Supporting Information

Elucidation of the Catalytic Mechanism of 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase using QM/MM Calculations

Nathjanan Jongkon¹, Duangkamol Gleeson² M. Paul Gleeson^{3*}

¹Department of Social and Applied Science, College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand

²Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Thailand

³ Department of Biomedical Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

ID	REACT	TS1	INT1	TS2	PROD
PRO43	0.05	0.05	0.05	0.05	0.05
PRO44	0.01	0.01	0.00	0.01	0.01
LEU45	-0.07	-0.07	-0.07	-0.07	-0.07
ARG88	0.81	0.81	0.80	0.80	0.79
ARG92	-0.06	0.63	0.76	0.71	0.70
ASP95	-0.46	-0.46	-0.48	-0.48	-0.48
ASP97	-0.45	-0.47	-0.47	-0.46	-0.46
HIP115	0.88	0.86	0.88	0.92	0.92
ARG121	0.88	0.89	0.88	0.86	0.86
Mg:water	1.65	1.06	1.58	1.67	1.66
ATP	-2.48	-2.48	-2.48	-1.29	-1.34
HP	0.23	0.18	-0.43	-1.71	-1.65

 Table S1 Mulliken charge distribution of HPPK on WT-Arg92⁰ (Arg) pathway.

Table S2. Mulliken charge distribution of HPPK on R82A-Arg92⁰ (Arg) pathway.

ID	REACT	TS1	INT1	TS2	PROD
PRO43	0.05	0.05	0.05	0.05	0.05
PRO44	0.01	0.00	0.00	0.00	0.00
LEU45	-0.07	-0.07	-0.07	-0.07	-0.07
ARG88	0.80	0.79	0.80	0.79	0.77
ARG92	-0.03	0.72	0.70	0.72	0.70
ASP95	-0.46	-0.46	-0.47	-0.48	-0.47
ASP97	-0.47	-0.48	-0.48	-0.47	-0.47
HIP115	0.85	0.86	0.84	0.91	0.92
ARG121	0.87	0.86	0.87	0.84	0.84
Mg:water	1.61	1.17	1.66	1.69	1.69
ATP	-2.45	-2.47	-2.45	-1.29	-1.32
HP	0.28	0.03	-0.45	-1.69	-1.66

	WT-R92 ⁺ (Asp)			W W	Г-R92+ (Р	Pi)
ID	REACT	TS	PROD	REACT	TS	PROD
PRO43	0.05	0.05	0.05	0.05	0.05	0.05
PRO44	0.04	0.03	0.03	0.03	0.04	0.03
LEU45	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08
ARG88	0.82	0.81	0.80	0.81	0.81	0.81
ARG92	0.72	0.75	0.72	0.77	0.77	0.77
ASP95	-0.46	0.14	0.16	-0.46	-0.46	-0.46
ASP97	-0.45	-0.46	-0.46	-0.45	-0.45	-0.45
HIP115	0.87	0.92	0.93	0.94	0.94	0.94
ARG121	0.91	0.89	0.88	0.89	0.88	0.89
Mg:water	1.82	1.83	1.83	1.83	2.42	1.83
ATP	-2.45	-2.52	-1.30	-2.65	-1.32	-1.31
HP	0.22	-0.35	-1.56	0.32	-1.59	-1.02

Table S3. Mulliken charge distribution of HPPK on WT-Arg92⁺ pathway.

Table S4. Mulliken charge distribution of HPPK on R92A-Arg92⁰ (Asp) pathway.

R92A	REACT	TS	PROD
PRO43	0.05	0.05	0.05
PRO44	0.01	0.01	0.01
LEU45	-0.07	-0.08	-0.08
ARG88	0.80	0.83	0.83
ASP95	-0.47	0.15	0.16
ASP97	-0.47	-0.47	-0.47
HIP115	0.86	0.90	0.90
ARG121	0.90	0.86	0.86
Mg:water	1.67	1.66	1.66
ATP	-2.51	-1.31	-1.35
HP	0.23	-1.60	-1.57

Table S5. The key distances involving WT-Arg92⁰ (Arg) simulation obtained at the QMMM (M062X/6-31G*) level of theory (in Angstrom).

WT-Arg92 ⁰ Arg	d1	d2	d3	d4	d5	d6
REACT	1.63	3.06	1.02	1.48	0.98	3.30
TS1	1.63	3.32	1.12	1.36	1.56	1.08
INT1	1.65	3.04	1.64	1.00	3.08	1.02
TS2	2.21	1.81	1.99	0.97	3.04	1.02
PROD	2.85	1.71	2.24	0.97	2.99	1.02

Table S6. The key distances involving R82A-Arg92⁰ (Arg) simulation obtained at theQMMM (M062X/6-31G*) level of theory (in Angstrom).

R82A-Arg92 ⁰ Arg	d1	d2	d3	d4	d5	d6
REACT	1.61	3.26	0.98	2.03	1.02	1.67
TS1	1.62	3.29	1.07	1.48	1.53	1.10
INT1	1.63	3.18	1.84	0.99	1.96	1.02
TS2	2.30	1.78	2.19	0.97	2.97	1.02
PROD	2.77	1.71	2.27	0.97	3.07	1.01

		WT-	R92+	R92A		
Model	ID	QM/MM ΔE	QM/MM ΔE SP	QM/MM ΔE	QM/MM ΔE SP	
	REACT	0.0	0.0	0.0	0.0	
Asp95	TS	60.2	53.8	48.0	51.3	
-	PROD	47.3	45.3	47.6	49.9	
	REACT	-1.4	-0.4	-	-	
РР	TS	47.3	46.3	-	-	
	PROD	46.0	45.3	-	-	

Table S7. HPPK reaction energies (kcal/mol) with Asp95 or PP acting as the general base. The fully-optimized calculations obtained at the QMMM (M062X/6-31G*) and the SP calculations obtained at the QMMM (M062X/6-31+G**)

Table S8. HPPK reaction energies (kcal/mol) with Arg92 acting as the general base. The fully-optimized calculations obtained at the QMMM (M062X/6-31G*) and the SP calculations obtained at the QMMM (M062X/6-31+G**)

	l l	WT-Arg92 ⁰	R82A-Arg92 ⁰ (Arg)		
ID	QM	QM/MM	QM/MM	QM/MM	QM/MM
	ΔΕ	ΔΕ	ΔE SP	ΔΕ	ΔE SP
REACT	0.0	0.0	0.0	0.0	0.0
TS1	3.5	8.1	8.1	4.2	6.9
INT	0.4	0.4	2.3	-4.2	2.1
TS2	12.0	11.7	14.7	14.7	20.4
PROD	3.1	7.6	9.4	12.4	17.3

Figure S1 Correlation observed between the QMMM M062X/6-31G*and QMMM (M062X/6-31+G** single point energies obtained for all structures.

Figure S2 Superimposition of HPPK with bound substrates in a reactant-like (1Q0N) and product-like (1RAO) configuration. Also shown for the purpose of comparison is the product-like configuration obtained with the 1Q0N-based QM/MM model. Both protein and active site con figurations show a high degree of structural similarity confirming the suitability of the model to describe the catalytic reaction taking place.

