The *N,S*-Bidentate Ligand Assisted Pd-Catalyzed C(sp²)-H Carbonylation using Langlois Reagent as CO Source

Xiao-Fang Li, Lin-Feng Shi, Xing-Guo Zhang,* Xiao-Hong Zhang*

College of chemical and materials engineering, Wenzhou University, Wenzhou 325035, China

E-Mail: zxg@wzu.edu.cn; kamenzxh@wzu.edu.cn

Supporting Information

List of Contents

1. General Information	S2
2. General Procedure for the Synthesis of isoindoline-1,3-diones 2a-2u ,	, 4a-4h
\$2-\$3	3
3. Optimization of the Reaction Conditions	S3-S4
4. The hydrolysis of compound 2a	S4
5. Data for All Compounds	S5-S14
6. NMR Spectra for All Compounds	S15-
S44	
7. X-ray crystal structure of compound 2a	\$45
8. Data for Control Experiments	S45-S47

1. General Information.

Chemicals were either purchased or purified by standard techniques. ¹H NMR and ¹³C NMR spectra were measured on a 500 MHz spectrometer (¹H: 500 MHz, ¹³C: 125 MHz), using CDCl₃ as the solvent with tetramethylsilane (TMS) as an internal standard at 120 °C temperature. Chemical shifts are given in δ relative to TMS, the coupling constants *J* are given in Hz. High resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometry. All reactions under air atmosphere were conducted using standard Schlenk techniques. Melting points were measured on X4 melting point apparatus and uncorrected. Column chromatography was performed using EM Silica gel 60 (300-400 mesh).

2. General Procedure for the Synthesis of isoindoline-1,3-diones 2a-2u, 4a-4h

To a flame-dried Schlenk tube with a magnetic stirring bar was charged with 1 (0.2 mmol), CF_3SO_2Na (0.54 mmol), $Pd(TFA)_2$ (13.3 mg, 0.4 mmol), H_2O (4.0 equiv) in dry PhCl (2 mL) under air atmosphere. The reaction mixture was stirred at 120 °C until complete consumption of starting material as detected by TLC or GC–MS analysis. After the reaction was finished, the mixture was poured into ethyl acetate and evaporated under vacuum. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired products **2a-2u**, **4a-4h**.

3. S-Table 1. Optimization of the Reaction Conditions *a,b*

Entry	CF ₃ SO ₂ Na (equiv)	Catalyst	Oxidant (equiv)	Solvent	Yield (%)
1	2.0	Pd(OAc) ₂	Cu(OTf) ₂ (1.0)	Dioxane	5
2	2.0	Pd(OAc) ₂	Cu(OTf) ₂ (1.0)	DMSO	0
3	2.0	Pd(OAc) ₂	Cu(OTf) ₂ (1.0)	DCE	18
4	2.0	Pd(OAc) ₂	Cu(OTf) ₂ (1.0)	DMF	NR
5	2.0	Pd(OAc) ₂	Cu(OTf) ₂ (1.0)	АсОН	6%
6	2.0	Pd(OAc) ₂	Cu(OTf) ₂ (1.0)	THF	NR
7	2.0	Pd(OAc) ₂	Cu(OTf) ₂ (1.0)	PhCl	21
8	2.0	PdCl ₂	Cu(OTf) ₂ (1.0)	PhCl	8
9	2.0	Pd(MeCN) ₂ Cl ₂	Cu(OTf) ₂ (1.0)	PhCl	32
10	2.0	Pd(TFA) ₂	Cu(OTf) ₂ (1.0)	PhCl	50
11	2.0	PdBr ₂	Cu(OTf) ₂ (1.0)	PhCl	20
12	2.0	Ni(dppp) ₂ Cl ₂	$Cu(OTf)_2(1.0)$	PhCl	NR
13	2.0	Co(acac) ₂	$Cu(OTf)_2(1.0)$	PhCl	NR
14	2.0	Pd(TFA) ₂	CuCl ₂ (1.0)	PhCl	12
15	2.0	Pd(TFA) ₂	Cu(BF ₄) ₂ (1.0)	PhCl	33
16	2.0	Pd(TFA) ₂	Cu(NO ₃) ₂ (1.0)	PhCl	6
17	2.7	Pd(TFA) ₂	AgOAc (1.2)	PhCl	NR
18	2.7	Pd(TFA) ₂	Ag ₂ CO ₃ (1.2)	PhCl	NR
19	2.0	Pd(TFA) ₂	Cu(OTf) ₂ (1.2)	PhCl	55
20	2.5	Pd(TFA) ₂	Cu(OTf) ₂ (1.2)	PhCl	66
21	2.7	Pd(TFA) ₂	$Cu(OTf)_2(1.2)$	PhCl	77
22	3.0	Pd(TFA) ₂	$Cu(OTf)_2(1.2)$	PhCl	75
23 c	2.7	Pd(TFA) ₂	Cu(OTf) ₂ (1.2)	PhCl	72
24 ^d	2.7	Pd(TFA) ₂	Cu(OTf) ₂ (1.2)	PhCl	56

