESI**): Calc for C₂₃H₂₆N₃O₄ [M+H]⁺408.1918; found 408.1926; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{major} = 10.6 \text{ min}, \tau_{minor} = 17.5 \text{ min}$;Enatiomeric excess: 92%.

Tert-butyl ((*R*)-((*R*)-5-chloro-3-cyano-2-oxo-1,2,3,4-tetrahydroquinolin-3-yl)(phenyl)methyl)carbamate (3y)

White sticky solid (43.1 mg, yield: 70%); **Diastereomeric ratio**: 5:1; ¹**H NMR (600 MHz, CDCl**₃): δ 8.26 (d, *J* = 22.6 Hz, 1H), 7.41 (dd, *J* = 5.0, 1.7 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.22 (dd, *J* = 6.6, 2.8 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 1H), 6.91 – 6.85 (m, 1H), 5.59 (d, *J* = 9.2 Hz, 1H), 4.95 (d, *J* = 8.6 Hz, 1H), 3.16 (s, 2H), 1.37 (s, 9H); ¹³**C NMR (150 MHz, CDCl**₃): δ 164.0, 155.0, 137.4, 135.1, 134.1, 130.0, 129.5, 129.4, 127.7, 125.4, 117.1, 116.9, 114.8, 80.9, 55.2, 51.4, 31.1, 28.4; **HRMS (+ESI):** Calc for C₂₂H₂₃ClN₃O₃ [M+H]⁺ 412.1422; found 412.1418; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (85:15*n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 7.2 min$, $\tau_{major} = 10.7 min$);Enatiomeric excess: 84%.

G.Tert-butyl((R)-((S)-3-((4-methylphenylsulfonamido)methyl)-2-oxo-1,2,3,4tetrahydroquinolin-3-yl)(phenyl)methyl)carbamate(5)

General procedure for the synthesis of compound 5:

Under argon atmosphere, 3a (0.15 mmol) in Et₂O (1.5 ml) was added suspension solution LiAlH₄(0.9 mmol) in 1 ml Et₂O at 0 °C. The mixture was allowed to warm at ambient temperature and stirred for 4h. Next water (20 μ l), 15% aqueous NaOH (20 μ l) and water (60 μ l) were sequentially added dropwise at 0 °C, the mixture was allowed stirred at room temperature for 15 min. Then the reaction mixture was filtered through a celite pad, the celite pad was washed with ether. The filtrate concentrated in vacuo and the corresponding amine was used for the next step without further purification.

To a round-bottom flask were added sequentially amine (0.1 mmol), CH_2Cl_2 (3 ml), Et_3N (0.1 mmol) and TsCl (0.1 mmol). the reaction was stirred for 24 h at room temperature. Then the mixture was poured into water (2 ml) and the organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 twice. The combined organic layers were dried over Na₂SO₄ and evaporated. The crude product was purified by column chromatography using 30% ethyl acetate in hexane.

White sticky solid (36.1 mg, yield: 45%);**Diastereomeric ratio**: 5:1; ¹**H NMR (600 MHz, CDCl₃)**: δ 9.03 (s, 1H), 7.69 (d, *J* = 8.1 Hz, 2H), 7.32 (dd, *J* = 15.2, 7.2 Hz, 5H), 7.18 (t, *J* = 6.9 Hz, 2H), 7.07 (t, *J* = 6.7 Hz, 3H), 6.79 (d, *J* = 8.0 Hz, 1H), 5.73 (s, 1H), 4.77 (s, 1H), 3.43 (d, *J* = 17.3 Hz, 2H), 2.67 (dd, *J* = 12.8, 9.2 Hz, 1H), 2.58 (d, *J* = 16.9 Hz, 1H), 2.45 (s, 3H), 1.34 (s, 9H); ¹³**C NMR (150 MHz, CDCl₃)**: δ 172.8, 155.1, 149.2, 143.7, 136.8, 135.7, 130.1, 129.3, 129.0, 128.9, 128.5, 128.3, 128.0, 127.9, 127.2, 124.5, 116.1, 79.9, 60.6, 55.2, 49.0, 44.9, 28.5, 21.8; **HRMS (+ESI)**: Calc for C₂₉H₃₃N₂O₅S [M+H]⁺ 536.2214; found 536.2222; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (70:30 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 18.3 min, \tau_{major} = 28.5 min$); Enatiomeric excess: 98%.

H. Tert-butyl((R)-((S)-2-oxo-3-(2-oxo-2-phenylethyl)-1,2,3,4-tetrahydroquinolin-3yl)(phenyl)methyl)carbamate(6)

General procedure for the synthesis of compound 6:

Under argon atmosphere, 3a (0.15 mmol) in Et₂O (1.5 ml) was added suspension solution LiAlH₄(0.9 mmol) in 1 ml Et₂O at 0 °C. The mixture was allowed to warm at ambient temperature and stirred for 4h. Next water (20 μ l), 15% aqueous NaOH (20 μ l) and water (60 μ l) were sequentially added dropwise at 0 °C, the mixture was allowed stirred at room temperature for 15 min. Then the reaction mixture was filtered through a celite pad, the celite pad was washed with ether. The filtrate concentrated in vacuo and the corresponding amine was used for the next step without further purification.

