(–)-Cytisine: Access to a Stereochemically Defined and Functionally Flexible Piperidine Scaffold

SUPPLEMENTARY INFORMATION

Worawat Niwetmarin, Hugo Rego Campello, Hazel A. Sparkes, Varinder K. Aggarwal and Timothy Gallagher

School of Chemistry, University of Bristol, Bristol BS8 1TS United Kingdom

Table of Contents

1.	General Information	Page 2
2.	Numbering systems used in the Supplementary Information for ¹ H NMR assignment and discussion. Comments on ¹ H NMR characteristics of cytisine derivatives; H10 α vs H10 β assignement	Page 3
3.	X-Ray crystallography details for compounds 20, 31 and 44	
4.	General procedure A (O-Boc pyridone deprotection) and General procedure B (O-Boc pyridone Ir-catalysed borylation)	
5.	Synthetic procedures	Page 7
6.	Copies of ¹ H and ¹³ C NMR spectra	Page 36

1. General Information

All reagents were purchase from commercial suppliers and used without further purification unless otherwise stated. Anhydrous solvents were obtained by distillation using standard procedures or by using the Anhydrous Engineering Ltd. double alumina and alumina-copper catalysed drying columns. Reactions requiring anhydrous conditions were run under an atmosphere of dry nitrogen; glassware and needles were flamed-dried prior to use or placed in the oven (150 °C) for at least 2 h and allowed to cool either in a desiccator. Thin layer chromatography was performed using aluminium backed 60 F254 silica plates. Visualisation was achieved by UV fluorescence or a basic KMnO₄ solution and heat. Flash column chromatography was performed on silica gel (Aldrich 40-63 µm, 230-400 mesh). Infrared spectra were recorded using a Perkin Elmer Spectrum One FT-IR Spectrometer as solids or neat films in the range of 600-4000 cm⁻¹. NMR spectra were recorded using either a Varian 400 MHz or 500 MHz, or JEOL ECP 400 MHz spectrometer. Chemical shifts are quoted in parts per million, coupling constants are given in Hz to the nearest 0.5 Hz. ¹H and ¹³C NMR spectra are referenced to the appropriate residual peak. DEPT 135, COSY, HSQC and HMBC were used where necessary in assigning NMR spectra. Melting points were determined using Reichert melting point apparatus. Mass spectra were determined by the University of Bristol mass spectroscopy service by electrospray ionization (ESI⁺) using a Bruker Daltonics micrOTOF II spectrometer.

2a. Numbering systems used in the Supplementary Information for NMR assignment

2b. ¹H NMR Characteristics of cytisine derivatives; H10 α vs H10 β assignment

Assignment of stereochemistry at C(10) is linked directly to the ²J and ³J values observed for the H10 α and H10 β . This methodology was used to assign the stereochemistry of C(10) adducts such as **6**.

3. Crystallography

X-ray diffraction experiments on alcohol **20** were carried out at 100(2) K on a Bruker APEX II diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å), while acid **31** and PNB ester **44** were carried out at 100(2) K on a Bruker Microstar rotating anode diffractometer using Cu-K α ($\lambda = 1.54178$ Å). Intensities were integrated in SAINT¹ and absorption corrections based on equivalent reflections were applied using SADABS.²

All structures were solved using Superflip^{3,4} and refined against F² in SHELXL^{5,6} using Olex2⁷. All non-hydrogen atoms were refined anisotropically. While all hydrogen atoms were located geometrically and refined using a riding model, apart from the O-H protons in **20** which were located in the difference map and refined freely.

Crystal structure and refinement data are given in Table 1. Crystallographic data for compounds **20, 31** and **44** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 1840054-1840056. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, e-mail: <u>deposit@ccdc.cam.ac.uk</u>.

Structural images are shown for each compound following the relevant synthetic procedure.

Crystallography references:

- 1. Bruker, SAINT+ Integration Engine, Data Reduction Software, Bruker Analytical X-ray Instruments Inc., Madison, WI, USA, 2007.
- 2. Bruker, SADABS, Bruker AXS area detector scaling and absorption correction, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 2001.
- 3. L. Palatinus and G. Chapuis, *J. Appl. Crystallogr.*, 2007, **40**, 786-790.
- 4. L. Palatinus, S. J. Prathapa and S. van Smaalen, *J. Appl. Crystallogr.*, 2012, **45**, 575-580.
- 5. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.
- 6. G. M. Sheldrick, *Acta Crystallogr. C*, 2015, **71**, 3-8.
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.

Identification code	Alcohol 20	Acid 31	PBN ester 44
Empirical formula	C21H32N2O6	$C_{21}H_{30}N_2O_7$	C26H25N3O5
Formula weight	408.48	422.47	459.49
Temperature/K	100(2)	100(2)	100(2)
Crystal system	tetragonal	orthorhombic	monoclinic
Space group	$P4_2$	$P2_{1}2_{1}2_{1}$	$P2_1$
a/Å	27.1192(8)	8.5893(15)	7.1313(16)
b/Å	27.1192(8)	11.638(2)	8.764(2)
$c/{ m \AA}$	6.0742(2)	22.452(4)	17.546(4)
$\beta/^{\circ}$	90	90	91.710(5)
Volume/Å ³	4467.3(3)	2244.4(7)	1096.1(4)
Ζ	8	4	2
$\rho_{calc}g/cm^3$	1.215	1.250	1.392
µ/mm ¹	0.089	0.781	0.802
F(000)	1760.0	904.0	484.0
Crystal size/mm ³	0.618 imes 0.176 imes 0.166	$0.34 \times 0.24 \times 0.17$	0.576 imes 0.422 imes 0.11
Radiation	MoKa ($\lambda = 0.71073$)	$CuK\alpha (\lambda = 1.54178)$	$CuK\alpha$ ($\lambda = 1.54178$)
2θ range for data collection/°	1.502 to 52.74	7.876 to 133.184	10.086 to 133.578
Index ranges	$-33 \le h \le 33,$ $-33 \le k \le 33,$ $-6 \le 1 \le 7$	$-10 \le h \le 9,$ $-13 \le k \le 13,$ $-26 \le 1 \le 25$	$-8 \le h \le 6,$ $-10 \le k \le 10,$ $-20 \le l \le 20$
Reflections collected	37067	40771	13480
R _{int} / R _{sigma}	0.0711 / 0.0640	0.0753 / 0.0351	0.0526 / 0.0465
Data/restraints/parameters	8969/1/543	3943/0/278	3827/1/307
Goodness-of-fit on F ²	1.024	1.059	1.027
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0442,$ $wR_2 = 0.0809$	$R_1 = 0.0341,$ $wR_2 = 0.0892$	$R_1 = 0.0517,$ $wR_2 = 0.1368$
Final R indexes [all data]	$R_1 = 0.0649,$ w $R_2 = 0.0889$	$R_1 = 0.0349,$ $wR_2 = 0.0899$	$R_1 = 0.0517,$ $wR_2 = 0.1368$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.18	0.23/-0.21	0.29/-0.33

Table 1. Crystal data and structure refinement for **20, 31** and **44**.

4. General Procedures

General Procedure A: O-Boc pyridone deprotection (e.g. 23 to 24)

To a solution of the corresponding O-Boc pyridone derivative (1.0 equiv) in an equimolar mixture of Et_2O and MeOH (20 mL/equiv of starting material) was added NH₃,H₂O (35% w/w, 2 mL/equiv of starting material). The reaction mixture was stirred at room temperature for 2 – 20 h (followed by TLC) and the solvent was removed *in vacuo*. The resulting residue was dissolved within DCM and water was added. The aqueous phase was extracted twice with DCM, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The product was purified by flash column chromatography.

General Procedure B: O-Boc pyridine borylation (e.g. 23 to 37)

A Schlenk tube was charged with the corresponding pyridine derivative (1.0 equiv), (1,5-cyclooctadiene)(methoxy) iridium (I) dimer (2.5 mol%), 4,4',-di-*tert*-butyl-2,2'-dipyridyl (5 mol%) and bis(pinacolato)diboron (1.0 equiv). The flask was placed under vacuum and backfilled with nitrogen for three times, THF (0.50 mL/equiv of starting material) was added and the reaction mixture was heated at reflux for 3 - 20 h (followed by TLC). The solvent was removed *in vacuo* and the product was purified by flash column chromatography.

5. Experimental procedures

N-Methylcytisine 7

To a solution of (–)-cytisine **6** (100 mg, 0.52 mmol) in an equimolar mixture of MeOH and THF (6.0 mL) were succesively added formaldehyde (0.23 mL, 3.11 mmol, 37% aq. sol.) and NaCNBH₃ (117 mg, 1.87 mmol) and the reaction mixture was stirred at room temperature for 1.5 h. The solvent was removed *in vacuo*, the crude was partitioned between DCM and water and the aqueous phase was extracted with DCM (3 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH (99:1 to 95:5)] gave **7** (92 mg, 85%) as colourless solid. R_f = 0.20 [DCM:MeOH (95:5)]; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.63 (m, 1H), 1.75 (m, 1H), 2.03 (s, 3H), 2.12 – 2.19 (m, 2H), 2.34 (m, 1H), 2.73 – 2.86 (m, 3H), 3.78 (dd, *J* = 15.5, 7.0 Hz, 1H), 3.93 (d, *J* = 15.5 Hz, 1H), 5.93 (dd, *J* = 7.0, 1.0 Hz, 1H), 6.35 (dd, *J* = 9.0, 1.5 Hz, 1H), 7.20 (dd, *J* = 9.0, 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 25.4, 28.0, 35.5, 46.3, 50.0, 62.2, 62.6, 104.8, 116.7, 138.7, 151.6, 163.7. Spectroscopic data were consistent with those reported earlier.³

N-Methyl 10-[(dimethyl)phenylsilyl]cytisine 9 and N-methyl 4-[(dimethyl)phenylsilyl]cytisine 12

(a) No TMEDA: leads to formation of the C(4)-silyated adduct **12**.

To a solution of N-methylcytisine **7** (100 mg, 0.48 mmol) and chloro(dimethyl)phenylsilane (0.40 mL, 2.40 mmol) in THF (16 mL) at -78 °C was added a solution of LDA [prepared from *n*-BuLi (0.90 mL, 1.44 mmol, 1.6 M in hexanes) and diisopropylamine (0.20 mL, 1.44 mmol) in dry THF (2.7 mL) at -20 °C]. The reaction mixture was stirred for 2 h at -78 °C and then at room temperature overnight. HCl (10 mL, 1 M aq. sol.) was added and the aqueous layer was washed with Et₂O (3 × 10 mL). The aqueous phase was basified with aqueous Na₂CO₃ (sat. sol.) to pH = 9 and extracted with DCM (3 × 10 mL). The combined organic phases were dried

(Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH (100:0 to 95:5)] gave **12** (21 mg, 13%) as a pale yellow oil; followed by **9** (20 mg, 13%) as a colourless oil.

Characterisation data for both compounds shown below.

(b) Optimal conditions involving use of TMEDA; Adduct **12** not observed.

To a solution of *N*-methylcytisine **7** (100 mg, 0.48 mmol), chloro(dimethyl)phenylsilane (0.20 mL, 0.96 mmol), and TMEDA (0.07 mL, 0.48 mmol) in THF (34 mL) at -78 °C was added a solution of LDA [prepared from *n*-BuLi (0.90 mL, 1.44 mmol, 1.6 M in hexanes) and diisopropylamine (0.20 mL, 1.44 mmol) in THF (13.3 mL) at -20 °C] over *ca*. 5 h. The reaction mixture was stirred at -78 °C for 2 h and then at room temperature overnight. HCl (10 mL, 1 M aq. sol.) was added and the aqueous layer was washed with Et₂O (3 × 10 mL). The aqueous phase was basified with aqueous Na₂CO₃ (to pH = 9) and extracted with DCM (3 × 10 mL). The combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH (100:0) to (95:5)] affored **9** (135 mg, 83%) as a colourless oil.

Data for 9 : $R_f = 0.34$ [DCM:MeOH (95:5)]; ¹H NMR (400 MHz, CDCl₃) $\delta_H 0.31$ (s, 3H), 0.46 (s, 3H), 1.44 (m, 1H), 1.77 (m, 1H), 2.01 (s, 3H), 2.13 (m, 2H), 2.23 (m, 1H), 2.68 (m, 1H), 2.85 (m, 2H), 4.33 (s, 1H), 5.92 (dd, J = 7.0, 1.5 Hz, 1H), 6.27 (dd, J = 9.0, 1.5 Hz, 1H), 7.15 (dd, J = 9.0, 7.0 Hz, 1H), 7.28-7.32 (m, 3H), 7.48-7.52 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ_C -3.09, -1.24, 24.9, 30.7, 35.4, 46.1, 54.2, 63.5, 64.2, 105.0, 115.9, 127.5 (2C), 128.8, 134.3 (2C), 137.6, 138.4, 150.9, 163.4. HRMS (ESI⁺) calcd for C₂₀H₂₇N₂OSi [M+H]⁺: 339.1887, found 339.1892.

Spectroscopic data were consistent with those reported earlier.³

Data for 12: $[\alpha]_D^{23} = -110$ (c 1.0, CHCl₃); R_f = 0.40 [DCM:MeOH (95:5)]; FTIR v_{max} /cm⁻¹ (neat): 2934, 2778, 1644, 1558, 1427, 1247, 1112, 827, 804, 774; ¹H NMR (400 MHz, CDCl₃) δ_H 0.49 (s, 6H), 1.69 (m, 1H), 1.80 (m, 1H), 2.11 (s, 3H), 2.20 (m, 2H), 2.40 (m, 1H), 2.72 – 2.86 (m, 3H), 3.87 (ddd, *J* = 15.5, 7.0, 1.0 Hz, 1H), 4.00 (d, *J* = 15.5 Hz, 1H), 5.96 (d, *J* = 1.5 Hz, 1H), 6.62 (d, *J* = 1.5 Hz, 1H), 7.32 – 7.37 (m, 3H), 7.49 – 7.52 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ_C -3.14 (2C), 25.6, 28.1, 35.4, 46.4, 49.9, 62.4, 62.7, 108.5, 123.5, 128.1 (2C), 129.6, 134.3 (2C), 136.5, 149.8, 151.2, 162.6; HRMS (ESI⁺) calcd for C₂₀H₂₇N₂OSi [M+H]⁺: 339.1887, found 339.1892.

(+)-Kuraramine 11

To a solution of N-methylcytisine **7** (102 mg, 0.50 mmol), B(O*i*Pr)pin (0.15 mL, 0.75 mmol) and TMEDA (75 μ L, 0.50 mmol) in THF (17 mL) was added a solution of LDA (6.0 mL, 0.1 M in THF, 0.60 mmol) dropwise over 2 h and the reaction mixture was stirred at -78 °C overnight. Water (20 mL) and DCM (20 mL) were added, and the aqueous phase was extracted with DCM (2 × 20 mL). The combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was dissolved in THF (2.5 mL) and water (2.5 mL), NaBO₃·4H₂O (231 mg, 1.50 mmol) was added and the reaction mixture was stirred under air at room temperature for 6 h. The solution was cooled to 0 °C, NaBH₄ (93 mg, 2.50 mmol) was slowly added and the reaction mixture was stirred for 3 h. The crude reaction mixture was distributed between DCM (10 mL) and water (10 mL), and the aqueous phase was extracted with DCM (4 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH:NH₄OH (96.7:3.0:0.3 to 94.5:5.0:0.5)] yielded **11** (36 mg, 32% overall yield from **7**) as a yellow solid.

[α]_D²³ = +4.1 (c 1.0, EtOH) (lit. value: [α]_D²⁰ = +9.5 (c 2.1, EtOH)³; [α]_D²⁹ = +8.4 (c 0.52, EtOH))⁴; R_f = 0.05 [DCM:MeOH (85:15)]; ¹H NMR (400 MHz, CDCl₃) δ_{H} 1.12 – 1.34 (m, 1H), 1.76 (t, J = 11.0 Hz, 1H), 2.05 (m, 3H), 2.31 (s, 3H), 2.88 (s, 1H), 3.02 – 3.11 (m, 2H), 3.46 – 3.59 (m, 2H), 6.03 (d, J = 7.0 Hz, 1H), 6.40 (dd, J = 7.0, 9.0 Hz, 1H), 7.33 (dd, J = 9.0, 7.0 Hz, 1H), *O<u>H</u> and N<u>H</u> <i>signals have not been detected*; ¹³C NMR (101 MHz, CDCl₃) δ_{C} 31.6, 38.9, 40.2, 46.3, 58.4, 60.4, 65.8, 103.6, 118.0, 141.7, 150.9, 165.2; HRMS (ESI⁺) calcd for C₁₂H₁₉N₂O₂ [M+H]⁺: 223.1441, found 223.1438. Data for **11** were matched to those reported earlier³ and to those described for the natural product.⁴

N-Benzylcytisine 14

To a solution of (–)-cytisine **6** (1.00 g, 5.2 mmol) and K₂CO₃ (3.63 g, 26.2 mmol) in CH₃CN (30 mL) was added benzyl bromide (1.2 mL, 10.5 mmol) and the reaction mixture was heated at reflux for 20 h, cooled to room temperature, and diluted with DCM (100 mL). The suspension was filtered through Celite[®] and concentrated *in vacuo*. Purification of the crude by flash column chromatography [DCM:MeOH (95:5)] gave **14** (1.41 g, 99%) as a pale yellow solid. R_f = 0.36 [DCM:MeOH (95:5)]; ¹H NMR (400 MHz, CDCl₃) δ_{H} 1.77 (d, *J* = 12.5 Hz, 1H), 1.90 (d, *J* = 12.5 Hz, 1H), 2.29 (d, *J* = 10.5 Hz, 1H), 2.34 (d, *J* = 11.0 Hz, 1H), 2.40 (s, 1H), 2.82 (d, *J* = 10.5 Hz, 1H), 2.92 (m, 2H), 3.36 (d, *J* = 13.5 Hz, 1H), 3.44 (d, *J* = 13.5 Hz, 1H), 3.86 (dd, *J* = 15.5, 6.5 Hz, 1H), 4.08 (d, *J* = 15.5 Hz, 1H), 5.88 (d, *J* = 7.0 Hz, 1H), 6.47 (d, *J* = 9.0 Hz, 1H), 6.95 – 7.0 (m, 2H), 7.13 – 7.19 (m, 3H), 7.27 (dd, *J* = 9.0, 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 25.9, 28.1, 35.5, 49.9, 59.9, 60.0, 62.0, 104.5, 116.5, 126.8, 128.1 (2C), 128.2 (2C), 138.0, 138.5, 151.4, 163.6.

Spectroscopic data were consistent with those reported in the literature for (+)-N-Benzylcytisine.⁵

N-Benzyl 10-[(dimethyl)phenylsilyl]lcytisine 15

To a solution of *N*-benzylcytisine **14** (460 mg, 2.0 mmol), chloro(dimethyl)phenylsilane (0.84 mL, 4.0 mmol) and TMEDA (0.28 mL, 2.0 mmol) in THF (67 mL) at -78 °C, was added a solution of LDA (60 mL, 0.1 M in THF, 6.0 mmol) over 4 h. The reaction mixture was stirred for 2 h at -78 °C and then at room temperature overnight. HCl (50 mL, 1 M) was added and the aqueous layer was extracted with Et_2O (3 × 50 mL). The aqueous phase was basified with Na_2CO_3 (sat. sol) to pH = 9 and extracted with DCM (3 × 50 mL). The combined organic phases were dried (Na_2SO_4), filtered, and concentrated *in vacuo*. Purification of the crude by flash column chromatography [*n*-Hexane:DCM:triethylamine (20:80:1)] gave **15** (643 mg, 78%) as a yellow oil.

 R_f = 0.50 [DCM:MeOH (95:5)]; FTIR v_{max} /cm⁻¹ (neat): 2953, 2800, 1648, 1544, 1427, 1252, 1056, 828, 789, 698; ¹H NMR (400 MHz, CDCl₃) δ_H ppm 0.30 (s, 3H), 0.47 (s, 3H), 1.49 (m, 1H), 1.82 (m, 1H), 2.11 (dd, *J* = 10.5, 1.5 Hz, 1H), 2.25 (s, 1H), 2.40 (dd, *J* = 10.5, 2.5 Hz, 1H), 2.66 (dt, *J* = 10.5, 1.5 Hz, 1H), 2.85 (s, 1H), 2.95 (d, *J* = 10.5 Hz, 1H), 3.22 (d, *J* = 14.0 Hz, 1H), 3.44 (d, *J* = 14.0 Hz, 1H), 4.41 (s, 1H), 5.82 (dd, *J* = 7.0, 1.0 Hz, 1H), 6.40 (dd, *J* = 9.0, 1.0 Hz, 1H), 6.85 – 6.90 (m, 2H), 7.11 – 7.14 (m, 3H), 7.16 (dd, *J* = 9.0, 7.0 Hz, 1H), 7.29 (m, 3H), 7.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ_C ppm -3.22, -1.26, 25.4, 31.0, 35.5, 54.2, 60.5, 62.0, 62.6, 105.1, 115.7, 126.8, 127.6 (2C), 128.1 (2C), 128.2 (2C), 128.9, 134.4 (2C), 137.6, 138.3, 138.4, 150.8, 163.4; HRMS (ESI⁺) calcd for C₂₆H₃₁N₂OSi [M+H]⁺: 415.2200, found 415.2206.

6-((3R,5S)-1-Benzyl-5-[(hydroxymethyl)piperidin-3-yl]pyridin-2(1H)-one 18

To a solution of N-benzylcytisine **14** (460 mg, 2.00 mmol), B(OiPr)pin (0.60 mL, 3.00 mmol) and TMEDA (0.30 mL, 2.00 mmol) in THF (68 mL) was added LDA (24.0 mL, 0.1 M in THF, 2.40 mmol) dropwise over 2 h and the reaction mixture was stirred at -78 °C overnight. Water (30 mL) and DCM (100 mL) were added, and the aqueous phase was extracted with DCM (2 × 50 mL).^{**}

After the organic phases were concentrated *in vacuo*, the resulting residue was dissolved in THF (10 mL) and water (10 mL), followed by NaBO₃·4H₂O (923 mg, 6.00 mmol). The reaction mixture was stirred under air at room temperature for 6 h. After cooled to 0 °C, NaBH₄ (374 mg, 10.0 mmol) was slowly added and the reaction mixture was stirred for 3 h. The crude mixture was distributed between DCM (25 mL) and water (25 mL), and the aqueous phase was extracted with DCM (4 × 25 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH:NH₄OH (96.7:3.0:0.3 to 94.5:5.0:0.5)] gave piperidine **18** (312 mg, 52% from **14**) as a yellow solid. Data for **18**: R_f = 0.24 [DCM:MeOH:NH₄OH (89:10:1)]; m.p. 83 °C (DCM/*n*-Hexane); FTIR v_{max}/cm⁻¹ (neat): 3290, 2911, 2812, 1644, 1611, 1452, 1061, 1008, 733, 698; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.22 – 1.27 (m, 1H), 1.86 (t, *J* = 11.0 Hz, 1H), 2.02 – 2.09 (m, 3H), 2.89 (m, 1H), 3.00 – 3.08 (m, 2H), 3.48 – 3.52 (m, 2H), 3.55 – 3.60 (m, 2H), 6.02 (d, *J* = 7.0 Hz, 1H), 6.39 (d, *J* = 9.0 Hz, 1H), 7.21 – 7.27 (m, 5H), 7.33 (dd, *J* = 9.0, 7.0 Hz, 1H); *O<u>H</u> and N<u>H</u>*

signals have not been detected; ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 32.4, 38.6, 40.2, 56.2, 58.0,

63.1, 65.9, 103.7, 117.9, 127.2, 128.4 (2C), 129.2 (2C), 137.9, 141.7, 151.2, 165.2; HRMS (ESI⁺) calcd for C₁₈H₂₃N₂O₂ [M+H]⁺: 299.1754, found 299.1764.

^{**} Isolation of **17** could be done at this stage following solvent removal and purification of the crude product by rapid flash chromatography [EtOAc:Et₃N (99:1 to 98:2)] to give **17** as a colourless oil. Generally, however, **17** was not purified but used directly in the next step.

Data for **17**: $[\alpha]_D^{23} = -180$ (c 1.0, CHCl₃); R_f = 0.20 [EtOAc:Et₃N (99:1)]; FTIR v_{max}/cm⁻¹ (neat): 2968, 2926, 2799, 2762, 2225, 1635, 1560, 1513, 1127, 727, 698; ¹H NMR (500 MHz, CDCl₃) δ_H 1.25 (s, 12H), 1.65 (m, 1H), 1.77 (dt, *J* = 13.0, 3.0 Hz, 1H), 2.33 (d, *J* = 10.5 Hz, 1H), 2.40 (dd, *J* = 11.0, 3.0 Hz, 1H), 2.64 (s, 1H), 2.90 – 2.96 (m, 2H), 3.08 (d, *J* = 11.0 Hz, 1H), 3.42 (d, *J* = 13.5 Hz, 1H), 3.52 (s, 1H), 3.58 (d, *J* = 13.5 Hz, 1H), 6.40 (d, *J* = 7.0 Hz, 1H), 6.72 (dd, *J* = 9.0, 1.0 Hz, 1H), 7.07 – 7.12 (m, 2H), 7.18 – 7.25 (m, 3H), 7.52 (dd, *J* = 9.0, 7.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 25.3 (2C), 25.5 (2C), 27.5, 27.9, 35.4, 55.0, 57.8, 61.6, 62.6, 79.9 (2C), 110.2, 110.5, 127.0, 128.2 (2C), 128.5 (2C), 138.0, 140.9, 155.0, 164.2; ¹¹B NMR (160 MHz, CDCl₃) δ_B 13.7; HRMS (ESI⁺) calcd for C₂₄H₃₂BN₂O₃ [M+H]⁺: 407.2500, found 407.2483.

tert-Butyl (3*S*,5*R*)-3-(hydroxymethyl)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1carboxylate 19

To a solution of alcohol **18** (290 mg, 0.97 mmol) in MeOH (10 mL) was added HCI (1.9 mL, 0.50 M in MeOH, 0.97 mmol) and the resulting solution was stirred for 10 min at room temperature. $Pd(OH)_2/C$ (58 mg, 20% w/w) was added, and the reaction mixture was stirred under hydrogen atmosphere (1 atm) for 18 h. The solution was filtered through Celite[®], the solvent was removed *in vacuo*, NH₄OH (3 mL) was added and then evaporated *in vacuo*. The crude reaction was dissolved in THF (3.8 mL) and H₂O (0.3 mL), followed by the addition of Na₂CO₃ (102 mg, 2.91 mmol) and Boc₂O (0.2 mL, 0.97 mmol). The reaction mixture was stirred at room temperature for 3 days. The solution was distributed between DCM (10 mL) and water (10 mL), and the aqueous phase was extracted with DCM (3 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated. Purification of the

crude by flash column chromatography [DCM:MeOH:NH₄OH (94.5:5:0.5)] gave alcohol **19** (225 mg, 75%) as a colourless solid.

[α]_D²⁴ = -13 (c 3.8, MeOH); R_f = 0.77 [DCM:MeOH (95:5)]; m.p. 119-122 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 2925, 1650, 1613, 1425, 1171, 1142, 1009, 880, 729; ¹H NMR (500 MHz, MeOD, 52 °C) δ_{H} 1.33-1.50 (m, 10H), 1.75 (m, 1H), 2.05 (d, *J* = 12.5 Hz, 1H), 2.53 (d, *J* = 12.5 Hz, 1H), 2.66 (tt, *J* = 3.5, 15.5 Hz, 1H), 2.77 (t, *J* = 12.5 Hz, 1H), 3.43 (m, 1H), 3.49 (dd, *J* = 5.5, 11.0 Hz, 1H), 4.24 (m, 2H), 6.25 (d, *J* = 6.5 Hz, 1H), 6.40 (d, *J* = 9.0 Hz, 1H), 7.51 (dd, *J* = 6.5, 9.0 Hz, 1H), *O<u>H</u> and N<u>H</u> signals have not been detected*; ¹³C NMR (125 MHz, MeOD, 52 °C) δ_{C} 27.7, 32.8, 38.6, 39.9, 63.9, 80.1, 103.8, 117.2, 142.2, 150.3, 155.0, 164.9; HRMS (ESI⁺) calcd for C₁₆H₂₄N₂O₄ [M+H]⁺: 309.1809, found: 309.1809.

tert-Butyl (3*R*,5*S*)-7-(2-((*tert*-butoxycarbonyl)oxy)-1,2-dihydropyridin-6-yl)-9- (hydroxymethyl)piperidine-12-carboxylate 20

To a solution of alcohol **18** (290 mg, 0.97 mmol) in MeOH (10 mL) was added HCI (1.9 mL, 0.50 M in MeOH, 0.97 mmol) and the resulting solution was stirred for 10 min at room temperature. $Pd(OH)_2/C$ (58 mg, 20% w/w) was added, and the reaction mixture was stirred under hydrogen (1 atm) for 18 h. The solution was filtered through Celite[®], the solvent was removed *in vacuo*, NH₄OH (3 mL) was added and then evaporated *in vacuo*. The residue was dissolved in THF (3.8 mL) and H₂O (0.3 mL), followed by the addition of Na₂CO₃ (736 mg, 6.98 mmol) and Boc₂O (0.5 mL, 2.33 mmol) and the reaction mixture was stirred at room temperature for 3 days. The solution was distributed between DCM (10 mL) and water (10 mL) and the aqueous phase was extracted with DCM (3 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH:NH₄OH (94.5:5:0.5)] gave alcohol **20** (297 mg, 75%) as a colourless solid.

[α]_D²³ = -41 (c 1.0, CHCl₃); R_f = 0.30 [DCM:MeOH (93:7)]; m.p. 105 °C (DCM/*n*-Hexane); FTIR v_{max}/cm^{-1} (neat): 3422, 2926, 1752, 1665, 1424, 1250, 1140, 1057, 860; ¹H NMR (400 MHz, CDCl₃) δ_{H} 1.43 (s, 9H), 1.53 (s, 9H), 1.55 (s, 1H), 1.83 (m, 2H), 2.03 (d, *J* = 12.0 Hz, 1H), 2.45 (m, 1H), 2.85 (m, 2H), 3.52 (m, 2H), 4.26 (s, 2H), 6.96 (d, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 7.5 Hz, 1H), 7.68 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 27.7 (3C), 28.5 (3C), 33.5, 38.3, 43.5, 48.7, 55.8, 65.6, 79.8, 84.0, 113.7, 120.1, 140.0, 151.1, 154.9, 157.5, 161.8; HRMS (ESI⁺) calcd for

 $C_{21}H_{33}N_2O_6$ [M+H]⁺: 409.2333, found: 409.2345, $C_{21}H_{32}N_2NaO_6$ [M+Na]⁺: 431.2153, found: 431.2168.

Illustration of the structure of **20** with atomic numbering scheme depicted. Ellipsoids are depicted at the 50% probability level and hydrogen atoms are omitted for clarity.

tert-Butyl (3*S*,5*R*)-3-(((*tert*-butoxycarbonyl)oxy)methyl)-5-(6-((*tert*-butoxycarbonyl)oxy) pyridin-2-yl)piperidine-1-carboxylate 21

To a solution of alcohol **18** (66 mg, 0.22 mmol) in MeOH (2 mL) was added HCI (0.44 mL, 0.50 M in MeOH, 0.22 mmol) and the solution was stirred for 10 min at room temperature. $Pd(OH)_2/C$ (14 mg, 20% w/w) was added, and the reaction mixture was stirred under hydrogen atmosphere (1 atm) for 18 h. The solution was filtered through Celite[®], the solvent was removed *in vacuo*, NH₄OH (3 mL) was added and then evaporated *in vacuo*. The crude product was suspended in DCM (1.5 mL) and triethylamine (0.13 mL, 0.92 mmol), DMAP (7 mg, 10% w/w) and Boc₂O (0.16 mL, 0.70 mmol) were added. The reaction mixture was

stirred for 18 h at room temperature. The solution was diluted with DCM (10 mL) and the organic phase was washed with NH_4Cl (10 mL, aq. sat. sol.), dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [Et₂O:*n*-Hexane (1:4 to 1:1)] gave piperidine **21** (56 mg, 50%) as a colourless oil.

 R_f = 0.63 [DCM:MeOH, 2% MeOH)]; FTIR ν_{max}/cm⁻¹ (neat): 2922, 2852, 1760, 1742, 1693, 1281, 1254, 1145, 858, 753; ¹H NMR (500 MHz, CDCl₃) δ_H 1.35-1.60 (m, 28H), 1.93-2.15 (m, 2H), 2.49 (s, 1H), 2.88 (s, 2H), 3.88-4.09 (m, 2H), 4.27 (s, 2H), 6.99 (d, *J* = 8.5 Hz, 1H), 7.08 (dd, *J* = 8.5, 5.0 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 27.6 (3C), 27.7 (3C), 28.4 (3C), 32.8-34.1 (rotamers), 38.2-39.3 (conformers), 43.0-43.9 (conformers), 47.2-48.3 (conformers), 48.4-49.3 (conformers), 68.9, 69.9, 79.8, 82.0, 83.8, 113.7, 120.1, 139.9, 150.9, 153.5, 154.6, 155.1, 157.4, 161.2; HRMS (ESI⁺) calcd for C₂₆H₄₁N₂O₈ [M+H]⁺: 509.2857, found: 509.2834.

To a solution of piperidine**18** (20 mg, 0.07 mmol) in MeOH (1 mL) was added palladium on activated charcoal 10% (0.9 mg) and the reaction mixture was stirred under hydrogen atmosphere for 24 h. The solution was filtered through Celite[®] and concentrated. The residue was dissolved in a solution of HCI in MeOH (0.5 M, 5 mL) and concentrated in vacuo. The crude was dissolved in the minimal amount of MeOH (ca 0.1 mL), acetone was added slowly (ca 10 mL) and the solid product was collected by filtration *a*ffording **22** (10 mg, 70%) as a colourless solid.

[α]_D²³ = -20 (c 3.5, MeOH); m.p. >200 °C (acetone); FTIR v_{max} /cm⁻¹ (neat): 2950, 2806, 1645, 1610, 1444, 1198, 1127, 1006, 833, 797; ¹H NMR (500 MHz, MeOD) δ_{H} 1.60 (m, 1H), 2.13 (m, 2H), 2.85 (t, *J* = 13.5 Hz, 1H), 3.15 (m, 2H), 3.37 (s, 1H), 3.48-3.64 (m, 4H), 6.35 (d, *J* = 7.5 Hz, 1H), 6.48 (d, *J* = 9.5 Hz, 1H), 7.58 (dd, *J* = 9.5, 7.5 Hz, 1H); ¹³C NMR (125 MHz, MeOD) δ_{C} 30.9, 36.3, 37.0, 45.8, 46.1, 63.0, 104.6, 117.8, 142.4, 148.2, 164.9; HRMS (ESI⁺) calcd for C₁₁H₁₇N₂O₂ [M+H]⁺: 209.1285, found 209.1288.

tert-Butyl (3*R*,5*S*)-3-(6-((*tert*-butoxycarbonyl)oxy)pyridin-2-yl)-5-(((*tert*-butyldimethyl silyl)oxy)methyl)piperidine-1-carboxylate 23.

To a solution of alcohol **20** (102 mg, 0.25 mmol) in DCM (2.5 mL) at 0 °C were added triethylamine (52 μ L, 0.37 mmol) and TBDMSCI (56 mg, 0.37 mmol), and the reaction mixture was warmed to room temperature and stirred for 18 h. The solution was diluted with EtOAc (10 mL) and the organic phase was washed with NH₄Cl (10 mL, aq. sat. sol.), water (10 mL) and brine (10 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [Et₂O:*n*-Hexane (10:90 to 50:50)] gave **23** (126 mg, 97%) as a colourless oil.

 R_f = 0.20 [Et₂O:*n*-Hexane (1:4)]; FTIR v_{max}/cm⁻¹ (neat): 2954, 2929, 2856, 1760, 1692, 1249, 1219, 1141, 835, 775; ¹H NMR (500 MHz, CDCl₃) δ_H ¹H NMR (500 MHz, CDCl₃) δ_H 0.06 (s, 6H), 0.91 (s, 9H), 1.48 (s, 10H), 1.58 (s, 9H), 1.84 (s, 1H), 1.99 (s, 1H), 2.44 (t, *J* = 12.0 Hz, 1H), 2.87 (m, 2H), 3.44-3.54 (m, 2H), 4.32 (m, 2H), 7.01 (d, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 7.72 (dd, *J* = 7.5, 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C -5.43 (2C), 18.3, 25.9 (3C), 27.7 (3C), 28.5 (3C), 33.3, 38.4, 43.3, 47.8, 49.0, 65.8, 79.5, 83.9, 113.5, 120.2, 139.8, 151.0, 154.8, 157.3, 162.4; HRMS (ESI⁺) calcd for C₂₇H₄₇N₂O₆Si [M+H]⁺: 523.3198, found 523.3196, calcd for C₂₇H₄₆N₂NaO₆Si [M+Na]⁺: 545.3017, found 545.3015.

tert-Butyl (3*S*,5*R*)-3-(((*tert*-butyldimethylsilyl)oxy)methyl)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1-carboxylate 24

Silyl ether **23** (131 mg, 0.25 mmol) was deprotected according to the **General Procedure A**. Purification by flash chromatography [EtOAc:*n*-Hexane (3:1) to EtOAc] gave pyridone **24** (105 mg, 90%) as a colourless oil.

 $[\alpha]_D^{22} = -6$ (c 9.8, MeOH); R_f = 0.12 [EtOAc:*n*-Hexane (3:1)]; FTIR v_{max}/cm⁻¹ (neat): 2928, 2852, 1693, 1650, 1616, 1250, 1145, 834, 774; ¹H NMR (500 MHz, CDCl₃) δ_H 0.06 (s, 6H), 0.91 (s, 9H), 1.48 (s, 9H), 1.73 – 1.94 (m, 2H), 2.02 (m, 1H), 2.51 (m, 1H), 2.72 (m, 1H), 2.84 (m, 1H), 3.36 – 3.61 (m, 2H), 4.15 – 4.44 (m, 2H), 6.06 (d, *J* = 7.0 Hz, 1H), 6.42 (d, *J* = 8.5 Hz, 10.05 (m, 1H), 1.05 (m, 1H), 1.05 (m, 1H), 1.05 (m, 2H), 1.05 (m,

1H), 7.39 (dd, J = 7.0, 8.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_{C} -5.45 (2C), 18.3, 25.9 (3C), 28.4 (3C), 32.9, 37.7-39.9 (rotamers), 40.3, 45.6-46.6 (rotamers), 47.0-48.6 (rotamers), 65.5, 79.8, 103.7, 118.1, 145.5, 150.4, 154.6, 165.4; HRMS (ESI⁺) calcd for C₂₂H₃₉N₂O₄Si [M+H]⁺: 423.2674, found 423.2673, calcd for C₂₂H₃₈N₂NaO₄Si [M+Na]⁺: 445.2493, found 445.2496.

tert-Butyl (3*S*,5*R*)-3-(((*tert*-butyldimethylsilyl)oxy)methyl)-5-(1-methyl-6-oxo-1,6-dihydropyridin-2-yl)piperidine-1-carboxylate 25

To a solution of pyridone **24** (42 mg, 0.10 mmol) and Cs_2CO_3 (98 mg, 0.30 mmol) in THF (0.50 mL) was added CH₃I (12 µL, 0.20 mmol), and the reaction mixture was stirred for 18 h at room temperature (using a sealed tube). The solution was diluted with EtOAc (10 mL), the aqueous phase was washed with water (10 mL), brine (10 mL), and then dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [EtOAc:*n*-Hexane (3:1 to 1:0)] gave **25** (30 mg, 70%) as a colourless oil.

 R_f = 0.12 [EtOAc:*n*-Hexane (3:1)]; FTIR v_{max} /cm⁻¹ (neat): 2953, 2927, 2855, 1691, 1662, 1551, 1251, 1148, 835, 776; ¹H NMR (500 MHz, CDCl₃) δ_H 0.08 (s, 6H), 0.93 (s, 9H), 1.50 (m, 10H), 1.86 (m, 1H), 2.04 (m, 1H), 2.45 − 2.58 (m, 2H), 2.82 (m, 1H), 3.46 − 3.61 (m, 2H), 3.66 (s, 3H), 4.20 − 4.51 (m, 2H), 6.06 (d, *J* = 6.0 Hz, 1H), 6.52 (d, *J* = 9.0 Hz, 1H), 7.28 (app t, *J* = 9.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C -5.44 (2C), 18.3, 25.9 (3C), 28.4 (3C), 30.5, 33.4, 38.8, 39.2, 65.3, 80.2, 103.3, 118.4, 138.4, 150.4, 154.2, 164.0; *C11 and C13 not observed*; HRMS (ESI⁺) calcd for C₂₃H₄₁N₂O₄Si [M+H]⁺: 437.2830, found 437.2816, calcd for C₂₃H₄₀N₂NaO₄Si [M+Na]⁺: 459.2650, found 459.2638.

tert-Butyl (3*R*,5*R*)-3-(aminomethyl)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1carboxylate 28

Phthalimide adduct

A solution of alcohol **20** (204 mg, 0.50 mmol), PPh₃ (262 mg, 1.00 mmol) and phthalimide (147 mg, 1.00 mmol) in THF (3.0 mL) was cooled at 0 °C and DEAD (0.16 mL, neat, 1.00 mmol) was added dropwise over 3 min. The reaction mixture was allowed to warm up to room temperature and stirred for 16 h. The solvent was removed *in vacuo*. Purification by flash column chromatography [Et₂O:*n*-Hexane (1:1)] gave the phthalimide adduct (237 mg, 88%) as a colourless solid.

 R_f = 0.20 [Et₂O:*n*-Hexane (1:1)]; m.p. 107 °C (DCM/*n*-Hexane); FTIR ν_{max}/cm⁻¹ (neat): 2984, 2933, 1758, 1710, 1366, 1250, 1138, 723; ¹H NMR (400 MHz, CDCl₃) δ_H 1.36 (s, 9H), 1.53 - 1.56 (m, 10H), 1.98 – 2.21 (m, 2H), 2.44 – 2.54 (m 1H), 2.80 – 2.86 (m, 2H), 3.55 – 3.60 (m, 2H), 4.20 – 4.30 (m, 2H), 6.97 (dd, *J* = 8.0, 0.5 Hz, 1H), 7.02 (dd, *J* = 7.5, 0.5 Hz, 1H), 7.65 – 7.69 (m, 3H), 7.78 – 7.84 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ_C 27.7 (3C), 28.5 (3C), 35.0, 35.9, 41.0, 43.6, 62.3, 64.2, 79.8, 84.0, 113.8, 120.0, 123.4 (2C), 132.0 (2C), 134.1 (2C), 140.0 (2C), 151.0, 154.6, 157.5, 161.4, 168.6; HRMS (ESI⁺) calcd for C₂₉H₃₆N₃O₇ [M+H]⁺: 538.2548, found 538.2558, calcd for C₂₉H₃₅N₃NaO₇ [M+Na]⁺: 560.2367, found 560.2369.

To a solution of phthalimide adduct (described above) (87 mg, 0.16 mmol) in EtOH (1.0 mL) was added hydrazine hydrate (26 mg, 0.80 mmol) and the reaction mixture was stirred for 18 h at room temperature. The solution was filtered through Celite®, washed with EtOH and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH:NH₄OH (95:5:0.5 to 90:10:1)] gave **28** (22 mg, 44%) as a colourless solid.

 R_f = 0.06 [DCM:MeOH:NH₄OH (90:9:1)]; m.p. 132 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 3367, 2922, 2852, 1727, 1462, 1268, 1146, 726; ¹H NMR (500 MHz, CDCl₃) δ_H 1.41 − 1.53 (m, 10H), 1.73 (m, 1H), 2.20 (m, 1H), 2.47 (m, 1H), 2.59 − 2.77 (m, 3H), 2.87 (m, 1H), 4.03 − 4.50 (m, 3H), 6.07 (d, *J* = 7.0 Hz, 1H), 6.43 (d, *J* = 8.5 Hz, 1H), 7.39 (dd, *J* = 8.5, 7.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 28.4 (3C), 34.2, 38.7, 40.3, 45.3, 46.4 and 48.4, (2C, *conformers*), 80.1, 103.8, 118.1, 141.7, 150.2, 154.6, 165.2; HRMS (ESI⁺) calcd for C₁₆H₂₆N₃O₃ [M+H]⁺: 308.1969, found 308.1976.

tert-Butyl (3*R*,5*R*)-3-((benzylamino)methyl)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1-carboxylate 30a

A solution of $(COCI)_2$ (22 µL, 0.26 mmol) in DCM (0.80 mL) was cooled to -78 °C, and a solution of DMSO (36 µL, 0.52 mmol) in DCM (1.0 mL) was added dropwise over 5 min. A solution of alcohol **20** (82 mg, 0.20 mmol) in DCM (0.80 mL) was added over the mixture and the solution was stirred at -78 °C for 15 min. Triethylamine (0.14 mL, 1.00 mmol) was added, and the reaction mixture was stirred at room temperature for 2 h. The solvent was removed *in vacuo*. The crude aldehyde **29** was immediately dissolved in MeOH (10 mL), benzylamine (28 µL, 0.26 mmol) and glacial acetic acid (48 µL, 0.84 mmol) were added and the reaction mixture was stirred for 18 h. NaCNBH₃ (9 mg, 0.14 mmol) was added and the solution was stirred for 18 h. Water (10 mL) was added and the pH adjusted to pH = 9 with Na₂CO₃ (aq.sat. sol). The aqueous phase was extracted with DCM (3 × 10 mL) and the combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH:NH₄OH (94.5:5:0.5)] gave **30a** (58 mg, 73%) as a colourless solid.

 R_f = 0.28 [DCM:MeOH (93:7)]; m.p. 147 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 2926, 2849, 1645, 1613, 1422, 1142, 729, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ_H 1.38 − 1.56 (m, 9H), 1.87 (m, 1H), 2.20 (m, 1H), 2.48 (m, 1H), 2.52 − 2.64 (m, 2H), 2.72 (m, 1H), 2.89 (m, 1H), 3.74 − 3.90 (m, 2H), 4.13 − 4.46 (m, 2H), 6.05 (d, *J* = 7.0 Hz, 1H), 6.35 (d, *J* = 9.0 Hz, 1H), 7.26 (m, 1H), 7.30 − 7.38 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ_C 28.4 (3C), 34.9, 36.2, 40.3, 47.3, 48.2, 52.5, 54.0, 79.9, 103.8, 118.0, 126.9, 128.1 (2C), 128.4 (2C), 140.3, 141.6, 150.4, 154.6, 165.5; HRMS (ESI⁺) calcd for C₂₃H₃₂N₃O₃ [M+H]⁺: 398.2438, found 398.2436.

tert-Butyl (3*R*,5*R*)-3-(morpholinomethyl)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1carboxylate 30b

A solution of $(COCI)_2$ (22 µL, 0.26 mmol) in DCM (0.80 mL) was cooled to -78 °C, and a solution of DMSO (36 µL, 0.52 mmol) in DCM (1.0 mL) was added dropwise over 5 min. A solution of alcohol **20** (82 mg, 0.20 mmol) in DCM (0.80 mL) was added over the mixture and the solution was stirred at -78 °C for 15 min. Triethylamine (0.14 mL, 1.00 mmol) was added, and the reaction mixture was stirred at room temperature for 2 h. The solvent was removed *in vacuo*. To a solution of the crude aldehyde **29** in MeOH (10.0 mL) were added morpholine (23 µL, 0.26 mmol) and glacial acetic acid (48 µL, 0.84 mmol) and the reaction mixture was stirred for 19 h. NaCNBH₃ (9 mg, 0.14 mmol) was added and the reaction mixture was stirred for 5 h. The solution was diluted with DCM (10 mL) and water (10 mL), and the organic phase was washed with NaHCO₃ (10 mL, aq. sat. sol.) and brine (10 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH:NH₄OH (97.25:2.5:0.25 to 94.5:5:0.5)] gave amine **30b** (67 mg, 70%) as a colourless solid.

[α]_D²² = -16 (c 2.0, MeOH); R_f = 0.18 [DCM:MeOH (95:5)]; m.p. 147 °C (DCM/*n*-Hexane); FTIR v_{max}/cm^{-1} (neat): 2922, 2852, 1693, 1654, 1462, 1269, 1120 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 1.30 – 1.59 (m, 10H), 1.91 (m, 1H), 2.13 – 2.26 (m, 3H), 2.31 – 2.56 (br s, 5H), 2.72 (t, *J* = 12.0 Hz, 1H), 2.90 (t, *J* = 12.0 Hz, 1H), 3.61 – 3.78 (m, 4H), 4.13 – 4.46 (m, 2H), 6.07 (d, *J* = 7.0 Hz, 1H), 6.39 (d, *J* = 9.0 Hz, 1H), 7.39 (m, 1H), 13.2 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 28.4 (3C), 32.7, 35.4, 40.3, 37.5, 48.2, 53.9 (2C), 62.1, 66.9 (2C), 79.9, 103.7, 117.8, 141.7, 150.6, 154.4, 165.5; HRMS (ESI⁺) calcd for C₂₀H₃₂N₃O₄ [M+H]⁺: 378.2387, found 378.2389.

tert-Butyl (3*R*,5*R*)-3-((((*S*)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)methyl)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1-carboxylate 30c

Following the same oxidation procedure as described above, to the solution of the crude aldehyde **29** in MeOH (10.0 mL) was added L-phenylalanine methyl ester hydrochloride (56 mg, 0.26 mmol) and the reaction mixture was stirred for 18 h. NaCNBH₃ (9 mg, 0.14 mmol) was added and the reaction mixture was stirred for 5 h. The crude reaction mixture was distributed between DCM (10 mL) and water (10 mL), and the aqueous phase was washed with NaHCO₃ (10 mL, aq. sat. sol.) and brine (10 mL). The organic phase was dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification by flash column chromatography

[EtOAc:*n*-Hexane (1:4) to EtOAc] gave **the O-Boc protected pyridine A** (52 mg, 46%) as a colourless oil, together with some impurities. However, further purification was not required. $R_f = 0.30$ [EtOAc:*n*-Hexane (1:1)]; FTIR v_{max} /cm⁻¹ (neat): 2978, 2930, 2856, 1759, 1735, 1687, 1454, 1250, 1218, 1137, 747, 700; ¹H NMR (500 MHz, CDCl₃) δ_H 1.47 – 1.50 (s, 10H), 1.60 (s, 9H), 1.72 (m, 1H), 2.10 (m, 1H), 2.46 – 2.30 (m, 2H), 2.35 (m, 1H), 2.79 – 2.91 (m, 2H), 2.95 (m, 2H), 3.49 (m, 1H), 3.65 (s, 3H), 4.04 – 4.47 (m, 2H), 7.02 (d, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.16 – 7.31 (m, 5H), 7.73 (m, 1H); HRMS (ESI⁺) calcd for C₃₁H₄₄N₃O₇ [M+H]⁺: 570.3174 found 570.3176.

The O-Boc pyridine **A** (prepared above) (28 mg, 0.05 mmol) was deprotected according to the **General Procedure A**. Purification by flash column chromatography [DCM:MeOH:NH₄OH (94.5:5:0.5)] gave **30c** (17 mg, 73%) as a colourless solid.

[α]_D²³ = -5 (c 0.2, CHCl₃); R_f = 0.40 [DCM:MeOH (95:5)]; m.p. 68 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 2922, 2852, 1735, 1692, 1653, 1463, 1145, 761; ¹H NMR (500 MHz, CDCl₃) δ_{H} 1.35 (m, 1H), 1.47 (s, 9H), 1.71 (m, 1H), 2.12 (m, 1H), 2.30 (dd, *J* = 7.0, 12.0 Hz, 1H), 2.42 (m, 1H), 2.58 – 2.70 (m, 2H), 2.82 (m, 1H), 2.90 – 2.99 (m, 2H), 3.48 (t, *J* = 7.0 Hz, 1H), 3.65 (s, 3H), 4.04 – 4.45 (m, 2H), 6.04 (d, *J* = 7.0 Hz, 1H), 6.42 (d, *J* = 9.0 Hz, 1H), 7.14 – 7.33 (m, 5H), 7.38 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_{C} 28.4 (3C), 34.6, 36.6, 39.8, 40.4, 45.8 - 48.9 (2C), 51.4, 51.6, 63.3, 80.0, 103.7, 118.2, 126.7, 128.4 (2C), 129.2 (2C), 137.2, 141.6, 150.1, 154.5, 165.1, 175.0; HRMS (ESI⁺) calcd for C₂₆H₃₆N₃O₅ [M+H]⁺: 470.2649, found 470.2640, calcd for C₂₆H₃₅N₃NaO₅ [M+Na]⁺: 492.2469, found 492.2453.

(3*S*,5*R*)-1-(*tert*-Butoxycarbonyl)-5-(6-((*tert*-butoxycarbonyl)oxy)-1,6-dihydropyridin-2yl)piperidine-3-carboxylic acid 31

A solution of $(COCI)_2$ (29 µL, 0.65 mmol) in DCM (2.5 mL) was cooled to -78 °C, and a solution of DMSO (92 µL, 1.30 mmol) in DCM (2.0 mL) was added dropwise over 5 min. A solution of alcohol **20** (204 mg, 0.50 mmol) in DCM (2.0 mL) was added over the mixture and the solution was stirred at -78 °C for 15 min. Triethylamine (0.35 mL, 2.50 mmol) was added, and the reaction mixture was stirred at room temperature for 2 h. The solvent was removed *in vacuo*. To a solution of the crude aldehyde **29** and 2-methyl-2-butene (1.0 mL, 10.0 mmol) in *t*BuOH (5.0 mL) was added a solution of NaClO₂ (407 mg, 4.5 mmol) and NaH₂PO₄·H₂O (420 mg, 3.5 mmol) in H₂O (5.0 mL), and the reaction mixture was stirred for 3 h at room temperature. The resulting solution was acidified to pH \approx 3 (HCl, conc. aq. sol.) and the aqueous phase was extracted with EtOAc (5 × 20 mL). The combined organic layers were washed with brine (20 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH (95:5)] gave **31** (200 mg, 94%) as a colourless solid.

[α]_D²⁴ = -27 (c 1.0, CHCl₃); R_f = 0.22 [DCM:MeOH (95:5)]; m.p. 166 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 3071, 2986, 2929, 1762, 1732, 1639, 1252, 1222, 1132, 862; ¹H NMR (500 MHz, CDCl₃) δ_{H} 1.45 (s, 9H), 1.54 (s, 9H), 2.00 (m, 1H), 2.35 (m, 1H), 2.60 (m, 1H), 2.78 – 3.01 (m, 3H), 4.22 – 4.62 (m, 2H), 6.99 (d, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 7.4 Hz, 1H), 7.74 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_{C} 27.7 (3C), 28.4 (3C), 33.2, 41.2, 42.9, 44.6 and 45.4 (conformers), 47.9 and 48.7 (conformers), 80.3, 84.0, 113.9, 120.1, 140.0, 151.0, 154.6, 157.4, 160.7, 178.1; HRMS (ESI⁺) calcd for C₂₁H₂₉N₂O₇ [M-H]⁻: 421.1980, found 421.1979.

Illustration of the structure of acid **31** with atomic numbering scheme depicted. Ellipsoids are depicted at the 50% probability level and hydrogen atoms are omitted for clarity.

Tert-Butyl (3*S*,5*R*)-3-(((*S*)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1-carboxylate 32a

To a solution of carboxylic acid **31** (84 mg, 0.20 mmol) and L-phenylalanine methyl ester hydrochloride (43 mg, 0.20 mmol) in DCM (2.0 mL) at 0 °C, were added N(3dimethylaminopropyl)-N'-ethylcabodiimide hydrochloride (42 mg, 0.22 mmol), 1hydroxybenzotriazole (34 mg, 0.22 mmol) and triethylamine (70 μ L, 0.50 mmol), and the reaction mixture was stirred at 0 °C for 1 h. The solution was allowed to warm to room temperature and stirred for 18 h. The solvent was removed *in vacuo*, and citric acid (10 mL, 15% aq. sol.) was added. The aqueous phase was extracted with DCM (3 × 30 mL), and the combined organic layers were washed with NaHCO₃ (10 mL, aq. sat. sol.), water (10 mL), brine (10 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [EtOAc:*n*-Hexane (1:1)] gave the **O-Boc protected amide B** (59 mg, 45%) as a colourless solid.

 R_f = 0.30 [EtOAc:*n*-Hexane (1:1)]; m.p. > 200 °C (DCM/*n*-Hexane); FTIR ν_{max}/cm⁻¹ (neat): 3307, 2979, 2932, 1750, 1660, 1251, 1217, 1138, 747, 700; ¹H NMR (500 MHz, CDCl₃) δ_H 1.47 (s, 9H), 1.59 (s, 9H), 1.97 (m, 1H), 2.11 (m, 1H), 2.39 (m, 1H), 2.76 – 2.97 (m, 3H), 3.08 (dd, *J* = 6.0, 14.0 Hz, 1H), 3.18 (dd, *J* = 6.0, 14.0 Hz, 1H), 3.75 (s, 3H), 4.17 – 4.45 (m, 2H), 4.90 (dd, *J* = 6.0, 14.0 Hz, 1H), 6.00 (br s, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 7.06 – 7.10 (m, 3H), 7.19 – 7.30 (m, 3H), 7.75 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 27.7 (3C), 28.4 (3C), 34.0, 37.8, 43.1, 45.8-48.7 (3C), 52.4, 52.9, 80.1, 84.0, 113.9, 119.6, 127.2, 128.5 (2C), 129.3 (2C), 135.7, 140.0, 151.0, 154.6, 157.4, 160.9, 171.8, 172.1; HRMS (ESI⁺) calcd for C₃₁H₄₂N₃O₈ [M+H]⁺: 584.2966, found 584.2957, calcd for C₃₁H₄₁N₃NaO₈ [M+Na]⁺: 606.2786, found 606.2781.

The amide **B** (prepared above) (30 mg, 0.05 mmol) was deprotected according to the **General Procedure A**. Purification by flash column chromatography [DCM:MeOH:NH₄OH (94.5:5:0.5)] gave **32a** (20 mg, 83%) as a colourless soild.

 $[\alpha]_D^{22} = +2 (c \ 0.03, CHCl_3); R_f = 0.40 [DCM:MeOH (95:5)]; m.p. 93 °C (DCM/n-Hexane); FTIR v_{max}/cm⁻¹ (neat): 2922, 2852, 1747, 1652, 1613, 1455, 1380, 1149, 779; ¹H NMR (500 MHz, CDCl_3) <math>\delta_H$ 1.48 (s, 9H), 1.86 (m, 1H), 2.19 (m, 1H), 2.47 (m, 1H), 2.68 (m, 1H), 2.73 – 3.00 (m, 2H), 3.06 (dd, J = 6.5, 14.0 Hz, 1H), 3.19 (dd, J = 6.5, 14.0 Hz, 1H), 3.76 (s, 3H), 4.09 – 4.60

(m, 3H), 4.92 (m, 1H), 6.07 (d, J = 6.5 Hz, 1H), 6.19 – 6.50 (m, 2H), 7.08 (d, J = 7.5 Hz, 2H), 7.18 (m, 1H), 7.20 – 7.27 (m, 2H), 7.42 (dd, J = 6.5, 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 28.3 (3C), 29.7, 37.8, 39.3, 42.8, 45.4, 48.0, 52.4, 52.9, 80.5, 103.6, 118.3, 127.1, 128.5 (2C), 129.3 (2C), 135.7, 141.7, 149.3, 154.4, 156.2, 165.2, 171.9; HRMS (ESI⁺) calcd for $C_{26}H_{34}N_3O_6$ [M+H]⁺: 484.2442, found 484.2427, calcd for $C_{26}H_{33}N_3NaO_6$ [M+Na]⁺: 506.2262, found 506.2266.

1-(*Tert*-Butyl) 3-methyl (3*S*,5*R*)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1,3-dicarboxylate 32b

A solution of carboxylic acid **31** (127 mg, 0.30 mmol) and K₂CO₃ (124 mg, 0.90 mmol) in DMF (3.0 mL) was placed under nitrogen, iodomethane (45 µL, 0.72 mmol) was added and the reaction mixture was stirred at room temperature for 5 h. The solution was concentrated, the residue was distributed between water (10 mL) and EtOAc (10 mL) and the aqueous phase was extracted with EtOAc (2 × 10 mL). The combined organic phases were dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [EtOAc:*n*-Hexane (1:4)] gave **O-Boc methy ester C** (129 mg, 99%) as an colourless oil. $R_f = 0.23$ [EtOAc:*n*-Hexane (1:4)]; FTIR v_{max}/cm^{-1} (neat): 2979, 2933, 1759, 1733, 1688, 1250, 1220, 1134, 859, 749; ¹H NMR (500 MHz, CDCl₃) δ_H 1.48 (s, 9H), 1.57 (s, 9H), 1.97 (s, 1H), 2.36 (d, *J* = 13.0 Hz, 1H), 2.61 (t, *J* = 13.0 Hz, 1H), 2.69 – 3.05 (m, 3H), 3.70 (s, 3H), 4.16 – 4.57 (m, 2H), 7.02 (d, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 7.5 Hz, 1H), 7.73 (app t, *J* = 7.5, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 27.7 (3C), 28.4 (3C), 33.3, 41.4, 43.1, 44.9 – 45.6, (conformers), 47.8 – 48.7, (conformers), 51.8, 80.1, 84.0, 113.9, 120.1, 140.0, 151.0, 154.6,

157.4, 160.1, 173.4; HRMS (ESI⁺) calcd for $C_{22}H_{32}N_2NaO_7$ [M+Na]⁺: 459.2102, found 459.2115.

Methyl ester **C** (prepared above) (22 mg, 0.05 mmol) was deprotected according to the **General Procedure A**. Purification by flash column chromatography [DCM:MeOH (90:10)] gave **32b** (15 mg, 87%) as a colourless oil.