25 e	2.7	Pd(TFA) ₂	Cu(OTf) ₂ (1.2)	PhCl	71		
26 f	2.7	Pd(TFA) ₂	$Cu(OTf)_2(1.2)$	PhCl	60		
27 g	2.7	Pd(TFA) ₂	Cu(OTf) ₂ (1.2)	PhCl	54		
^{<i>a</i>} Reaction conditions: 1a (0.2 mmol), CF ₃ SO ₂ Na (2.0-3.0 equiv), Pd catalyst (10 mol %), oxidant (1.0 equiv),							
H ₂ O (4.0 equiv) in solvent (2 mL) at 120°C under air atmosphere for 24 h; ^b Isolated yield; ^c 130 °C; ^d for 18h; ^e							
N_2 atmosphere; ^f H ₂ O (6.0 equiv); ^g H ₂ O (2.0 equiv).							

4. The hydrolysis of compound 2a

2a (26.9 mg, 0.1 mmol) was refluxed with KOH (33.6 mg, 0.6 mmol) in 2 mL EtOH/H₂O (1:3) for 6 h. After the reaction was finished, dilute hydrochloric acid (1.2 N) was added in ice-bath and precipitated white solid was isolated by filtration, washed with water and dried. The phthalic acid was obtained. Yield (10.5 mg, 63 % yield.

5. Data for All Compounds.

2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2a**): White solid (41.4 mg, 77% yield). m.p. 158-160 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.96 (m, 2H), 7.81-7.79 (m, 2H), 7.48-7.42 (m, 2H), 7.33-7.30 (m, 1H), 7.26-7.24 (m, 1H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 138.6, 134.5, 132.1, 130.28, 130.25, 129.7, 128.1, 126.3, 124.0, 16.4. HRMS (ESI) Calcd for C₁₅H₁₁NO₂SNa⁺ ([M + Na]⁺) 292.0403, Found: 292.0413.

4-methyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2b**): Yellow solid (31.1 mg, 55% yield). m.p. 129-131 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.0 Hz, 1H), 7.65-7.62 (m, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.47-7.41 (m, 2H), 7.31-7.28 (m, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 2.74 (s, 3H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 167.2, 138.7, 138.6, 136.8, 133.9, 132.5, 130.3, 130.1, 129.7, 128.8, 127.8, 126.2, 121.6, 17.8, 16.2. HRMS (ESI) Calcd for C₁₆H₁₃NO₂SNa⁺ ([M + Na]⁺) 306.0559, Found: 306.0561.

5-methyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2c**): Yellow solid (40.8 mg, 72% yield). m.p. 146-148 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 7.5 Hz, 1H), 7.77 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.47-7.41 (m, 2H), 7.32-7.29 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 2.55 (s, 3H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 167.3, 145.8, 138.7, 135.0, 132.5, 130.4, 130.2, 129.8, 129.6, 128.0, 126.3, 124.5, 123.9, 22.2, 16.4. HRMS (ESI) Calcd for C₁₆H₁₃NO₂SNa⁺ ([M + Na]⁺) 306.0559, Found: 306.0562.

5-methyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2d**): Yellow solid (36.3 mg, 64% yield). m.p. 146-148 °C.¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 1H), 7.76 (s, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.46-7.41 (m, 2H), 7.32 - 7.29 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 2.54 (s, 3H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 167.3, 145.8, 138.6, 135.0, 132.5, 130.4, 130.1, 129.7, 129.5, 128.0, 126.3, 124.5, 123.9, 22.2, 16.3. HRMS (ESI) Calcd for C₁₆H₁₃NO₂SNa⁺ ([M + Na]⁺) 306.0559, Found: 306.0557.

4,6-dimethyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2e**): Yellow solid (33.3 mg, 56% yield). m.p. 141-143 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.46-7.43 (m, 1H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.33 (s, 1H), 7.31-7.28 (m, 1H), 7.23 (d, *J* = 7.5 Hz, 1H), 2.69 (s, 3H), 2.48 (s, 3H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 167.5, 145.2, 138.7, 138.5, 137.3, 132.9, 130.4, 130.0, 129.8, 127.7, 126.3, 126.1, 122.3, 21.9, 17.8, 16.2. HRMS (ESI) Calcd for C₁₇H₁₅NO₂SNa⁺ ([M + Na]⁺) 320.0716, Found: 320.0711.

5-*ethyl*-2-(2-(*methylthio*)*phenyl*)*isoindoline*-1,3-*dione* (**2f**): Yellow solid (35.5 mg, 61% yield). m.p. 141-143 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 7.5 Hz, 1H), 7.80 (s, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.47-7.41 (m, 2H), 7.32-7.29 (m, 1H), 7.24 (d, J = 7.5 Hz, 1H), 2.84 (q, J = 7.5 Hz, 2H), 2.42 (s, 3H), 1.32 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.5, 167.3, 152.0, 138.6, 134.0, 132.6, 130.4, 130.1, 129.8, 129.7, 128.0, 126.3, 124.0, 123.3, 29.4, 16.4, 15.3. HRMS (ESI) Calcd for C₁₇H₁₅NO₂SNa⁺ ([M + Na]⁺) 320.0716, Found: 320.0729.

5-methoxy-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2g**): Yellow solid (31.1 mg, 52% yield). m.p. 164-166 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.5 Hz, 1H), 7.46-7.41 (m, 3H), 7.31-7.28 (m, 1H), 7.25-7.22 (m, 2H), 3.94 (s, 3H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 167.0, 165.1, 138.7, 134.7, 130.5, 130.1, 129.8, 128.0, 126.3, 125.7, 124.0, 120.5, 108.4, 56.2, 16.3. HRMS (ESI) Calcd for C₁₆H₁₃NO₃SNa⁺ ([M + Na]⁺) 322.0508, Found: 322.0520.

5-methoxy-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2h**): Yellow solid (28.7 mg, 48% yield). m.p. 164-166 °C.¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 8.5 Hz, 1H), 7.46-7.40 (m, 3H), 7.31 - 7.28 (m, 1H), 7.24 - 7.22 (m, 2H), 3.93 (s, 3H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.0, 166.9, 165.0, 138.6, 134.6, 130.3, 130.1, 129.7, 127.8, 126.2, 125.6, 123.9, 120.5, 108.4, 56.2, 16.2. HRMS (ESI) Calcd for C₁₆H₁₃NO₃SNa⁺ ([M + Na]⁺) 322.0508, Found: 322.0513.

6-(2-(methylthio)phenyl)-5H-[1,3]dioxolo[4,5-f]isoindole-5,7(6H)-dione (**2i**): Yellow solid (21.9 mg, 35% yield). m.p. 225-227 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.43 (m, 1H), 7.41 - 7.40 (m, 1H), 7.32 - 7.31 (m, 2H), 7.29 - 7.25 (m, 1H), 7.23 - 7.22 (m, 1H), 6.19 (s, 2H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 153.1, 138.7, 130.4, 130.2, 129.8, 127.9, 127.7, 126.3, 104.3, 103.2, 16.3. HRMS (ESI) Calcd for C₁₆H₁₂NO₄S⁺ ([M + H]⁺) 314.0482, Found: 314.0499.