To a round-bottom flask were added sequentially amine (0.1 mmol), CH_2Cl_2 (3 ml), Et_3N (0.1 mmol) and PhCOCl (0.1 mmol). the reaction was stirred for 24 h at room temperature. Then the mixture was poured into water (2 ml) and the organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 twice. The combined organic layers were dried over Na_2SO_4 and evaporated. The crude product was purified by column chromatography using 30% ethyl acetate in hexane.

White sticky solid (30.5 mg, yield: 42%); **Diastereomeric ratio**: 5:1; ¹**H NMR (600 MHz, CDCI₃):** δ 8.17 (s, 1H), 8.11 (d, *J* = 7.5 Hz, 1H), 7.73 (d, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 2H), 7.29 (d, *J* = 7.1 Hz, 1H), 7.20 (dd, *J* = 17.1, 8.7 Hz, 3H), 7.15 (d, *J* = 7.2 Hz, 1H), 7.05 (t, *J* = 7.3 Hz, 1H), 6.80 (d, *J* = 7.8 Hz, 1H), 5.59 (s, 1H), 5.11 (s, 1H), 3.99 – 3.86 (m, 1H), 3.65 (d, *J* = 6.4 Hz, 1H), 2.95 (d, *J* = 15.6 Hz, 1H), 2.81 (d, *J* = 16.6 Hz, 1H), 1.37 (s, 9H); ¹³**C NMR (150 MHz, CDCI₃):** δ 172.6, 167.9, 155.6, 135.9, 134.2, 133.5, 131.8, 130.3, 129.0, 128.7, 128.7, 128.6, 128.3, 128.2, 127.2, 124.2, 115.4, 80.4, 55.3, 50.1, 40.9, 31.8, 28.5; **HRMS (+ESI):** Calc for C₂₉H₃₂N₃O₄ [M+H]⁺ 486.2387; found 486.2388; The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IA column (70:30 *n*-Hexane/2-PrOH, 1.0 mL/min, 25 °C, 254 nm, $\tau_{minor} = 10.8 min, <math>\tau_{major} = 27.3 min$); Enatiomeric excess: 98%.

I. References:

- (a) A. G. Wenzel, E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124, 12964; (b) J. W. Yang, S. C. Pan, B. List, Org. Synth., 2009, 86, 11; (c) A. S. Tsai, M. E. Tauchert, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc., 2011, 133, 1248.
- 2 B. Nammalwar, R. A. Bunce, J. T. Hiett, Org. Prep. Proc. Int., 2015, 47, 338.
- (a) A. Berkessel, S. Mukherjee, T. N. Muller, F. Cleemann, K. Roland, M. Brandenburg, J.-M. Neudorfl, J. Lex, Org. Biomol. Chem., 2006, 4, 4319; (b) B. Vakulya, S. Varga, A. Csámpai, T. Soós, Org. Lett., 2005, 7, 1967; (c) M. S. Manna, V. Kumar, S. Mukherjee, Chem. Commun., 2012, 48, 5193; (d) C. B. Tripathi, S. Kayal, and S. Mukherjee, Org. Lett., 2012, 14, 3296; (e) Y. Gao, Q. Ren, L. Wang and J. Wang, Chem. Eur. J., 2010, 16, 13068.
- 4 K. S. Yang, A. E. Nibbs, Y. E. Turkmen and V. H. Rawal, J. Am. Chem. Soc., 2013, 135, 16.

J. NMR Spectra of compounds (3a-3x):

K. NMR spectra for compounds 5 and 6.

S48

L. HPLC chromatogram of (3a-3x):

No.	Peak Name	Ret.Time (detected)	Area	Rel.Area(ident.)	Height	Amount
		min	mAU*min	%	mAU	
	1 A	9.32	2.974208	3.659658508	9.14231	n.a.
	2 B	14.52	78.296	96.34034149	161.373	n.a.

NU.	I Cak Maille	Net. Time (detected)	Alea	Nel.Alea(luent.)	neight	Amoun
		min	mAU*min	%	mAU	
1	Α	10.37	1.628998	0.9546322419	2.57398	n.a.
2	В	16.84	169.012	99.04536776	251.429	n.a.

0.	Feak Marine	iter. I inte (delected	,	Alea	1761	.Alea(ident.)	rieigin	Amount
		min		mAU*min	%		mAU	
1	А	22.	.31	62.25753		84.74694349	38.4897	n.a.
2	В	30.	.05	11.205		15.25305651	5.172	n.a.

M.HPLC chromatograms of product 5 and 6:

HPLC chromatograms of product 9:

