Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Thermoresponsive luminescent properties of polyfluorinated bistolane-type light-emitting liquid crystals

Shigeyuki Yamada,*,ª Masato Morita,ª Tomohiro Agou,^b Toshio Kubota,^b Takahiro Ichikawa,^c and Tsutomu Konno^a

- [a] Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; TEL: +81-75-724-7517; Email: <u>syamada@kit.ac.jp</u>
- [b] Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University,
 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
- [c] Department of Biochemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan

Table of contents

1.	Synthetic procedure and NMR spectra		S-2
2.	X-Ray crystallography	•••••	S-15
3.	Quantum chemical calculation	•••••	S-17
4.	Powder X-ray diffraction	•••••	S-24
5.	Phase transition behavior	•••••	S-25
6.	Absorption and photoluminescence spectra in CH ₂ Cl ₂ solution	•••••	S-29
7.	Excitation and PL spectra in crystal	•••••	S-30
8.	Temperature-dependent photoluminescence spectra		S-31

1. Synthetic procedure and NMR spectra

1-1. General method

¹H and ¹³C NMR spectra were obtained with a Bruker AVANCE III 400 NMR spectrometer (¹H: 400 Mz and ¹³C: 100 MHz) in chloroform-*d* (CDCl₃) solution and the chemical shifts are reported in parts per million (ppm) using the residual proton in the NMR solvent. ¹⁹F NMR (376 MHz) spectra were obtained with a Bruker AVANCE III 400 NMR spectrometer in CDCl₃ solution with CFCl₃ ($\delta_{\rm F} = 0$ ppm) as an internal standard. Infrared spectra (IR) were recorded in a KBr method with a JASCO FT/IR-4100 type A spectrometer; all spectra were reported in wavenumber (cm⁻¹). High resolution mass spectra (HRMS) were recorded on a JEOL JMS-700MS spectrometer using fast atom bombardment (FAB) methods.

All chemicals including solvent were of reagent grade and where necessary were purified in the usual manner prior to use. Column chromatography was carried out on silica gel (Wakogel® 60N, 38–100 μ m) and thin-layer chromatography (TLC) analysis was performed on silica gel TLC plates (Merck, Silica gel 60F₂₅₄)

1-2. Preparation of bistolane derivatives 1

According to our reported procedure, bistolane derivatives **1** reported here were synthesized from (4-alkoxyphenyl)acetylene (**2**) with easy three-step manipulations based on (i) the Pd(0)-catalyzed Sonogashira cross-coupling reaction with 1-bromo-4-[2-(trimethylsilyl)ethynyl]benzene, (ii) the deprotection of the TMS group, and (iii) the Sonogashira cross-coupling reaction with the corresponding polyfluorinated aromatic halides (Scheme S1).

Scheme S1. Synthetic procedure of polyfluorinated bistolane derivatives.

1-2-1. Preparation of 1-bromo-2,3,5,6-tetrafluoro-4-iodobenzene (B)

Polyfluoroaromatic iodide, **B**, was prepared according to the literature procedure with a slight modification:^[1] In 50 mL two-necked round-bottomed flask were charged commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (0.31 g, 1.0 mmol) and THF (20 mL). To the solution was slowly added n-BuLi (1.6 M in hexane, 0.66 mL, 1.1 mmol) at – 78 °C and the whole was stirred at that temperature for 0.5 h. To the resultant solution was added dropwise a solution of I₂ (0.64 g, 2.5 mmol) in THF (5 mL), followed by slowly raising up to room temperature, and the resulting solution was stirred at room temperature for additional 1 h. After completion of the reaction, reaction mixture was poured into aqueous Na₂S₂O₃ solution, followed by extraction with Et₂O (three times). The organic layers combined were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica-gel column chromatography (eluent: hexane) to obtain the title compound (**B**, 0.31 g, 0.87 mmol) in 87% yield. The spectral data of **B** was completely consistent with reported data. ¹⁹F NMR (CDCl₃): δ -119.39 (dd, *J*=23.4, 8.8 Hz, 2F), -131.86 (dd, *J*=23.4, 9.1 Hz, 2F).