4-fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2j**): Yellow solid (11.5 mg, 20% yield). m.p. 136-138 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.81-7.78 (m, 2H), 7.48-7.43 (m, 3H), 7.33-7.30 (m, 1H), 7.24 (d, J = 8.0 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.1, 163.8, 158.0 (d, $J_{C-F} = 265$ Hz), 138.6, 137.0, 134.3, 130.4, 130.0, 129.7, 128.4, 126.5, 122.8 (d, $J_{C-F} = 20.0$ Hz), 120.2, 118.0 (d, $J_{C-F} = 12.5$ Hz), 16.5. HRMS (ESI) Calcd for C₁₅H₁₀NFO₂SNa⁺ ([M +Na]⁺) 310.0308, Found: 310.0309.

5-fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2k**): Yellow solid (28.1 mg, 49% yield). m.p. 161-163 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.95 (m, 1H), 7.63 (d, *J* = 7.0 Hz, 1H), 7.48-7.42 (m, 3H), 7.32-7.29 (m, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7 (d, *J*_{C-F} = 256.3 Hz), 166.1, 165.8, 138.5, 134.9, 130.4, 130.0, 129.6, 128.1, 127.8, 126.4 (d, *J*_{C-F} = 10 Hz), 126.3, 121.5 (d, *J*_{C-F} = 23.8 Hz), 111.7 (d, *J*_{C-F} = 25 Hz), 16.3. HRMS (ESI) Calcd for C₁₅H₁₁NFO₂S⁺ ([M +H]⁺) 288.0489, Found: 288.0499.

5-*fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione* (**2l**): Yellow solid (24 mg, 42% yield). m.p. 161-163 °C.¹H NMR (500 MHz, CDCl₃) δ 7.97 - 7.95 (m, 1H), 7.63 (d, *J* = 6.5 Hz, 1H), 7.47-7.42 (m, 3H), 7.32 - 7.29 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7 (d, *J*_{C-F} = 255 Hz), 166.1, 165.8, 138.5, 134.9, 130.4, 130.1, 129.6, 128.1, 127.9, 126.4, (d, *J*_{C-F} = 10 Hz), 126.3, 121.5 (d, *J* = 23.8 Hz), 111.7 (d, *J* = 25 Hz), 16.4. HRMS (ESI) Calcd for C₁₅H₁₁NFO₂S⁺ ([M +H]⁺) 288.0489, Found: 288.0495.

5-chloro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2m**): Yellow solid (35.3 mg, 60% yield). m.p. 157-159 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.89 (d, J =

8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.48-7.41 (m, 2H), 7.32 - 7.29 (m, 1H), 7.23 (d, J = 7.5 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) & 166.2, 165.8, 141.1, 138.5, 134.5, 133.7, 130.4, 130.1, 129.9, 129.6, 128.1, 126.3, 125.2, 124.3, 16.3. HRMS (ESI) Calcd for C₁₅H₁₁NClO₂S⁺ ([M +H]⁺) 304.0194, Found: 304.0199.

5-chloro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2n**): Yellow solid (34.1 mg, 58% yield). m.p. 157-159 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.47-7.41 (m, 2H), 7.32-7.29 (m, 1H), 7.23 (d, J = 7.5 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.2, 165.9, 141.1, 138.5, 134.5, 133.7, 130.3, 130.1, 130.0, 129.6, 128.1, 126.3, 125.2, 124.3, 16.4. HRMS (ESI) Calcd for C₁₅H₁₁NClO₂S⁺ ([M +H]⁺) 304.0194, Found: 304.0205.

5-bromo-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**20**): Yellow solid (36.0 mg, 52% yield). m.p. 156-158 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.48-7.45 (m, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.33-7.30 (m, 1H), 7.23 (d, J = 8.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 165.9, 138.5, 137.5, 133.7, 130.6, 130.4, 130.0, 129.6, 129.4, 128.2, 127.3, 126.4, 125.4, 16.4. HRMS (ESI) Calcd for C₁₅H₁₁NBrO₂S⁺ ([M +H]⁺) 347.9688, Found: 347.9703.

