Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Highly sulphated cellulose: A versatile, reusable and selective desilylating agent for deprotection of alcoholic TBDMS ethers

Soma Shekar Dachavaram^a, Narsimha R. Penthala^a, Julie L. Calahan^b, Eric J. Munson^b, Peter A. Crooks^a*

^aDepartment of Pharmaceutical Sciences College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.

^bDepartment of Pharmaceuticals Sciences, University of Kentucky, Lexington, KY, 40536, USA

Table of Contents

General Information	S1
Characterization data	S2-S7
IR- spectra of cellulose sulphate and cellulose sulphate sodium	S8
Solid state NMR spectra of cellulose sulphate sodium and CSA	S9
¹ H Spectra of cellulose sulphate sodium	S10
¹³ C NMR Spectra of cellulose sulphate sodium	S11
¹ H, ¹³ C NMR Spectra of compound 3c, 3d, 3f, 3g, 3h, 3i,3j, 3k, 3l, 4l ,	
5d, 5e, 5f, 6f	S12-S39
¹ H Spectra of recovered cellulose sulphate sodium	. S-40
¹³ C NMR Spectra of recovered cellulose sulphate sodium	. S-41
References	S42

General Information

Solvents were dried by standard procedures. All commercially available alcohols and phenols were purchased from the Sigma Aldrich Company. Thin-layer chromatography was performed on silica gel plates and chromatographic spots were visualized by using UV light and staining with anisaldehyde charring solution. ¹H NMR and ¹³C NMR spectral analyses were recorded on a Varian 400 MHz spectrometer equipped with a Linux workstation running on vNMRj software and the chemical shifts are based on the internal standard TMS peak at δ = 0.00 *ppm* for proton NMR and the CDCl₃ peak at δ = 77.23 *ppm* (t) for carbon NMR. For cellulose sulphate sodium both ¹H NMR and ¹³C NMR were recorded in D₂O. IR spectra were obtained on a Thermo Scientific Nicolet iS 50 FT-IR instrument. Silyl ethers were prepared from phenols\alcohols using a standard procedure¹ (TBDMS chloride, imidazole, DCM). TBDMS ethers **3k**, **5e**, **5f** were synthesized by the Barbier allylation procedure². TBDMS ethers **3a-3j** and **5a-5d** were prepared from commercially available phenols/alcohols. Compound **3I** was prepared by the reduction of methyl 8-(4-chlorophenyl)-1, 4-dioxaspiro[4.5]dec-7-ene-7-carboxylate using lithium aluminum hydride (LAH) as reducing agent to afford **4I**. Compound **4I** was converted to its TBDMS ether by reaction with TBDMS chloride and imidazole in DCM.¹ TBDMS ethers **3a³**, **3b⁴ 3e⁵**, **5a⁵**, **5b⁶**, **5c⁵** are known compounds **and the** characterization data for these ethers complied with the literature reported data. The desilylated products **4a⁷**, **4b⁸**, **4c⁹**, **4d**, **¹⁰ 4e¹¹**, **4f¹²**, **4g¹³**, **4h¹⁴**, **4i**, **¹⁵ 4j**, **¹⁶ 4k¹⁷**, **6a⁶**, **6b¹⁸**, **6c¹⁹**, **6d²⁰**, **6e²¹ are known**

compounds, and their characterization data complied with the literature reported data. Characterization data for the new compounds **3c**, **3d**, **3f**, **3g**, **3h**, **3i**, **3j**, **3k**, **3l**, **4l**, **5d**, **5e**, **5f** and **6f** are provided below.

Characterization data for new compounds

HS-cellulose sulphate sodium salt

HS-Cellulose sulphate (H₂SO₄ method) sodium salt: The compound was obtained as a white solid; ¹H-NMR (D₂O, 400 MHz): δ 4.56 (d, J = 16.0 Hz, 1H, H₁), 4.37 (m, 1H, H₆), 4.0-3.49 (m, 3H, H₃, H₆, H₄), 3.36 (s, 1H, H₅) *ppm*; ¹³C-NMR (D₂O, 100 MHz): δ 104.8 (C-1), 80.7, 77.2, 76.4, 75.4 (C-2 to C-5), 62.3 (C-6) *ppm*. Sulphur combustion analysis calcd for the 2,6-disubstited cellulose sulphate, empirical formula C₆H₈S₂O₁₁Na₂: 17.51%. Found: 15.42% (88.06% of theoretical), FT-IR: 3332, 2896, 1427, 1053, 663, 557 cm⁻¹.

<u>NOTE</u>: Sulphur combustion analysis calcd for 2,6-disubstituted cellulose sulphate, empirical formula $C_6H_8S_2O_{11}Na_2$: 17.51%. Found: 15.42% (88.06% of theoretical); sulphur combustion analysis calcd for 6-monosubstituted cellulose sulphate, empirical formula $C_6H_9SO_8Na$: 12.14%. Found: 15.42% (27.01 % greater than theoretical); sulphur combustion analysis calcd for 2,3,6-trisubstituted cellulose sulphate, empirical formula $C_6H_7S_3O_{14}Na_2$: 20.54%. Found: 15.42% (24.92% less than theoretical). These data indicate that the sulphated cellulose product is predominantly the 2,6-disulphated cellulose rather than the 2,3,6-trisubstituted or 6-monosulphated cellulose.

Cellulose sulphate (chlorosulphonic acid method): Sulphur content calcd for the empirical formula $C_6H_7S_3O_{14}Na_3$: 20.54%. Found: 0.42%; sulphur content: 2.04% of theoretical; FT-IR: 3331, 2891, 1315, 1201, 1159, 1023, 895, 558, and 433 cm⁻¹.

Tert-butyl(4-ethoxyphenethoxy)dimethylsilane (3c)

`ó^{`Si}́

Colourless liquid, Yield: (95%), ¹H NMR (400 MHz, CDCl₃): δ 7.15 (d, *J* = 8.0 Hz, 2H, Ar-H), 6.82 (t, *J* = 8.0, 4.0 Hz, 2H. Ar-H), 4.01 (q, *J* = 8.0 Hz, 2H, -OCH₂), 3.76 (t, *J* = 7.43, 7.04 Hz, 2H, -OCH₂), 2.74 (t, *J* = 8.0, 4.0 Hz, 2H, -CH₂), 1.40 (t, *J* = 8.0 Hz, 3H, -CH₃), 0.88 (s, 9H, t-Bu), -0.01 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C-NMR (CDCl₃, 100 MHz): δ 157.3, 131.0, 130.0, 114.2, 64.8, 63.3, 38.7, 25.9, 18.3, 14.8, - 5.4 *ppm*; ESI-MS (*m/z*): 281.0447 (M+H)⁺.

Tert-butyl (4-methoxy-3-methylphenethoxy) dimethylsilane (3d)

Colourless liquid, Yield: (95%), ¹H NMR (400 MHz, CDCl₃): δ 7.00-6.98 (m, 2H, Ar-H), 6.73 (t, *J* = 8.0 Hz, 1H, Ar-H), 3.80 (s, 3H, -OCH₃), 3.75 (t, *J* = 4 Hz, 2H, -OCH₂), 2.74 (t, *J* = 8 Hz, 2H, -CH₂), 2.20 (s, 3H, Ar-CH₃), 0.89 (s, 9H, t-Bu), 0.01 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C-NMR (CDCl₃, 100 MHz): δ 156.1, 131.5, 130.6, 127.0, 126.2, 109.7, 64.9, 55.3, 38.7, 25.9, 18.35, 16.1, -5.3 *ppm*; ESI-MS(*m/z*): 281.0610 (M+H)⁺, 304.0410 (M+Na)⁺.

Tert-butyldimethyl (3, 4, 5-trimethoxyphenethoxy)silane (3f)

Colourless liquid, Yield: (85%), ¹H NMR (400 MHz, CDCl₃): δ 6.43 (s, 2H, Ar-H), 3.84 (s, 6H, 2 x -OCH₃), 3.82-3.78 (m, 5H, -OCH₃ and –OCH₂), 2.75 (t, *J* = 8.0 Hz, 4.0 Hz, 2H, CH₂), 0.87 (s, 9H, t-Bu), -0.01 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 136.3, 135.1, 106.0, 64.4, 60.7, 55.9, 39.8, 25.8, 18.2, -5.4 *ppm*; ESI-MS (*m/z*): 327.0410 (M+H)⁺, 349.0256 (M+Na)⁺.

Tert-butyl ((3, 4-dichlorobenzyl) oxy)dimethylsilane (3g)

Colourless liquid, Yield: (85%), ¹H NMR (400 MHz, CDCl₃): δ 7.42 -7.41 (m, 1H, Ar-H), 7.39 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.16-7.13 (m, 1H, Ar-H), 4.68 (s, 2H, -OCH₂), 0.95 (s, 9H, t-Bu), 0.11 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 141.7, 132.2, 130.6, 130, 127.8, 125.1, 63.6, 25.8, 18.3, -5.3 *ppm*; ESI-MS(*m/z*): 291.022 (M+H)⁺.

Tert-butyldimethyl(2-(naphthalen-1-yl)ethoxy)silane (3h)

Colourless liquid; Yield: (88%), ¹H NMR (400 MHz, CDCl₃): δ 8.09-8.07 (m, 1H, Ar-H), 7.87-7.84 (m, 1H, Ar-H), 7.74 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.54-7.45 (m, 2H, Ar-H), 7.43-7.35 (m, 2H, Ar-H), 3.97-3.93 (m, 2H, -OCH₂), 3.33 (t, *J* = 8.0 Hz, 2H, CH₂), 0.88 (s, 9H, t-Bu), -0.03 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 135.0, 133.7, 132.2, 128.6, 127.1, 126.9, 125.7, 125.4, 125.3, 123.8, 63.9, 36.6, 25.9, 18.3, -5.4 *ppm*; ESI-MS(*m/z*): 287.0406 (M+H)⁺, 310.294 (M+Na)⁺.

Tert-butyl (2-(2, 3-dihydrobenzofuran-5-yl)ethoxy)dimethylsilane (3i)

Colourless liquid, Yield: (92%), ¹H NMR (400 MHz, CDCl₃): δ 7.04 (s, 1H, Ar-H), 6.94-6.92 (m, 1H, Ar-H), 6.70 (d, *J* = 8.0 Hz, 1H, Ar-H), 4.54 (t, *J* = 8.99, 8.66 Hz, 2H, -OCH₂), 3.75 (t, *J* = 8.0 Hz, 2H, -OCH₂), 3.17 (t, *J* = 8.6 Hz, 2H, CH₂), 2.75 (t, *J* = 12.0, 8.0 Hz, 7.04 Hz, 2H, CH₂), 0.89 (s, 9H, t-Bu), 0.01 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 158.4, 130.9, 128.4, 126.7, 125.6, 108.8, 71.1, 64.9, 39.01, 29.7, 25.9, 18.3, -5.3 *ppm*; ESI-MS (*m/z*): 279.0549 (M+H)⁺, 301.0227 (M+Na)⁺.

Tert-butyl ((2, 3-dihydrobenzofuran-5-yl) methoxy)dimethylsilane (3j)

Colourless liquid, Yield: (75%), ¹H NMR (400 MHz, CDCl₃): δ 7.17 (s, 1H, Ar-H), 7.06-7.03 (m, 1H, Ar-H), 6.74 (d, *J* = 8.0 Hz, 1H, Ar-H), 4.65 (s, 2H, -OCH₂), 4.56 (t, *J* = 8.0 Hz, 2H, -OCH₂), 3.20 (t, *J* = 8.0 Hz, 2H, CH₂), 0.94 (s, 9H, t-Bu), 0.10 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 159.1, 133.4, 126.9, 126.2, 123.2, 108.78 71.2, 65.0, 29.7, 26.0, 18.4, -5.1 *ppm*; ESI-MS (*m/z*): 287.0778 (M+Na)⁺.

2-(1-((Tert-butyldimethylsilyl) oxy) but-3-en-1-yl)phenol (3k)

Colourless liquid, Yield: (82%), ¹H NMR (400 MHz, CDCl₃): δ 8.18 (s, 1H, Ar-OH), 7.17-7.13 (m, 1H, Ar-H), 6.89-6.85 (m, 2H, Ar-H), 6.81-6.77 (m, 1H, Ar-H), 5.78-5.67 (m, 1H, -OCH), 5.08 (d, *J* = 1.17 Hz, 1H, Vinyl-CH), 5.05-5.03 (m, 1H, Vinyl-CH), 4.76 (dd, *J* = 8.0 Hz, 1H, Vinyl-CH), 2.65-2.45 (m, 2H, Allyl-CH), 0.90 (s, 9H, t-Bu), 0.14 (s, 3H, CH₃-Si), 0.02 (s, 3H, CH₃-Si) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 134.1, 128.6, 127.0, 126.8, 119.2, 117.9, 117.1, 77.7, 43.2, 25.6, 18.1, -5.0, -5.1 *ppm*; ESI-MS(*m/z*): 279.0549 (M+H)⁺, 301.0227 (M+Na)⁺.

Tert-Butyl((8-(4-chlorophenyl)-1,4-dioxaspiro[4.5]dec-7-en-7-yl)methoxy)dimethylsilane (3I)

Colourless liquid, Yield: 95%, ¹H-NMR (CDCl₃, 400MHz): δ 7.28 (t, *J* = 4.0 Hz, 1H, Ar-H), 7.26 (t, *J* = 4.0 Hz, 1H, Ar-H), 7.12 (t, *J* = 4.0 Hz, 1H, Ar-H), 7.10 (t, *J* = 4.0 Hz, 1H, Ar-H), 4.04 – 4.01 (m, 4H, -(OCH₂)₂), 3.94 (s, 2H, -OCH₂), 2.48 (dd, *J* = 8.0, 4.0 Hz, 4H, 2x CH₂), 1.86 (t, *J* = 4.0 Hz, 2H, -CH₂), 0.85 (s, 9H, t-Bu), -0.05 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C-NMR (CDCl₃, 100 MHz): δ 140.3, 132.6, 132.4, 131.2, 129.6, 128.1, 108.1, 64.4, 63.9, 37.0, 31.4, 31.1, 25.8, 18.2, -5.3 *ppm*; ESI-MS (*m*/*z*): 394.9949 (M+H)⁺, 416.9845 (M+Na)⁺.

(8-(4-Chlorophenyl)-1,4-dioxaspiro[4.5]dec-7-en-7-yl)methanol (4l)

Colourless liquid, Yield: 91%, ¹H-NMR (CDCl₃, 400MHz): δ 7.29 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.11 (d, *J* = 8.0 Hz, 2H, Ar-H), 4.05-4.01 (m, 4H, -(OCH₂)₂), 3.93 (s, 2H, -OCH₂), 2.50 (t, *J* = 12.0, 8Hz, 4H, Allyl-CH₂), 1.87 (t, *J* = 4.0 Hz, 1H, -CH₂) *ppm*; ¹³C-NMR (CDCl₃, 100 MHz): δ 140.0, 134.6, 132.6, 130.7, 129.5, 128.3, 107.9, 64.4, 63.4, 37.0, 31.4, 31.3 *ppm*; ESI-MS (*m/z*): 281.9937 (M+2H)⁺, 302.9126 (M+Na)⁺.

Tert-butyl ((4-((tert-butyldimethylsilyl) oxy)-3, 5-dimethoxybenzyl) oxy)dimethylsilane (5d)

Colourless liquid, Yield: (82%), ¹H NMR (400 MHz, CDCl₃): δ 6.52 (s, 2H, Ar-CH), 4.66 (s, 2H, -OCH₂), 3.78 (s, 6H, -(OCH₃)₂), 1.00 (s, 9H, t-Bu), 0.94 (s, 9H, t-Bu), 0.11 (s, 6H, CH₃)₂-Si), 0.09 (s, 6H, (CH₃)₂-Si) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 151.4, 133.9, 133.0, 103.1, 65.1, 55.6, 25.9, 25.8, 18.7, 18.4, -4.6, -5.1 *ppm*; ESI-MS (*m/z*):413.0653 (M+H)⁺, 435.0308 (M+Na)⁺.

Tert-butyl (2-(1-((tert-butyldimethylsilyl) oxy) but-3-en-1-yl) phenoxy) dimethylsilane (5e)

Colourless liquid, Yield: (90%), ¹H NMR (400 MHz, CDCl₃): δ 7.48 (dd, *J* = 8.0, 4.0 Hz, 1H, Ar-H), 7.10 (td, *J* = 8.0 Hz, 1H, Ar-H), 6.95 (t, *J* = 8.0 Hz, 1H, Ar-H), 6.77 (d, *J* = 8.0Hz, 1H, Ar-H), 5.94-5.84 (m, 1H, Vinyl-CH), 5.16 (dd, *J* = 4.0 Hz, 1H, Vinyl-CH), 5.05 (dd, *J* = 4.0 Hz, 1H, Vinyl-CH), 5.02 (s, -OCH), 2.47-2.32 (m, 2H, Allyl-CH₂), 1.06 (s, 9H, t-Bu), 0.92 (s, 9H, t-Bu), 0.31 (s, 3H, CH₃-Si), 0.27 (s, 3H, CH₃-Si), 0.05 (s, 3H, CH₃-Si), -0.08 (s, 3H, CH₃-Si) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 151.2, 135.8, 135.7, 127.3, 127.2, 120.8, 117.4, 116.5, 68.7, 43.8, 25.9, 25.8, 18.3, 18.2, -3.8, -4.2, -4.7, -4.9 *ppm*; ESI-MS (*m/z*): 415.0718 (M+Na)⁺.

Tert-butyl ((1-(4-((tert-butyldimethylsilyl) oxy)-3, 5-dimethoxyphenyl) but-3-en-1-yl) oxy) dimethylsilane (5f)

Colourless liquid, Yield: (88%), ¹H NMR (400 MHz, CDCl₃): δ 6.50 (s, 2H, Ar-H), 5.83-5.74 (m, 1H, -OCH), 5.05-5.00 (m, 2H, Vinyl-CH), 4.57 (dd, *J* = 4.0 Hz, 1H, -OCH), 3.78 (s, 6H, -(OCH₃)₂), 2.48-2.33 (m, 2H, Allyl-CH₂), 1.02 (s, 9H, t-Bu), 0.88 (s, 9H, t-Bu), 0.13 (s, 6H, Si-(CH₃)₂), 0.02 (s, 3H, Si-CH₃), -0.12 (s, 3H, Si-CH₃) *ppm*; ¹³C NMR (100 MHz, CDCl₃): δ 151.1, 137.9, 135.5, 132.9, 116.5, 102.9, 75.2, 55.6, 44.5, 25.8, 18.7, 18.2, -4.6, -4.69, -4.7, -4.9 *ppm*; ESI-MS (*m/z*): 475.0574 (M+Na)⁺.

1-(4-((tert-Butyldimethylsilyl)oxy)-3,5-dimethoxyphenyl)but-3-en-1-ol (6f)

Colourless liquid, Yield: 88%, ¹H-NMR (CDCl₃, 400MHz): δ 6.55 (s, 2H, Ar-H), 5.86-5.76 (m, 1H, -Vinyl-CH), 5.15 (t, , *J* = 12 Hz, 2H, Vinyl-CH), 4.67-4.63 (m, 1H, -OCH), 3.80 (s, 6H, -(OCH₃)₂), 2.48 (dd, *J* = 8.0, 4.0 Hz, 2H, Allyl-CH₂), 1.98 (d, *J* = 4.0 Hz, 1H, -OH), 1.01 (s, 9H, t-Bu), 0.12 (s, 6H, , (CH₃)₂-Si) *ppm*; ¹³C-NMR (CDCl₃, 100MHz): δ 151.4, 136.4, 134.6, 133.3, 118.0, 102.7, 73.5, 55.6, 43.8, 25.7, 18.6, -4.6 *ppm*; ESI-MS (*m/z*): 339. 0476 (M+H)⁺, 361.8842 (M+Na)⁺.

IR spectrum of HS-cellulose sulphate

IR spectrum of HS-cellulose sulphate sodium

Solid state NMR spectrum of HS-cellulose sulpate sodium

 ^1H NMR spectrum of HS-cellulose sulphate sodium in D_2O

 $^{13}\mbox{C}$ NMR spectrum of compound cellulose sulphate sodium in $D_2\mbox{O}$

¹H NMR spectrum of compound 3c in CDCl₃

¹H NMR spectrum of compound 3d in CDCl₃

¹H NMR spectrum of compound 3f in CDCl₃

¹H NMR spectrum of compound 3g in CDCl₃

DSS-2-3g-13 K	26 114 189 189	
MC10-1-spot	22.0.0.2	
Selective band	enter: 4.21 (ppm); width	: 13.2 (Hz)
	N Y Z Y	

--- 63.68

--- 25.88 --- 18.36

¹H NMR spectrum of compound 3h in CDCl₃

0^{-Si}

--- 63.94

— 18.33

--- -5.41

--- 25.93

---- 36.61

S21

¹H NMR spectrum of compound 3i in CDCl₃

DSS-2-3 MC10-1	3i-13C -spot1	58.45			30.97 28.44 26.77 25.65		38.85				11.1	66.1		10.6	9.75 5.93	3.35		l	n N
Selectiv	e band c	enter <mark>1</mark> 4.2	21 (ppm);	width: 13	.2 (112) -		- 1(۲ <i>.</i> –	6		36	25	- 18		L	n
					\sim	\wedge	\sim												
							Ŷ	SI ` /\											
					0	\checkmark													
					.		ļ				I	1		I					
												ļ							
180	170	160	150	140	130	120	110	100	90 f1 (p	80 opm)	70	60	50	40	30	20	10	0	-10