 $[\alpha]_D^{22} = -11 (c \ 0.4, MeOH); R_f = 0.32 [DCM:MeOH (95:5)]; m.p. 192 °C (DCM/n-Hexane); FTIR v_{max}/cm⁻¹ (neat): 2923, 2852, 1735, 1694, 1653, 1617, 1464, 1146; ¹H NMR (500 MHz, CDCl₃) <math>\delta_H$ 1.48 (s, 9H), 1.88 (q, J = 12.5 Hz, 1H), 2.39 (d, J = 13.5 Hz, 1H), 2.66 (m, 1H), 2.40 (m, 1H), 2.78 – 3.05 (m, 2H), 3.71 (s, 3H), 4.14 – 4.62 (m, 2H), 6.08 (d, J = 7.0 Hz, 1H), 6.46 (d, J = 12.5 Hz, 1H), 2.28 (d, J = 12.5 Hz, 1H), 2.40 (m, 1H), 2.78 – 3.05 (m, 2H), 3.71 (s, 3H), 4.14 – 4.62 (m, 2H), 6.08 (d, J = 7.0 Hz, 1H), 6.46 (d, J = 12.5 Hz, 1H), 2.28 (d, J = 12.5 Hz, 1H), 2.40 (m, 1H), 2.40 (m, 1H), 2.78 – 3.05 (m, 2H), 3.71 (s, 3H), 4.14 – 4.62 (m, 2H), 6.08 (d, J = 7.0 Hz, 1H), 6.46 (d, J = 12.5 Hz, 1H), 2.28 (d, J = 12.5 Hz, 1H), 2.28 (d, J = 12.5 Hz, 1H), 2.28 (d, J = 12.5 Hz, 1H), 2.40 (m, 1H), 2.40 (m, 1H), 2.78 – 3.05 (m, 2H), 3.71 (s, 3H), 4.14 – 4.62 (m, 2H), 6.08 (d, J = 7.0 Hz, 1H), 6.46 (d, J = 12.5 Hz, 1H), 3.71 (s, 3H), 4.14 – 4.62 (m, 2H), 6.08 (d, J = 7.0 Hz, 1H), 6.46 (d, J = 12.5 Hz, 1H), 3.71 (s, 3H), 4.14 – 4.62 (m, 2H), 6.08 (d, J = 12.5 Hz, 1H), 6.46 (d, J

J = 8.5 Hz, 1H), 7.40 (dd, J = 8.5, 7.0 Hz, 1H), 12.89 (1H, br s, NH); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 28.4 (3C), 32.6, 39.7, 41.1, 44.1 – 48.7 (2C, conformers), 52.0, 80.4, 103.9, 118.4, 141.6, 149.4, 154.4, 165.5, 173.0; HRMS (ESI⁺) calcd for C₁₇H₂₅N₂O₅ [M+H]⁺: 337.1758, found 337.1744.

Di-tert-butyl (3S,5R)-5-(6-oxo-1,6-dihydropyridin-2-yl)piperidine-1,3-dicarboxylate 32c

A solution of carboxylic acid **31** (84 mg, 0.20 mmol), benzyltriethylammonium bromide (57 mg, 0.21 mmol) and K_2CO_3 (760 mg, 5.50 mmol) in DMA (1.60 mL) was cooled to 0 °C in a resealable tube, and *tert*-butyl bromide was added (1.2 mL, 10.5 mmol) dropwise over 1 min. The reaction mixture was stirred at 55 °C for 23 h. The solution was cooled to room temperature, the reaction mixture was distributed between EtOAc (10 mL) and water (10 mL), and the aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with water (10 mL), brine (10 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [Et₂O:*n*-Hexane (1:4 to 1:1)] gave **O-Boc tert-butyl ester D** (40 mg, 42%) as an colourless oil.

 R_f = 0.26 [EtOAc:*n*-Hexane (1:1)]; FTIR v_{max} /cm⁻¹ (neat): 2979, 2928, 1762, 1728, 1694, 1369, 1252, 1223, 1144, 897, 732; ¹H NMR (500 MHz, CDCl₃) δ_H 1.46 (s, 9H), 1.49 (s, 9H) 1.58 (s, 9H), 1.89 (m, 1H), 2.32 (d, *J* = 13.5 Hz, 1H), 2.51 (m, 1H), 2.68 − 3.06 (m, 3H), 4.16 − 4.54 (m, 2H), 7.03 (d, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 7.5 Hz, 1H), 7.74 (app t, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 27.7 (3C), 28.0 (3C), 28.4 (3C), 33.6, 42.4, 43.2, 80.0, 80.8, 84.0, 113.8, 120.1, 140.0, 151.0, 154.7, 157.4, 161.1, 172.3, *C11 and C13 were not observed*; HRMS (ESI⁺) calcd for C₂₅H₃₉N₂O₇ [M+H]⁺: 479.2752, found 479.2724.

tert-Butyl ester **D** (prepared above) (24 mg, 0.05 mmol) was deprotected according to the **General Procedure A**. Purification by flash chromatography [DCM:MeOH (90:10)] gave **32c** (17 mg, 87%) as a colourless oil.

R_f = 0.32 [DCM:MeOH (95:5)]; m.p. 95 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 2922, 2852, 1725, 1701, 1654, 1619, 1463, 1147; ¹H NMR (500 MHz, CDCl₃) δ_{H} 1.46 (s, 9H), 1.49 (s, 9H), 1.83 (q, *J* = 12.5 Hz, 1H), 2.33 (d, *J* = 12.5 Hz, 1H), 2.54 (m, 1H), 2.69 (m, 1H), 2.76 – 2.97 (m, 2H), 4.17 – 4.58 (m, 2H), 6.09 (d, *J* = 7.5 Hz, 1H), 6.46 (d, *J* = 8.5 Hz, 1H), 7.40 (dd t, *J* = 8.5, 7.5 Hz, 1H), 12.38 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_{C} 28.0 (3C), 28.4

(3C), 32.7, 39.8, 42.0, 44.1- 48.0 (conformers), 51.9, 80.4, 81.1, 103.8, 118.4, 141.6, 149.5, 154.4, 165.2, 171.8; HRMS (ESI⁺) calcd for $C_{20}H_{31}N_2O_5$ [M+H]⁺: 379.2227, found 379.2213.

(3*S*,5*R*)-5-(6-Oxo-1,6-dihydropyridin-2-yl)piperidine-3-carboxylic acid hydrochloride salt 33

A solution of carboxylic acid **31** (211 mg, 0.50 mmol) in a mixture of TFA:DCM (1:19) was stirred at room temperature for 18 h. The reaction mixture was concentrated *in vacuo*. Purification by flash column chromatography [0.05 M HCI:CH₃CN (5:95 to 20:80)] gave acid **33** (93 mg, 84%) as a colourless solid.

[α]_D^{22.1} = -15 (c 0.6, MeOH); R_f = 0.20 [0.05 M HCI:CH₃CN (20:80)]; m.p. >200 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 3231, 2987, 2971, 2901, 1717, 1633, 1614, 1545, 1394, 1007, 808, 728; ¹H NMR (500 MHz, D₂O) δ_{H} 1.85 (m, 1H), 2.45 (m, 1H), 2.96 (m, 1H), 3.02 – 3.14 (m, 3H), 3.59 (m, 1H), 3.65 (m, 1H), 6.41 (d, *J* = 7.0 Hz, 1H), 6.50 (d, *J* = 9.0 Hz, 1H), 7.63 (dd, *J* = 7.0, 9.0 Hz, 1H); ¹³C NMR (125 MHz, D₂O) δ_{C} 30.3, 36.4, 38.6, 43.9, 45.8, 48.8, 106.6, 117.8, 143.9, 146.8, 165.3, 174.7; HRMS (ESI⁺) calcd for C₁₁H₁₃N₂O₃ [M-H]⁺: 221.0932, found: 221.0933.

Tert-butyl (3S, 5R)-3-(hydroxymethyl)-(6-oxo-1,6-dihydropyridin-2-yl)-[1,4'bipiperidine]-1'- carboxylate 34

A solution of piperidine **22** (150 mg, 0.61 mmol) and trimethylamine (0.09 mL, 1 equiv) in THF (5 mL) was stirred for 5 min before being concentrated *in vacuo*. To the residue was added N-Boc-4-piperidone (121 mg, 1 equiv), palladium on activated charcoal 10% (60 mg) and MeOH (3.0 mL). The mixture was flushed and stirred under an atmosphere of hydrogen for 18 h. The solution was filtered through Celite[®] and concentrated *in vacuo*. Purification by flash column

chromatography [DCM:MeOH (98:2 to 90:10)] afforded **34** (181 mg, 75%) as a colourless solid.

[α]_D²⁵ = -10 (c 4.0, MeOH); m.p. 134-136 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 2928, 1651, 1598, 1423, 1355, 1242, 1160, 799; ¹H NMR (500 MHz, MeOD) $\delta_{\rm H}$ 1.35 (m, 2H), 1.47 (s, 9H), 1.57 (m, 2H), 1.98 (m, 4H), 2.37 (s, 1H), 2.51-3.00 (m, 5H), 3.33 (s, 1H), 3.49 (m, 1H), 3.56 (m, 1H), 4.22 (d, *J* = 13.0 Hz, 2H), 6.32 (s, 1H), 6.45 (s, 1H), 7.56 (s, 1H); ¹³C NMR (125 MHz, MeOD) $\delta_{\rm C}$ 27.0, 27.2, 31.9, 37.9, 38.9, 42.4, 51.7, 52.9, 63.0, 63.9, 79.9, 104.4, 117.5, 142.4, 149.9, 154.8, 164.9; HRMS (ESI⁺) calcd for C₂₁H₃₄N₃O₄ [M+H]⁺: 392.2543, found 392.2545.

3-Bromopyridone isomer 35 and 5-bromopyridone isomer 36

To a solution of pyridone **19** (31 mg, 0.10 mmol) in THF (1.0 mL) was added NBS (20 mg, 0.11 mmol) and the mixture was stirred at room temperature for 1.5 h. The solution was diluted with water (5 mL) and the aqueous phase was extracted with DCM (3×5 mL). The combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH:NH₄OH (97.25:2.5:0.25 to 94.5:5.0:0.5)] gave **35** (20 mg, 52%) as a colourless solid and **36** (9 mg, 23%) as a colourless solid.

Data for 35: $[\alpha]_D^{22} = -24$ (c 4.0, MeOH); R_f = 0.28 [DCM:MeOH (95:5)]; m.p. 125 – 128 °C (DCM/*n*-Hexane); FTIR ν_{max} /cm⁻¹ (neat): 2927, 1638, 1611, 1423, 1365, 1253, 1144, 1025, 877; ¹H NMR (500 MHz, CDCl₃) δ_H 1.47 (s, 9H), 1.70-1.80 (m, 1H), 1.81-.190 (m, 1H), 2.06-2.32 (m, 2H), 2.58-2.75 (m, 2H), 2.78-3.10 (m, 1H), 3.58-3.67 (m, 2H), 4.07-4.37 (m, 2H), 6.06 (d, *J* = 7.5 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 13.17 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 28.4 (3C), 32.3, 38.5, 40.5, 46.4, 47.5, 65.2, 80.0, 105.1, 113.1, 143.5, 150.1, 154.6, 161.4; HRMS (ESI⁺) calcd for C₁₆H₂₃⁷⁹BrN₂NaO₄ [M+Na]⁺: 409.0733, found 409.0734.

Data for 36: $[\alpha]_D^{22} = -23$ (c 3.1, MeOH); R_f = 0.22 [DCM:MeOH (95:5)]; m.p. 112 - 115 °C (DCM/MeOH/NH₄OH); FTIR ν_{max} /cm⁻¹ (neat): 2928, 1645, 1587, 1423, 1365, 1254, 1170, 1145, 1066, 880, 826; ¹H NMR (500 MHz, CDCl₃) δ_H 1.47 (s, 9H), 1.79 - 2.11 (m, 3H), 2.63 - 2.80 (t, *J* = 11.5 Hz, 1H), 2.87 - 3.06 (t, *J* = 11.5 Hz, 1H), 3.17 - 3.33 (m, 1H), 3.56 - 3.65 (m, 2H), 4.00 - 4.37 (m, 2H), 6.34 (d, *J* = 9.5 Hz, 1H), 7.51 (d, *J* = 9.5 Hz, 1H); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H), 6.34 (d, *J* = 9.5 Hz, 1H), 7.51 (d, *J* = 9.5 Hz, 1H); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H), 6.34 (d, *J* = 9.5 Hz, 1H); 7.51 (d, *J* = 9.5 Hz, 1H); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H), 6.34 (d, *J* = 9.5 Hz, 1H); 7.51 (d, *J* = 9.5 Hz, 1H); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H), 6.34 (d, *J* = 9.5 Hz, 1H); 7.51 (d, *J* = 9.5 Hz, 1H); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz, 200 - 4.37 (m, 2H)); ¹³C NMR (125 MHz); ¹³C NMR (125 MLz); ¹

CDCl₃) $\delta_{\rm C}$ 28.4 (3C), 30.0, 37.8, 40.3, 45.7, 47.0, 65.2, 80.0, 100.2, 119.1, 145.6, 147.3, 154.7, 164.2; HRMS (ESI⁺) calcd for C₁₆H₂₃⁷⁹BrN₂NaO₄ [M+H]⁺: 409.0733, found 409.0739.