5-iodo-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (**2p**): White solid (18.1 mg, 23% yield). m.p. 98-100 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.48-7.45 (m, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.33-7.30 (m, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 165.8, 143.5, 138.6, 133.4, 133.1, 131.2, 130.4, 130.0, 129.7, 128.3, 126.4, 125.3, 101.4, 16.5. HRMS (ESI) Calcd for C₁₅H₁₁NIO₂S⁺ ([M +H]⁺) 395.9550, Found: 395.9564.

2-(2-(methylthio)phenyl)-5-(trifluoromethoxy)isoindoline-1,3-dione (**2q**): Yellow solid(37.4 mg, 53% yield). m.p. 86-88 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.80 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.50-7.47 (m, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.34-7.31 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 165.7, 153.9, 138.5, 134.4, 130.5, 130.0, 129.9, 129.6, 128.3, 126.47, 126.45, 126.0, 120.4 (q, *J* = 258.8 Hz), 116.1, 16.4. HRMS (ESI) Calcd for C₁₆H₁₀NF₃O₃SNa⁺ ([M +Na]⁺) 376.0226, Found: 376.0241.

2-(2-(methylthio)phenyl)-5-(trifluoromethyl)isoindoline-1,3-dione (**2r**): Yellow solid (30.3 mg, 45% yield). m.p. 147-149 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.24 (s, 1H), 8.12-8.08 (m, 2H), 7.51-7.48 (m, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.35-7.32 (m, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 165.8, 138.5, 136.6 (q, *J* = 34.0 Hz), 134.9, 132.8, 131.6, 130.6, 129.8, 129.6, 128.3, 126.5, 124.6, 123.2 (q, *J* = 272.5 Hz), 121.3, 16.4. HRMS (ESI) Calcd for C₁₆H₁₁NF₃OS⁺ ([M +H]⁺) 338.0457, Found: 376.0480.

2-(2-(methylthio)phenyl)-5-nitroisoindoline-1,3-dione (**2s**): Yellow solid (11.3 mg, 18% yield). m.p. 162-164 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.67 (d, *J* = 8.0 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.52-7.49 (m, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.35-7.32 (m, 1H), 7.26 (d, *J* = 7.5 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.1, 164.9, 152.2, 138.4, 136.4, 133.5, 130.7, 129.7, 129.5, 128.5, 128.4, 126.6, 125.3, 119.4, 16.5. HRMS (ESI) Calcd for C₁₅H₁₁N₂O₄S⁺ ([M +H]⁺) 315.0434, Found: 315.0438.

2-(2-(methylthio)phenyl)-5-phenylisoindoline-1,3-dione (**2t**): Yellow solid (38.6 mg, 56% yield). m.p. 204-206 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H), 8.00-7.96 (m, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.51-7.48 (m, 2H), 7.45-7.43 (m, 3H), 7.31-7.28 (m, 1H), 7.24 (d, J = 6.0 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 167.1, 147.9, 139.1, 138.6, 133.0, 132.9, 130.5, 130.3, 130.2, 129.7, 129.3, 129.0, 128.1, 127.5, 126.3, 124.4, 122.5, 16.4. HRMS (ESI) Calcd for C₂₁H₁₆NO₂S⁺ ([M +H]⁺) 346.0896, Found: 346.0895.

2-(2-(methylthio)phenyl)-1H-benzo[f] isoindole-1,3(2H)-dione (**2u**): Yellow solid (35.1 mg, 55% yield). m.p. 196-198 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 2H), 8.10 - 8.08 (m, 2H), 7.73 -7.71 (m, 2H), 7.49-7.45 (m, 2H), 7.35-7.30 (m, 2H), 2.43 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.0, 138.5, 135.8, 130.6, 130.5, 130.2, 129.6, 129.4, 128.2, 127.8, 126.4, 125.5, 16.4. HRMS (ESI) Calcd for C₁₉H₁₄NO₂S⁺ ([M +H]⁺) 320.0740, Found: 320.0734.

