Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Diisopropylethylamine-Triggered, Highly Efficient, Self-Catalyzed Regioselective Acylation of Carbohydrates and Diols

Bo Ren*a, Lu Gana, Li Zhanga, Ningning Yana and Hai Dongb

^a·College of Chemistry & Chemical Engineering, Xinyang Normal University, Nanhu

Road 237, Xinyang, Henan 464000, P. R. China

^{b.}School of Chemistry & Chemical Engineering, Huazhong University of Science

&Technology, Luoyu Road 1037, 430074 Wuhan, P.R. China.

renbo@xynu.edu.cn

Content

1. General Information	S2.
2. Figure S1 to Figure S3 (Testing the H-bonds between the Diols and C	Catalysts by
variable-temperature NMR experiments)	S3.
3. Figure S4 to Figure S15 (Variable-temperature ¹ H NMR)	S5.
4. Figure S16 and Figure S18 (¹ H NMR comparison and tracking)	S17.
5. NMR Spectra of Products	S20.
6. References	

General Information: All commercially available starting materials and solvents were of reagent grade and were used without further purification. Chemical reactions were monitored with thin-layer chromatography using precoated silica gel 60 (0.25 mm thickness) plates. High-resolution mass spectra (HRMS) were obtained by electrospray ionization (ESI) and Q-TOF detection. Flash column chromatography was performed on silica gel 60 (SDS 0.040-0.063 mm). ¹H and ¹³C NMR spectra were recorded with a JNM-ECZ600R/S3 instrument at 298K in CDCl₃ using the residual signals from CHCl₃ (¹H: δ = 7.26 ppm; ¹³C: δ = 77.2 ppm) as the internal standard. ¹H NMR peak assignments were made by first-order analysis of the spectra and were supported by standard ¹H-¹H correlation spectroscopy (COSY).

General Method for Testing the H-bonds between the Diols and Catalysts by Variable-Temperature NMR Experiments: The catalyst (0.2 equiv. of TBAOAc, 0.2 equiv. of DIPEA or without catalyst) was added to a solution of 1-phenyl-1,2ethanediol (10 mg) in dry CD₃CN (0.5 mL), and then a series of variable-temperature ¹H NMR tests were performed from 20 °C to 50 °C.

General Method for the Regioselective Acylation of Diols and Polyols: Diol and polyol reactants (50 mg) were allowed to react with anhydride (1.1-2.2 equiv.) in 1 mL of dry acetonitrile or a mixed solvent (MeCN–DMF, 10:1) at 40 °C for 8 h to 12 h in the presence of DIPEA (0.1–0.2 equiv.). After cooling and evaporation of the solvent, the reaction mixture was directly purified by flash column chromatography (hexanes–EtOAc 3:1 to 1:1) and afforded the pure selectively protected derivatives.

Spectroscopic data of all known products were in accordance with those reported in

the literature.

Testing the H-bonds between the Diols and Catalysts by variable-temperature NMR experiments (Figure **S1** to Figure **S3**):

Figure **S1**. The values of OH chemical shifting transformation constant with temperature k were measured for 1-phenyl-1,2-ethanediol in CD₃CN. k_1 =3.4*10⁻³ K⁻¹, R^2 =0.9997; k_2 =3.7*10⁻³ K⁻¹, R^2 =1.

Figure **S2**. The values of OH chemical shifting transformation constant with temperature *k* were measured for 1-phenyl-1,2-ethanediol and 0.2 equiv. of DIPEA in CD₃CN. k_1 =3.7*10⁻³ K⁻¹, R^2 =0.999; k_2 =4.2*10⁻³ K⁻¹, R^2 =0.9998.

Figure **S3**. The values of OH chemical shifting transformation constant with temperature *k* were measured for 1-phenyl-1,2-ethanediol and 0.2 equiv. of TBAOAc in CD₃CN. k=4.8*10⁻³ K⁻¹, R²=0.9989.

Figure S4. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol in CD₃CN at 20 °C.

Figure S5. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol in CD₃CN at 30 °C.

Figure S6. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol in CD₃CN at 40 °C.

Figure S7. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol in CD₃CN at 50 °C.

Figure S8. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol and 0.2 equiv. of DIPEA in CD₃CN at 21.8 °C.

Figure S9. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol and 0.2 equiv. of DIPEA in CD₃CN at 30 °C.

Figure S10. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol and 0.2 equiv. of DIPEA in CD₃CN at 40 °C.

Figure S11. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol and 0.2 equiv. of DIPEA in CD₃CN at 50 °C.

Figure S12. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol and 0.2 equiv. of TBAOAc in CD₃CN at 20.8 °C.

Figure S13. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol and 0.2 equiv. of TBAOAc in CD₃CN at 30 °C.

Figure S14. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol and 0.2 equiv. of TBAOAc in CD₃CN at 40 °C.

Figure S15. Recorded ¹H NMR of 1-phenyl-1,2-ethanediol and 0.2 equiv. of TBAOAc in CD₃CN at 50 °C.

Figure S16. ¹H NMR comparison of 1-phenyl-1,2-ethanediol with 0.2 equiv. of TBAOAc/0.2 equiv. of DIPEA/1.0 equiv. of Ac₂O in CD₃CN at 20 °C.