Tert-butyl (3*R*,5*S*)-3-(6-((*tert*-butoxycarbonyl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxabo-rolan-2-yl)pyridin-2-yl)-5-(((*tert*-butyldimethylsilyl)oxy)methyl)piperidine-1-carboxylate 37

Silyl ether **23** (104 mg, 0.20 mmol) was borylated according to the **General Procedure B**. Purification by flash column chromatography [$Et_2O:n$ -Hexane (1:1)] gave **37** (117 mg, 91%) as a colourless oil.

 R_f = 0.26 [Et₂O:*n*-Hexane (1:1)]; FTIR ν_{max}/cm⁻¹ (neat): 2978, 2930, 2857, 1760, 1695, 1368, 1256, 1144, 837; ¹H NMR (500 MHz, CDCl₃) δ_H 0.05 (s, 6H), 0.91 (s, 9H), 1.36 (s, 12H), 1.44 – 1.51 (m, 10H), 1.57 (s, 9H), 1.82 (m, 1H), 2.00 (m, 1H), 2.43 (m, 1H), 2.77 – 2.98 (m, 2H), 3.37 – 3.61 (m, 2H), 4.20 – 4.45 (m, 2H), 7.33 (s, 1H), 7.46 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C -5.45 (2C), 18.3, 24.9 (4C), 25.9 (3C), 27.7 (3C), 28.5 (3C), 33.0-34.2 (conformers), 38.5-39.0 (conformers), 43.4-43.8 (conformers), 46.1, 47.9-48.6 (conformers), 65.9, 79.5, 83.7, 84.7 (2C), 118.6, 125.4, 142.0, 151.2, 154.8, 157.2, 161.4; HRMS (ESI⁺) calcd for C₃₃H₅₈BN₂O₈Si [M+H]⁺: 649.4056, found 649.4033, calcd for C₃₃H₅₇BN₂NaO₈Si [M+Na]⁺: 671.3876, found 671.3890.

Tert-butyl (3*S*,5*R*)-3-(((*tert*-butyldimethylsilyl)oxy)methyl)-5-(6-oxo-4-phenyl-1,6-dihy-dropyridin-2-yl)piperidine-1-carboxylate 38

A Schlenk tube was charged with boronic ester **37** (65 mg, 0.10 mmol), bromobenzene (10 μ L, 0.10 mmol), bis(triphenylphosphine)palladium (II) dichloride (1.4 mg, 2 mol%) and K₂CO₃ (28 mg, 0.20 mmol). After purging with nitrogen, DMF (1.0 mL) was added and the reaction mixture was heated at 80 °C for 19 h. The solvent was removed *in vacuo*. Purification by flash column chromatography [Et₂O:*n*-Hexane (1:4)] gave **Suzuki adduct E** (36 mg, 60%) as a colourless oil, which was converted to **38** immediately.

Adduct **E** (prepared above) (12 mg, 0.025 mmol) was deprotected according to the **General Procedure A**. Purification by flash column chromatography [DCM:MeOH:NH₄OH (94.5:5:0.5)] yielded **38** (7 mg, 70%) as a colourless solid.

 R_f = 0.30 [DCM:MeOH (95:5)]; m.p. 92-94 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 2929, 1690, 1646, 1422, 1364, 1250, 1141, 1079, 834; ¹H NMR (500 MHz, CDCl₃) δ_H 0.07 (s, 6H), 0.91 (s, 9H), 1.49 (s, 10H), 1.88 (s, 1H), 2.12 (s, 1H), 2.51 (t, *J* = 11.5 Hz, 1H), 2.81 (t, *J* = 11.5 Hz, 1H), 2.91, (s, 1H), 3.36-3.64 (m, 2H), 4.17-4.52 (m, 2H), 6.34 (s, 1H), 6.66 (s, 1H), 7.47 (m, 3H), 7.59 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ_C -5.44, -5.39, 25.9 (3C), 28.4 (3C), 29.3, 29.7, 32.9, 38.7, 40.6, 47.4, 65.5, 79.9, 103.6, 114.9, 126.8 (2C), 128.9 (2C), 129.4, 138.1, 149.8, 153.9, 154.5, 165.2; HRMS (ESI⁺) calcd for C₂₈H₄₃N₂O₄Si [M+H]⁺: 499.2987, found 499.3000, calcd for C₂₈H₄₂N₂NaO₄Si [M+Na]⁺: 521.2806, found 521.2846.

Tert-butyl (3S,5R)-3-(acetoxymethyl)-5-(6-((*tert*-butoxycarbonyl)oxy)-4-(4,4,5,5-tetra methyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)piperidine-1-carboxylate 39a

A solution of alcohol **20** (102 mg, 0.25 mmol) and triethylamine (70 μ L, 0.50 mmol) in DCM (2.5 mL) was cooled to 0 °C, acetic anhydride (36 μ L, 0.38 mmol) was added dropwise over 5 min, and the reaction mixture was stirred at room temperature for 18 h. The solvent was removed *in vacuo*, and the residue was diluted with EtOAc (10 mL). The organic phase was washed with NaHCO₃ (2 × 10 mL, aq. sat. sol.), water (10 mL), brine (10 mL), and then dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [Et₂O:*n*-Hexane (1:1)] gave the **acetate F** (121 mg, 99%.) as a colourless oil.

 R_f = 0.20 [Et₂O:*n*-Hexane (1:1)]; FTIR ν_{max}/cm⁻¹ (neat): 2978, 2933, 1759, 1740, 1689, 1247, 1220, 1140, 751; ¹H NMR (500 MHz, CDCl₃) δ_H 1.48 (s, 9H), 1.52 − 1.64 (m, 10H), 1.93 − 2.11 (m, 5H), 2.47 (m, 1H), 2.80 − 3.04 (m, 2H), 3.93 (m, 1H), 4.02 (dd, *J* = 5.5, 11.0 Hz, 1H), 4.10 − 4.48 (m, 2H), 7.02 (d, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 7.73 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 20.8, 27.7 (3C), 28.4 (3C), 33.6, 35.5, 43.5, 46.2-47.0 (conformers), 48.2-48.9 (conformers), 66.5, 79.8, 83.9, 113.7, 120.1, 139.9, 151.0, 154.7, 157.4, 161.3, 171.0; HRMS (ESI⁺) calcd for C₂₃H₃₅N₂O₇ [M+H]⁺: 451.2439, found 451.2452, calcd for C₂₃H₃₄N₂NaO₇ [M+Na]⁺: 473.2258, found 473.2270.

Acetate **F** (prepared above) (90 mg, 0.20 mmol) was borylated according to the **General Procedure B**. Purification by flash column chromatography [EtOAc:*n*-Hexane (1:1 to 3:1)] yielded **39a** (89 mg, 77%) as a colourless oil.

R_f = 0.22 [Et₂O:*n*-Hexane (1:1)]; FTIR ν_{max}/cm⁻¹ (neat): 2973, 2923, 2854, 1765, 1713, 1393, 1236, 1146, 848, 747; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 1.37 (s, 12H), 1.49 (s, 9H), 1.53 − 1.65 (s, 10H), 1.96 − 2.11 (m, 5H), 2.46 (m, 1H), 2.78 − 3.10 (m, 2H), 3.94 (m, 1H), 4.02 (dd, *J* = 5.5, 11.0 Hz, 1H), 4.13 − 4.50 (m, 2H), 7.36 (s, 1H), 7.46 (s, 1H); ¹³C NMR (125 MHz, CDCl₃, 52 °C) $\delta_{\rm C}$ 20.6, 28.4, 33.7, 35.7, 43.4, 46.5, 48.6, 66.4, 76.7, 79.7, 83.6, 84.6, 118.6, 124.9, 139.7, 151.0, 154.7, 160.7, 170.7; HRMS (ESI⁺) calcd for C₂₉H₄₆BN₂O₉ [M+H]⁺: 577.3296, found 577.3279, calcd for C₂₉H₄₅BN₂NaO₉ [M+Na]⁺: 599.3116, found 599.3104.

Tert-butyl (3*R*,5*S*)-3-(4-bromo-6-oxo-1,6-dihydropyridin-2-yl)-5-(((*tert*-butyldimethyl silyl)oxy)methyl)piperidine-1-carboxylate 40

To a solution of boronate ester **39a** in MeOH (2.0 mL) was added a solution of copper (II) bromide (100 mg, 0.45 mmol) in water (1.0 mL). The reaction mixture was stirred at room temperature for 3 days under air. NH₄OH (2.0 mL, 15% aq. sol.) was added and the aqueous phase was extracted with DCM (3 × 10 mL). The combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [Et₂O:*n*-Hexane (1:4 to 1:1)] gave **bromide G** (20 mg, 25%) as a colourless oil. R_f = 0.26 [Et₂O:*n*-Hexane (1:1)]; FTIR v_{max} /cm⁻¹ (neat): 2978, 2933, 2862, 1762, 1741, 1689, 1242, 1225, 1139, 730; ¹H NMR (500 MHz, CDCl₃) δ_{H} 1.49 (s, 9H), 1.58 (s, 9H), 1.61 (m, 1H), 1.93 – 2.10 (m, 5H), 2.49 (m, 1H), 2.79 – 2.96 (m, 2H), 3.92 (m, 1H), 4.02 (dd, *J* = 5.5, 11.0 Hz, 1H), 4.10 – 4.50 (m, 2H), 7.25 (s, 1H), 7.28 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_{C} 20.8, 27.6 (3C), 28.4 (3C), 33.5, 35.6, 43.2, 46.1, 48.7, 66.4, 80.0, 84.5, 117.2, 123.5, 134.9, 150.4, 154.6, 157.7, 162.2, 171.0; HRMS (ESI⁺) calcd for C₂₃H₃₄⁷⁹BrN₂O₇ [M+H]⁺: 529.1544, found 529.1548, calcd for C₂₃H₃₃⁷⁹BrN₂NaO₇ [M+Na]⁺: 551.1363, found 551.1366.

Bromide **G** (prepared above) (26 mg, 0.05 mmol) was deprotected according to the **General Procedure A**. Purification by flash column chromatography [DCM:MeOH:NH₄OH (94.5:5:0.5)] gave **40** (14 mg, 65%) as a colourless solid.

[α]_D²² = -9 (c 2.3, MeOH); R_f = 0.48 [DCM:MeOH (95:5)]; m.p. 175 – 180 °C (DCM/*n*-Hexane); FTIR v_{max}/cm⁻¹ (neat): 2924, 2852, 1741, 1695, 1647, 1607, 1249, 1148; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 1.45 – 1.53 (m, 10H), 1.95 – 2.13 (m, 5H), 2.53 (m, 1H), 2.69 (dt, *J* = 12.0, 4.5 Hz, 1H), 2.88 (m, 1H), 3.92 – 4.07 (m, 2H), 4.09 – 4.44 (m, 2H), 6.28 (s, 1H), 6.69 (s, 1H), 12.77 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 20.8, 28.4 (3C), 32.6, 35.3, 40.1, 44.4 – 48.6 (2C, conformers), 66.0, 80.3, 108.7, 120.6, 138.0, 150.0, 154.4, 164.3, 171.0; HRMS (ESI⁺) calcd for C₁₈H₂₆⁷⁹BrN₂O₅ [M+H]⁺: 429.1020, found 429.1021.

1-(*tert*-Butyl) 3-methyl (3*S*,5*R*)-5-(6-((*tert*-butoxycarbonyl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)piperidine-1,3-dicarboxylate 39b

Methyl ester **32b** (44 mg, 0.10 mmol) was borylated according to the **General Procedure B**. Purification by preparative thin layer chromatography [EtOAc:*n*-Hexane (3:7)] gave **39b** (44 mg, 77%) as a colourless oil.

 R_f = 0.45 [EtOAc:*n*-Hexane (3:7)]; FTIR v_{max} /cm⁻¹ (neat): 2921, 2852, 1761, 1737, 1714, 1455, 1371, 1252, 1145, 849; ¹H NMR (500 MHz, CDCl₃) δ_H 1.37 (s, 12H), 1.49 (s, 9H), 1.58 (s, 9H), 1.98 (m, 1H), 2.36 (m, 1H), 2.63 (m, 1H), 2.72 − 3.05 (m, 3H), 3.71 (s, 3H), 4.15 − 4.60 (m, 2H), 7.36 (s, 1H), 7.47 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 24.9 (4C), 27.7 (3C), 28.4 (3C), 41.5, 43.0, 51.8, 80.0, 83.8, 84.7 (2C), 119.0, 125.5, 151.2, 154.6, 157.2, 160.3, 173.4; *C4*, *C8*, *C11* and *C13* were not detected; HRMS (ESI⁺) calcd for C₂₈H₄₄BN₂O₉ [M+H]⁺: 563.3139, found 563.3139, C₂₈H₄₃BN₂NaO₉ [M+Na]⁺: 585.2959, found 585.2956.