2-(4-methyl-2-(methylthio)phenyl)isoindoline-1,3-dione (**4a**): White solid (35.1mg, 62% yield), m.p. 168-170°C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 - 7.94 (m, 2H), 7.79 - 7.77 (m, 2H), 7.22 (s, 1H), 7.14 - 7.10 (m, 2H), 2.41 (s, 3H), 2.40 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 140.4, 138.0, 134.4, 132.1, 129.4, 128.7, 127.6, 127.2, 123.9, 21.5, 16.4. HRMS (ESI) Calcd for C₁₆H₁₃NNaO₂S⁺ ([M + Na]⁺) 306.0559, Found: 306.0554.

2-(4-ethoxy-2-(methylthio)phenyl)isoindoline-1,3-dione (**4b**): White solid (40.7mg, 65% yield), m.p. 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 -7.93 (m, 2H), 7.79 - 7.77 (m, 2H), 7.14 (d, *J* = 8.8 Hz, 1H), 6.90 (s, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 4.07 (q, *J* = 6.8 Hz, 2H), 2.40 (s, 3H), 1.44 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 160.2, 139.8, 134.4, 132.1, 130.5, 123.9, 122.4, 114.3, 111.5, 64.0, 16.1, 14.9. HRMS (ESI) Calcd for C₁₇H₁₆NO₃S⁺ ([M + H]⁺) 314.0845, Found: 314.0842.

2-(4-chloro-2-(methylthio)phenyl)isoindoline-1,3-dione (4c): White solid (36.4mg, 60% yield), m.p. 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 - 7.98 (m, 2H), 7.85 - 7.83 (m, 2H), 7.37 (s, 1H), 7.30 (d, J = 9.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 140.9, 136.2, 134.6, 131.9, 130.7, 128.3, 127.0, 126.1, 124.0, 15.9. HRMS (ESI) Calcd for C₁₅H₁₀ClNNaO₂S⁺ ([M + Na]⁺) 326.0013, Found: 326.0034.

2-(2-(methylthio)-4-(trifluoromethyl)phenyl)isoindoline-1,3-dione (4d): White solid (34.3mg, 51% yield). m.p. 87-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 7.97 (m, 2H), 7.84 - 7.82 (m, 2H), 7.69 (d, J = 8.4 Hz, 1H), 7.50 (s, 1H), 7.45 (d, J = 8.4 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (125 MHz, CD₃Cl) δ 166.68, 144.33, 134.72, 131.85, 129.72, 128.0 (q, J = 33.8 Hz), 126.8, 126.59, 124.11, 123.7 (q, J = 271.3 Hz), 113.7, 15.34. HRMS (ESI) Calcd for C₁₆H₁₀F₃NO₂S⁺ ([M +H]⁺) 338.0457, Found: 338.0465.

2-(2-(ethylthio)phenyl)isoindoline-1,3-dione (4e): White solid (29.4 mg, 52% yield), m.p. 127-129°C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 - 7.99 (m, 2H), 7.86 - 7.83 (m, 2H), 7.57 (d, J = 8.0 Hz, 1H), 7.50-7.47 (m, 1H), 7.40-7.37 (m, 1H), 7.31 (d, J = 6.8 Hz, 1H), 2.93 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 137.0, 134.4, 132.1, 131.6, 130.4, 130.0, 129.8, 127.0, 123.9, 28.2, 14.3. HRMS (ESI) Calcd for C₁₆H₁₄NO₂S⁺ ([M + H]⁺), 284.0740, Found: 284.0739.

2-(2-(cyclohexylthio)phenyl)isoindoline-1,3-dione (**4f**): White solid (41.1mg, 61% yield), m.p. 108-110°C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 - 7.96 (m, 2H), 7.81 - 7.78 (m, 2H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.45-7.41 (m, 1H), 7.39-7.35 (m, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 3.10 - 3.03 (m, 1H), 1.89 - 1.85 (m, 2H), 1.67 - 1.66 (m, 2H), 1.56 - 1.53 (m, 1H), 1.29 - 1.19 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 135.9, 134.4, 133.2, 133.1, 132.2, 129.9, 129.8, 127.8, 124.0, 47.5, 33.5, 26.1, 25.8. HRMS (ESI) Calcd for C₂₀H₁₉NNaO₂S⁺([M + Na]⁺) 360.1029, Found: 360.1027.