¹³C NMR spectrum of compound 3i in CDCl₃

 ^1H NMR spectrum of compound 3I in CDCl_3

¹³C NMR spectrum of compound 3I in CDCl₃

 ^1H NMR spectrum of compound 5d in CDCl_3

S33

¹H NMR spectrum of compound 5e in CDCl₃

¹H NMR spectrum of compound 5f in CDCl₃

¹³C NMR spectrum of compound 5f in CDCl₃

¹H NMR spectrum of compound 6f in CDCl₃

¹³C NMR spectrum of compound 6f in CDCl₃

 ^1H NMR spectrum of recovered (after 3rd cycle) HS-cellulose sulphate sodium in D2O

 ^{13}C NMR spectrum of recovered (after 3^{rd} cycle) HS-cellulose sulphate sodium in D_2O

References

- 1. S. S. Dachavaram, K. B. Kalyankar and S. Das, *Tetrahedron Lett.*, 2014, **55**, 5629-5631.
- 2. C. Petrier and J. L. Luche, J. Org. Chem., 1985, **50**, 910-912.
- 3. J. J. Loman, V. A. Pistritto, C. B. Kelly and N. E. Leadbeater, *Synlett*, 2016, **27**, 2372-2377.
- 4. T. Kuwata, D. Nozawa, M. Hayashi, US patent: US8350055B2, 2008, 79.
- 5. R. A. Fernandes, S. P. Gholap and S. V. Mulay, *RSC Advances*, 2014, **4**, 16438-16443.
- 6. S. Kumar, H.-Y. Lee and J.-P. Liou, J. Nat. Prod., 2017, **80**, 1294-1301.
- 7. Z. Yang, Z. Zhu, R. Luo, X. Qiu, J.-t. Liu, J.-K. Yang and W. Tang, *Green Chem.*, 2017, **19**, 3296-3301.
- 8. R. Bernini, F. Crisante, N. Merendino, R. Molinari, M. C. Soldatelli and F. Velotti, *Euro. J. Med. Chem.*, 2011, **46**, 439-446.
- 9. D. A. Cavarzan, F. D. Fagundes, O. Fuganti, C. W. P. da Silva, C. B. Pinheiro, D. F. Back, A. Barison, A. L. Bogado and M. P. de Araujo, *Polyhedron*, 2013, **62**, 75-82.
- 10. C. L. Zhang, X. L. Zhu, Y. G. Ma and L. W. Zou, *Chinese Chem.Lett.*, 2006, **17**, 163-164.
- 11. Y. Zhongzhen, Z. Yong, C. Xin, L. Weijian, L. Guo-Bo and W. Yong, *Euro. J. Org. Chem.*, 2018, **2018**, 1041-1052.
- 12. Z. Segaoula, J. Leclercq, V. Verones, N. Flouquet, M. Lecoeur, L. Ach, N. Renault, A. Barczyk, P. Melnyk, P. Berthelot, X. Thuru and N. Lebegue, *J. Med. Chem.*, 2016, **59**, 8422-8440.
- 13. F. Shirini, A. F. Shojaei and S. Z. D. Heirati, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 2016, **191**, 944-951.
- 14. V. H. Jadhav, J. G. Kim, H. J. Jeong and D. W. Kim, J. Org. Chem., 2015, 80, 7275-7280.
- 15. G. Liao, H. Gao, Y. Li, D. Che, chinese patent: CN101857581A, 2012, 8.
- 16. H. Zhang, X. Yang, Y. Li, X. Xu, Y. Li, J. Yan, H. Zhou, chinese patent: CN103408537A, 2013, pp. 30pp.
- 17. C. Vilanova, M. Sánchez-Péris, S. Roldán, B. Dhotare, M. Carda and A. Chattopadhyay, *Tetrahedron Lett.*, 2013, **54**, 6562-6567.
- 18. A. H. Jadhav and H. Kim, *Tetrahedron Lett.*, 2012, **53**, 5338-5342.
- 19. K. C. Nicolaou, T. Lister, R. M. Denton and C. F. Gelin, *Tetrahedron*, 2008, **64**, 4736-4757.
- 20. G. R. Pettit, N. Melody, A. Thornhill, J. C. Knight, T. L. Groy and C. L. Herald, *J. Nat. Prod.*, 2009, **72**, 1637-1642.
- 21. J. M. Blackwell, W. E. Piers and R. McDonald, J. Am. Chem. Soc., 2002, 124, 1295-1306.