Di-*tert*-butyl (3*S*,5*R*)-5-(6-((*tert*-butoxycarbonyl)oxy)-4-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)pyridin-2-yl)piperidine-1,3-dicarboxylate 39c

Tert-butyl ester **32c** (48 mg, 0.10 mmol) was borylated according to the **General Procedure B**. Purification by flash column chromatography [Et₂O:*n*-Hexane (1:1) to Et₂O] gave **39c** (50 mg, 91%) as a colourless oil.

 R_f = 0.20 [Et₂O:*n*-Hexane (1:1)]; FTIR ν_{max}/cm⁻¹ (neat): 2977, 2926, 1761, 1725, 1697, 1405, 1393, 1252, 1145, 1062, 848; ¹H NMR (500 MHz, CDCl₃) δ_H 1.37 (s, 12H), 1.48 (s, 9H), 1.53 – 1.62 (m, 9H), 1.58 (s, 9H), 1.88 (m, 1H), 2.32 (m, 1H), 2.49 (m, 1H), 2.69 – 3.06 (m, 3H), 4.11 – 4.57 (m, 2H), 7.36 (s, 1H), 7.47 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ_C 24.9 (4C), 27.7 (3C), 28.0 (3C), 28.4 (3C), 33.8, 42.4, 43.2, 79.9, 80.8, 83.8, 84.7 (2C), 118.9, 125.1, 151.2, 154.7, 157.2, 160.1, 172.3; *C4, C11 and C13 were not detected;* HRMS (ESI⁺) calcd for C₃₁H₅₀BN₂O₉ [M+H]⁺: 605.3609, found 605.3621.

(6S)-3-Benzyl-6-(hydroxymethyl)-1,2,3,4,5,6-hexahydro-8*H*-1,5-methanopyrido[1,2a][1,5]diazocin-8-one 43

To a solution of boronate **17** (64 mg, 0.16 mmol) and bromochloromethane (61 mg, 0.47 mmol) in MTBE (0.6 mL) at -78 °C was added *n*-BuLi (0.25 mL, 1.6 M in hexanes, 0.40 mmol) dropwise over 15 min. The reaction mixture was stirred at -78 °C for 30 min, then allowed to warm to room temperature and stirred for an additional 1 h. The reaction mixture was cooled to 0 °C, and a solution of NaOH (1.0 mL, 2 M aq. sol.) and H_2O_2 (0.5 mL, 30% aq. sol.) were added. The reaction mixture was warmed to room temperature and stirred for an additional 2 h. The solution was diluted with water (5 mL) and the aqueous phase was extracted with EtOAc (3 × 10 mL), the combined organic layers were washed with brine (10 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by flash column chromatography [DCM:MeOH:NH₄OH (97.5:2:0.5 to 95:4.5:0.5)] gave **43** (42 mg, 86% overall yield from **17**) as a colourless solid.

[α]_D²³ = -36 (c 0.2, CHCl₃); R_f = 0.12 [EtOAc]; m.p. 170 °C (DCM/*n*-Hexane); FTIR v_{max}/cm^{-1} (neat): 3320, 2933, 2797, 1646, 1545, 1137, 1062, 803, 737, 698; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ 1.69 (dt, *J* = 13.0, 3.0, Hz, 1H), 2.07 (d, *J* = 13.0 Hz, 1H), 2.26 (dd, *J* = 10.5, 1.5 Hz, 1H), 2.42 – 2.50 (m, 2H), 2.69 (dt, *J* = 10.5, 1.5 Hz, 1H), 2.94 (s, 1H), 3.04 (d, *J* = 11.0 Hz, 1H), 3.29 (d, *J* = 10.5 Hz, 1H), 3.46 (d, *J* = 10.5 Hz, 1H), 3.62 (s, 1H), 3.90 (m, 1H), 3.95 (m, 1H), 4.74 (t, *J* = 5.0 Hz, 1H), 5.93 (d, *J* = 7.0 Hz, 1H), 6.53 (d, *J* = 9.0 Hz, 1H), 6.87 – 6.93 (m, 2H), 7.12 – 7.19 (m, 3H), 7.28 (dd, *J* = 9.0, 7.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 23.7, 31.6,

36.0, 59.9, 60.7, 61.7, 62.0, 67.4, 105.7, 117.2, 126.9, 128.0 (2C), 128.1 (2C), 138.1, 139.0, 151.2, 164.5; HRMS (ESI⁺) calcd for $C_{19}H_{23}N_2O_2$ [M+H]⁺: 311.1754, found 311.1754, calcd for $C_{19}H_{22}N_2NaO_2$ [M+Na]⁺: 333.1573, found 333.1578.

Details of NOESY correlations observed for the alcohol 43, which was irradiated at (from left) H10, H14, C<u>H</u>₂Ph, and H8 (axial).

((6S)-3-Benzyl-8-oxo-1,3,4,5,6,8-hexahydro-2*H*-1,5-methanopyrido[1,2-a][1,5]diazocin-6-yl)methyl 4-nitrobenzoate 44

To a solution of alcohol **43** (49 mg, 0.16 mmol), DMAP (2 mg, 2 mol%) and triethylamine (33 μ L, 0.24 mmol) in DCM (1.0 mL) at room temperature was added *p*-nitrobenzoyl chloride (41 mg, 0.22 mmol). The reaction mixture was stirred for 48 h, and the crude reaction mixture was diluted with DCM (10 mL), washed with NaHCO₃ (10 mL, aq. sat. sol.), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification by flash column chromatography [EtOAc:*n*-Hexane (1:1) to EtOAc)] gave a yellow solid. The resulting solid was recrystallised from DCM/*n*-Hexane to give **44** (23 mg, 32%) as pale yellow needles.

 $[\alpha]_D^{23} = -6$ (c 0.3, CHCl₃); R_f = 0.10 [EtOAc:*n*-Hexane (1:1)]; m.p. 187 °C (DCM/*n*-Hexane); FTIR v_{max}/cm⁻¹ (neat): 2987, 2970, 2901, 1727, 1656, 1576, 1406, 1393, 1266, 1065, 1056, 891, 719; ¹H NMR (500 MHz, CDCl₃) δ_H 1.75 (ddd, J = 13.0, 3.0, 3.0 Hz, 1H), 2.26 (m, 1H), 2.35 (dd, J = 10.5, 2.0 Hz, 1H), 2.40 (m, 1H), 2.53 (dd, J = 11.0, 2.5 Hz, 1H), 2.76 (m, 1H), 3.01 (m, 1H), 3.10 (m, 1H), 3.37 (d, J = 10.5 Hz, 1H), 3.50 (d, J, 10.5 Hz, 1H), 4.55 (dd, J = 10.5, 9.0 Hz, 1H), 4.64 (dd, J = 10.5, 3.0 Hz, 1H), 5.06 (dd, J = 9.0, 3.0 Hz, 1H), 5.97 (dd, J = 7.0, 1.0 Hz, 1H), 6.56 (dd, J = 9.0, 1.0 Hz, 1H), 6.93 – 7.03 (m, 2H), 7.17 – 7.25 (m, 3H), 7.31 (dd, J = 9.1, 6.9 Hz, 1H), 8.17 – 8.23 (m, 2H), 8.28 – 8.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) $\delta_{\rm C}$ 23.7, 30.4, 35.9, 56.6, 59.7, 60.9, 61.8, 64.6, 105.2, 117.8, 123.6 (2C), 127.0 (2C), 128.1 (2C), 128.3, 130.8 (2C), 135.2, 138.0, 139.0, 150.6, 151.0, 163.0, 164.3; HRMS (ESI⁺) calcd for C₂₆H₂₆N₃O₅ [M+H]⁺: 460.1867, found 460.1854, calcd for C₂₆H₂₅N₃NaO₅ [M+Na]⁺: 482.1686, found 482.1671.

Illustration of the structure of **44** with atomic numbering scheme depicted. Ellipsoids are depicted at the 50% probability level and hydrogen atoms are omitted for clarity.

(6*R*)-3-Benzyl-6-vinyl-1,2,3,4,5,6-hexahydro-8*H*-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one 46

To a solution of boronic ester **17** (61 mg, 0.15 mmol) in THF (1.5 mL) at room temperature, was added vinyl magnesium bromide (1.0 M in THF, 0.60 mL, 0.60 mmol) dropwise over 5 min. The reaction mixture was stirred at room temperature for 2 h and cooled to -78 °C. A solution of iodine in MeOH (1.0 M, 0.60 mL, 0.60 mmol) was added dropwise over 5 min, and the reaction mixture was stirred at -78 °C for 30 min. A solution of sodium methoxide in MeOH (0.50 M, 2.40 mL, 1.20 mmol) was added in a single portion. The reaction mixture was then allowed to warm to room temperature and stirred for an additional 1 h. The crude reaction

mixture was diluted with DCM (5 mL) and quenched with $Na_2S_2O_3$ (5 mL, aq. sat. sol.) and water (5 mL). The aqueous layer was extracted with DCM (3 × 10 mL) and the combined organic layers were dried (Na_2SO_4), filtered, and concentrated *in vacuo*. Purification by flash column chromatography [EtOAc:*n*-Hexane: triethylamine (49:50:1 to 99:0:1)] gave **46** (36 mg, 94%) as a colourless solid.

[α]_{D²³} = -24 (c 0.3, CHCl₃); R_f = 0.34 [EtOAc]; m.p. 160 °C (DCM/*n*-Hexane); FTIR v_{max} /cm⁻¹ (neat): 3059, 2936, 2809, 1650, 1568, 1542, 1141, 809, 736; ¹H NMR (400 MHz, CDCl₃) δ_{H} 1.59 (ddd, *J* = 4.0, 2.5, 1.0 Hz, 1H), 2.07 – 2.16 (m, 2H), 2.24 (dd, *J* = 10.5, 2.0 Hz, 1H), 2.48 (dd, *J* = 11.0, 2.5 Hz, 1H), 2.70 (ddd, *J* = 10.5, 2.0, 2.0 Hz, 1H), 2.91 (m, 1H), 3.08 (m, 1H), 3.29 (d, *J* = 13.5 Hz, 1H), 3.46 (d, *J* = 13.5 Hz, 1H), 4.67 (ddd, *J* = 17.0, 1.5, 1.0 Hz, 1H), 5.10 (ddd, *J* = 10.5, 1.5, 1.0 Hz, 1H), 5.25 (ddd, *J* = 5.0, 1.5, 1.5 Hz, 1H), 5.88 (dd, *J* = 7.0, 1.5 Hz, 1H), 5.92 (ddd, *J* = 17.0, 10.5, 5.0 Hz, 1H), 6.49 (dd, *J* = 9.0, 1.5 Hz, 1H), 6.90 – 6.95 (m, 2H), 7.12 – 7.19 (m, 3H), 7.24 (dd, *J* = 9.0, 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 22.8, 33.2, 36.0, 59.5, 59.7, 60.7, 61.9, 104.6, 114.0, 117.7, 127.0, 128.2 (2C), 128.3 (2C), 138.3, 138.4, 138.6, 151.1, 162.9; HRMS (ESI⁺) calcd for C₂₀H₂₃N₂O [M+H]⁺: 307.1805, found 307.1801.

Details of NOESY correlations observed for alkene 46, which was irradiated at (from left) H10, Ha, and $C\underline{H}_2$ Ph.

Synthesis references

- (1) A. J. Dixon, M. J. McGrath and P. O'Brien, Org. Synth., 2006, 83, 141-154.
- (2) B. Danieli, G. Lesma, D. Passarella, A. Sacchetti, A. Silvani and A. Virdis, *Org. Lett.*, 2004, **6**, 493-496.
- (3) F. Frigerio, C. A. Haseler, and T. Gallagher, Synlett, 2010, 729-730.
- (4) I. Murakoshi, E. Kidoguchi, J. Haginiwa, S. Ohmiya, K. Higashiyama and H. Otomasu, *Phytochemistry*, 1981, **20**, 1407-1409.
- (5) T. Honda, R. Takahashi and H. Namiki, *J. Org. Chem.*, 2005, **70**, 499-504.

5. NMR Spectra

SUPPLEMENTARY INFORMATION

- 37 -

¹H NMR (500 MHz), ¹³C NMR (125 MHz): CDCI₃

SUPPLEMENTARY INFORMATION

- 63 -

NBn