2-(2-(phenylthio)phenyl)isoindoline-1,3-dione (**4g**): Yellow solid (35.1 mg, 53% yield). m.p. 105-107°C. ¹H NMR (500 MHz, CDCl₃) δ 7.95 - 7.91 (m, 2H), 7.79 - 7.76 (m, 2H), 7.41 - 7.35 (m, 3H), 7.34 - 7.29 (m, 3H), 7.24 - 7.18 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 136.6, 134.5, 134.3, 133.0, 132.0, 131.9, 131.8, 130.1,

129.9, 129.3, 128.2, 127.6, 123.9. HRMS (ESI) Calcd for C₂₀H₁₃NO₂SNa⁺ ([M +Na]⁺) 354.0559, Found: 354.0559.

2-(2-(methylsulfinyl)phenyl)isoindoline-1,3-dione (11): Yellow solid (24.3 mg, 85% yield). m.p. 161-163 °C. ¹H NMR (500 MHz, DMSO) δ 8.17 (d, J = 7.5 Hz, 1H), 8.02 - 8.01 (m, 2H), 7.95 - 7.93 (m, 3H), 7.87 - 7.84 (m, 1H), 7.74 (d, J = 8.0 Hz, 1H), 3.19 (s, 3H). ¹³C NMR (125 MHz, DMSO) δ 167.5, 138.5, 135.3, 135.2, 132.8, 132.1, 131.2, 131.1, 130.3, 124.0, 44.0. HRMS (ESI) Calcd for C₁₅H₁₂NO₃S⁺ ([M +H]⁺) 286.0532, Found: 286.0539.

5-chloro-2-(2-(phenylthio)phenyl)isoindoline-1,3-dione (**12**): White solid (27.4 mg, 75% yield), m.p. 112-114°C. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (s, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.39 (s, 3H), 7.32-7.27 (m, 3H), 7.22 (d, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.04, 165.72, 141.04, 136.49, 134.37, 133.57, 133.14, 131.91, 131.56, 130.27, 129.97, 129.82, 129.63, 129.26, 128.23, 127.65, 125.09, 124.26. HRMS (ESI) Calcd for C₂₀H₁₃ClNO₂S⁺ ([M + H]⁺) 366.0350, Found: 366.0362.

6. NMR Spectra for All Compounds.

¹³C NMR:2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2a)

¹H NMR:4-methyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2b)

¹³C NMR:4-methyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2b)

¹³C NMR:5-methyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2c)

¹H NMR:5-methyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2d)

¹³C NMR:5-methyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2d)

¹H NMR:4,6-dimethyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2e)

¹³C NMR:4,6-dimethyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2e)

¹H NMR:5-ethyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2f)

¹³C NMR:5-ethyl-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2f)

¹H NMR:5-methoxy-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2g)

¹³C NMR:5-methoxy-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2g)

¹H NMR:5-methoxy-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2h)

¹³C NMR:5-methoxy-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2h)

¹H NMR:6-(2-(methylthio)phenyl)-5H-[1,3]dioxolo[4,5-f]isoindole-5,7(6H)-dione (2i)

¹³C NMR: 6-(2-(methylthio)phenyl)-5H-[1,3]dioxolo[4,5-f]isoindole-5,7(6H)-dione (2i)

¹H NMR:4-fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2j)

¹³C NMR:4-fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2j)

¹H NMR:5-fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2k)

¹³C NMR: 5-fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2k)

¹H NMR:5-fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2l)

¹³C NMR: 5-fluoro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2l)

¹H NMR:5-chloro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2m)

¹³C NMR:5-chloro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2m)

¹H NMR:5-chloro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2n)

¹³C NMR:5-chloro-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2n)

¹H NMR:5-bromo-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (20)

¹³C NMR: 5-bromo-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (20)

¹H NMR: 5-iodo-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2p)

¹³C NMR: 5-iodo-2-(2-(methylthio)phenyl)isoindoline-1,3-dione (2p)

¹H NMR:2-(2-(methylthio)phenyl)-5-(trifluoromethoxy)isoindoline-1,3-dione (2q)