Figure S17. ¹H NMR tracking the reaction of 1-phenyl-1,2-ethanediol with 0.2 equiv. of DIPEA and 1.0 equiv. Ac₂O in CD₃CN at 20 °C.

Figure S18. ¹H NMR tracking the reaction of Methyl 6-*O*-(tert-butyldimethylsilyloxy)-α-D-mannopyranoside with 0.2 equiv. of DIPEA and 1.1 equiv. Ac₂O in CD₃CN at 40 °C.

NMR Spectra of Products:

Methyl 2-*O***-benzoyl-4, 6-***O***-benzylidene-α-D-mannopyranoside (5a)³:** ¹H-NMR of compound **5a** (CDCl₃)

Methyl 2-*O*-acetyl-4, 6-*O*-benzylidene-α-D-glucopyranoside (7a)¹: ¹H-NMR of compound 7a (CDCl₃)

Methyl 2-*O*-benzoyl-4, 6-*O*-benzylidene-α-D-glucopyranoside (8a)³: ¹H-NMR of compound **8a** (CDCl₃)

Methyl 2, 3-di-*O*-benzyl-6-*O*-acetyl-α-D-mannopyranoside (10)¹: ¹H-NMR of compound 10 (CDCl₃)

Methyl 2, 3-di-*O*-benzyl-6-*O*-benzoyl-α-D-mannopyranoside (11)³: ¹H-NMR of compound 11 (CDCl₃)

Methyl 2, 3-di-*O*-benzyl-6-*O*-acetyl-α-D-glucopyranoside (13)¹: ¹H-NMR of compound 13 (CDCl₃)

Methyl 2, 3-di-*O*-benzyl-6-*O*-benzoyl-α-D-glucopyranoside (14)³: ¹H-NMR of compound 14 (CDCl₃)

2-O-acetyl-1-phenyl-1,2-ethanediol (16)¹: ¹H-NMR of compound **16** (CDCl₃)

1-O-benzoyl-1,2-propanediol (20)³: ¹H-NMR of compound **20** (CDCl₃)

Methyl 3-*O*-acetyl-6-*O*-(*tert*-butyldimethylsilyloxy)-α-D-mannopyranoside (21)²: ¹H-NMR of compound 21 (CDCl₃)

4.0 3.0 2.0 1.0 Mulle 0-7.0 5.0 4.0 3.0 6.0 2.0 1.0

Methyl 3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyloxy)-α-D-mannopyranoside (22)³: ¹H-NMR of compound 22 (CDCl₃)

Methyl 3-*O***-acetyl-6**-*O*-(*tert*-butyldimethylsilyloxy)-β-D-galactopyranoside (24)²: ¹H-NMR of compound 24 (CDCl₃)

Methyl 3-*O***-benzoyl-6**-*O*-(*tert*-butyldimethylsilyloxy)-β-D-galactopyranoside (25)³: ¹H-NMR of compound 25 (CDCl₃)

Methyl 3-*O*-acetyl-6-*O*-(*tert*-butyldimethylsilyloxy)-α-D-galactopyranoside (27)²: ¹H-NMR of compound 27 (CDCl₃)

Methyl 3-O-benzoyl-6-O-(*tert*-butyldimethylsilyloxy)-α-D-galactopyranoside (28)³:

¹H-NMR of compound **28** (CDCl₃)

Methyl 3-*O*-acetyl-6-*O*-(*tert*-butyldimethylsilyloxy)-α-D-glucopyranoside (30)²: ¹H-NMR of compound 30 (CDCl₃)

Methyl 3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyloxy)-α-D-glucopyranoside (31)³:

¹H-NMR of compound **31** (CDCl₃)

Methyl 3-O-acetyl-6-O-(*tert*-butyldimethylsilyloxy)-β-D-glucopyranoside(33)².

¹H-NMR of compound **33** (CDCl₃)

Methyl 3-O-benzoyl-6-O-(*tert*-butyldimethylsilyloxy)-β-D-glucopyranoside(34)³.

¹H-NMR of compound **34** (CDCl₃)

Methyl 3-*O*-benzyl-6-*O*-benzoyl-β-D-galactopyranoside (38)³:

¹H-NMR of compound **38** (CDCl₃)

Methyl 3-*O*-benzyl-6-*O*-acetyl-α-D-galactopyranoside (40)²: ¹H-NMR of compound 40 (CDCl₃)

Methyl 3, 6-di-*O*-benzoyl-α-D-mannopyranoside (42)³: ¹H-NMR of compound 42 (CDCl₃)

Methyl 3, 6-di-*O***-benzoyl-***α***-D-galactopyranoside (45)**³**:** ¹H-NMR of compound **45** (CDCl₃)

Methyl 3, 6-di-*O***-benzoyl-***β***-D-galactopyranoside (48)**³: ¹H-NMR of compound **48** (CDCl₃)

References

- 1. Y. Zhou, M. Rahm, B. Wu, X. Zhang, B. Ren and H. Dong, J. Org. Chem., 2013, 78, 11618.
- 2. B. Ren, M. Rahm, X. Zhang, Y. Zhou and H. Dong, J. Org. Chem., 2014, 79, 8134.
- 3. X. Zhang, B. Ren, J. Ge, Z. Pei and H. Dong, *Tetrahedron*, 2016, 72, 1005.