Electronic Supplementary Information

Stereoselective synthesis of enantiomerically pure bowl-shaped hydroxytribenzotriquinacenes

Philipp Rommelmann,^a Beate Nachtigall,^a Tim Guntelmann,^a Harald Gröger,^{a,b*} and Dietmar Kuck^{a,b*}

^aDepartment of Chemistry, Bielefeld University, Universitätsstraße 25, and ^bCenter for Molecular Materials (CM₂), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany

> harald.groeger@uni-bielefeld.de dietmar.kuck@uni-bielefeld.de

Parameter optimisation of the enzymatic ester hydrolysis	page 2
HPLC chromatograms	
2-Hydroxy-4b ¹ -methyltribenzotriquinacene (<i>M</i>)- 12 (>99% <i>ee</i>)	page 3
2-Hydroxy-4b ¹ -methyltribenzotriquinacene (<i>M</i>)- 12 (>99% <i>ee</i>)	page 3
¹ H and ¹³ C NMR spectra	
1,3-Indanedione 15	page 4
1,3-Indanediol 16a (all- <i>cis</i> -isomer)	page 5
1,3-Indanediol 16b (<i>cis,trans</i> -isomer)	page 6
2-Methoxy-4b1-methyltribenzotriquinacene 17	page 7
2-Hydroxy-4b1-methyltribenzotriquinacene 12	page 8
2-Acetoxy-4b1-methyltribenzotriquinacene 11	page 9
2-Acetoxy-4b ¹ -methyltribenzotriquinacene (<i>P</i>)- 11 (64% <i>ee</i>)	page 10
2-Hydroxy-4b ¹ -methyltribenzotriquinacene (<i>M</i>)- 12 (>99% <i>ee</i>)	page 11
2-Acetoxy-4b ¹ -methyltribenzotriquinacene (<i>M</i>)- 11	page 12
2-Hydroxy-3-iodo-4b1-methyltribenzotriquinacene (P)-13	page 13
2-Acetoxy-4b ¹ -methyltribenzotriquinacene (<i>P</i>)- 11	page 14

Parameter optimisation of the enzymatic ester hydrolysis

lipase	amount enzyme [mg]	amount <i>rac</i> -11 [mg]	solvent ([mL])	buffer ^[e] (pH/amount [mL])	temp. [° C]	conv. to 12 [%]	ee [%]	E- value
CAL-B ^[a]	25	50	MTBE (7)	KP _i (7.0, 7)	50	3	88	17
CAL-B ^[a]	50	9	toluene (0.05)	AMP (9.0, 0.5)	25	16	84	15
CAL-B ^[a]	52	52	toluene (7)	KP _i (7.0, 7)	80	6	94	36
CAL-B ^[a]	50	9	toluene (0.05)	KP _i (7.4, 0.5)	25	9	74	8
CAL-B ^[b]	5	9	toluene (0.05)	KP _i (7.4, 0.5)	25	20	38	2
D 20 ^[c]	5	9	toluene (0.05)	KP _i (7.4, 0.5)	25	7	38	2
CAL-B ^[d]	49	9	toluene (0.05)	KP _i (7.0, 0.5)	25	23	88	25
CAL-B ^[d]	51	9	toluene (0.05)	AMP (9.0, 0.5)	25	25	92	40
CAL-A ^[d]	52	9	toluene (0.05)	KP _i (7.0, 0.5)	25	52	48	5
CAL-A ^[d]	30	30	toluene (10)	KP _i (7.0, 10)	25	40	92	45

^[a]: *C-LEcta* (immobilised); ^[b]: *C-LEcta* (lyophilised); ^[c]: *Amano*; ^[d]: *Sigma Aldrich* (immobilised); ^[e]: KP_i: phosphate buffer; AMP: 2-amino-2-methyl-1-propanol buffer.

HPLC chromatograms

¹H NMR spectrum of compound **15** (500 MHz, CDCl₃)

¹³C NMR spectrum of compound **15** (126 MHz, CDCl₃)

¹H NMR spectrum of compound **16a** (all-*cis*-isomer) (500 MHz, CDCl₃)

¹³C NMR spectrum of compound **16a** (all-*cis*-isomer) (126 MHz, CDCl₃)

¹H NMR spectrum of compound **16b** (*cis,trans*-isomer, ~1:1 mixture of two diastereomers) (500 MHz, CDCl₃)

 ^{13}C NMR spectrum of compound **16b** (*cis*,*trans*-isomer, ~1:1 mixture of two diastereomers) (126 MHz, CDCl₃)

¹H NMR spectrum of compound **17** (500 MHz, CDCl₃)

¹³C NMR spectrum of compound **17** (126 MHz, CDCl₃)

¹H NMR spectrum of compound **12** (500 MHz, CDCl₃)

 ^{13}C NMR spectrum of compound **12** (126 MHz, CDCl_3)

¹H NMR spectrum of compound **11** (500 MHz, CDCl₃); residual solvent signals: 5.30 ppm (dichloromethane), 1.55 ppm (water), 1.44 ppm (cyclohexane).

¹³C NMR spectrum of compound **11** (126 MHz, CDCl₃); residual solvent signals: solvent residuals: 27.07 ppm (cyclohexane).

¹H NMR spectrum of compound (*P*)-**11** (64% *ee*) (500 MHz, CDCl₃)

¹³C NMR spectrum of compound (*P*)-**11** (64% ee) (126 MHz, CDCl₃)

¹H NMR spectrum of compound (*M*)-**12** (>99% *ee*) (500 MHz, CDCl₃)

¹³C NMR spectrum of compound (*M*)-**12** (>99% *ee*) (126 MHz, CDCl₃)

¹H NMR spectrum of compound (*M*)-**11** (500 MHz, CDCl₃)

¹³C NMR spectrum of compound (*M*)-**11** (126 MHz, CDCl₃)

¹H NMR spectrum of compound (*P*)-**13** (500 MHz, CDCl₃)

¹³C NMR spectrum of compound (*P*)-**13** (126 MHz, CDCl₃)

¹³C NMR spectrum of compound (*P*)-**11** (126 MHz, CDCl₃)