¹³C NMR: 2-(2-(methylthio)phenyl)-5-(trifluoromethoxy)isoindoline-1,3-dione (2q)

¹H NMR:2-(2-(methylthio)phenyl)-5-(trifluoromethyl)isoindoline-1,3-dione(2r)

¹³C NMR:2-(2-(methylthio)phenyl)-5-(trifluoromethyl)isoindoline-1,3-dione(2r)

¹H NMR:2-(2-(methylthio)phenyl)-5-nitroisoindoline-1,3-dione (2s)

¹³C NMR: 2-(2-(methylthio)phenyl)-5-nitroisoindoline-1,3-dione (2s)

8.154 8.001 8.001 7.986 7.986 7.961 7.961 7.905 7.490 7.490 7.490 7.490 7.490 7.490 7.492 7.492 7.492 7.492 7.492 7.492 7.492 7.492 7.233 3.7284 7.238

¹H NMR:2-(2-(methylthio)phenyl)-5-phenylisoindoline-1,3-dione (2t)

11 (ppm)

¹³C NMR:2-(2-(methylthio)phenyl)-5-phenylisoindoline-1,3-dione (2t)

¹H NMR: 2-(2-(methylthio)phenyl)-1H-benzo[f]isoindole-1,3(2H)-dione (2u)

¹³C NMR: 2-(2-(methylthio)phenyl)-1H-benzo[f]isoindole-1,3(2H)-dione (2u)

7.1952 7.1952 7.1952 7.1953 7.1784 7.1784 7.1778 7.1778 7.1760 7.124 7.117 7.1174 7.1174 7.1174

2.413

 2.408

¹H NMR: 2-(4-methyl-2-(methylthio)phenyl)isoindoline-1,3-dione (4a)

¹³C NMR: 2-(4-methyl-2-(methylthio)phenyl)isoindoline-1,3-dione (4a)

¹³C NMR: 2-(4-ethoxy-2-(methylthio)phenyl)isoindoline-1,3-dione (4b)

¹H NMR: 2-(4-chloro-2-(methylthio)phenyl)isoindoline-1,3-dione (4c)

¹³C NMR: 2-(4-chloro-2-(methylthio)phenyl)isoindoline-1,3-dione (4c)

¹³C NMR: 2-(2-(methylthio)-4-(trifluoromethyl)phenyl)isoindoline-1,3-dione (4d)

¹³C NMR: 2-(2-(ethylthio)phenyl)isoindoline-1,3-dione (4e)

¹³C NMR: 2-(2-(cyclohexylthio)phenyl)isoindoline-1,3-dione (4f)

¹H NMR:2-(2-(phenylthio)phenyl)isoindoline-1,3-dione(4g)

¹³C NMR:2-(2-(phenylthio)phenyl)isoindoline-1,3-dione(4g)

¹³C NMR:2-(2-(methylsulfinyl)phenyl)isoindoline-1,3-dione (11)

¹³C NMR: 5-chloro-2-(2-(phenylthio)phenyl)isoindoline-1,3-dione (12)

7. X-ray crystal structure of compound 2a

Supplementary crystallographic data was deposited at the Cambridge Crystallographic Data Centre (CCDC) under the numbers CCDC-1821829 (**2a**) and can be obtained free of charge from via www.ccdc.cam.ac.uk/data_request.cif.

8. Data for Control Experiments

To a flame-dried Schlenk tube with a magnetic stirring bar was charged with **1a** (0.2 mmol), CF₃SO₂Na (0.54 mmol), Pd(CF₃CO₂)₂ (13.3 mg, 0.4 mmol), H₂O¹⁸ (4.0 equiv, 16 mg, 0.8 mmol) in dry PhCl (2 mL) under air atmosphere. The reaction mixture was stirred at 120 °C until complete consumption of starting material as detected by TLC or GC–MS analysis. After the reaction was finished, the mixture was poured into ethyl acetate and evaporated under vacuum. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired products ¹⁸O-**2a**.

O¹⁸-2a HRMS (ESI):

Calcd for $C_{15}H_{11}NOO^{18}S Na^+ ([M + Na]^+) 294.0445$, Found: 294.0453.

O¹⁸-2a GC analysis