1-2-2. Preparation of 2,3,5,6-tetrafluoro-4-iodoanisole (C)

Polyfluoroaromatic iodide, **C**, was prepared according to the literature procedure with a slight modification:^[2] In 50 mL two-necked round-bottomed flask were charged KOH (1.4 g, 25 mmol) and *t*-butyl alcohol (20 mL). The solution was stirred at 65 °C for 1 h, in which was added commercially available 2,3,4,5,6-pentafluoroiodobenzene (1.3 mL, 10 mmol). The reaction mixture was stirred at reflux temperature overnight. After adding H₂O, *t*-butyl alcohol was removed under reduced pressure using a rotary evaporator. Product was extracted in the CH₂Cl₂ three times, followed by additional extraction with CH₂Cl₂ (three times) after aqueous solution being acidified by 10% HCl aq. The organic layers combined were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by recrystallization from Et₂O to give 2,3,5,6-tetrafluoro-4-iodophenol (1.6 g, 5.4 mmol) in 54% yield.

The tetrafluorinated phenol (3.0 mmol) was treated with iodomethane (0.28 mL, 4.5 mmol) in the presence of K₂CO₃ (0.63 g, 4.5 mmol) in MeCN (5.0 mL) and the whole was refluxed overnight. The reaction mixture was poured into aqueous NH₄Cl solution, followed by AcOEt (three times). The organic layers combined were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica-gel column chromatography (eluent: hexane) to obtain the title compound (**C**, 0.80 g, 2.6 mmol) in 87% yield. The spectral data of **C** was consistent with reported data.^[2b] ¹H NMR (CDCl₃): δ 4.09 (t, *J* = 1.4 Hz, 3H); ¹⁹F NMR (CDCl₃): δ –121.90 (dd, *J* = 25.0, 9.8 Hz, 2F), –155.64 (dd, *J* = 25.0, 9.6 Hz, 2F).

^[1] C. B. Aakeröy, P. D. Chopade, J. Desper, Cryst. Growth Des. 2013, 13, 4145–4150.

^{[2] (}a) J. Wen, H. Yu, Q. Chen, J. Mater. Chem. 1994, 4, 1715–1717. (b) H. Q. Do, O. Daugulis, Org. Lett. 2009, 11, 421–423.

1-2-3. Preparation of 2,3,5,6-tetrafluoro4-iodo-1-hexyloxybenzene (D)

Polyfluoroaromatic iodide, **D**, was prepared as follows: In 50 mL two-necked round-bottomed flask were placed iodopentafluorobenzene (0.68 mL, 5.0 mmol), 1-hexanol (0.94 mL, 7.5 mmol), and K₂CO₃ (2.1 g, 15 mmol) in DMF (3.0 mL). The whole was stirred at 100 °C overnight. The resultant was poured into saturated aqueous NH₄Cl solution and the product was extracted with Et₂O three times. The organic layers combined were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by silica-gel column chromatography (eluent: hexane) to obtain the title compound (**D**, 1.2 g, 3.3 mmol) in 65% yield. The spectral data of **D** was consistent with reported data.^[3] ¹H NMR (CDCl₃): δ 0.90 (t, J = 7.0 Hz, 3H), 1.30–1.39 (m, 4H), 1.41–1.52 (m, 2H), 1.77 (quin, J = 6.5 Hz, 2H); ¹⁹F NMR (CDCl₃): δ –122.12 (m, 2H), –154.92 (m, 2H).

1-2-4. General procedure for Sonogashira cross-coupling reaction to obtain polyfluorinated bistolane 1

To a mixture of $Cl_2Pd(PPh_3)_2$ (5 mol%), PPh₃ (5 mol%), [(4-methoxyphenyl)ethynyl]phenyl acetylene (**4a**, 1.0 equiv), 1bromo-2,3,5,6-tetrafluoro-4-iodobenzene (1.2 equiv), and CuI (10 mol%) was added Et₃N and THF as a solvent, and the whole was stirred at 60 °C (bath temp) for 15 h. After removal of the solvent using a rotary evaporator, the crude product was extracted with AcOEt and washed with saturated aqueous NH₄Cl solution (three times). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The resultant was purified by silica-gel column chromatography, providing the desired product **1**, which was recrystallized by slow evaporation from CH₂Cl₂/MeOH (1/1) to obtain the polyfluorinated bistolane in crystal.

Synthesisof1-bromo-2,3,5,6-tetrafluoro-4-[4-[(4-methoxyphenyl)ethynyl]phenylethynyl]benzene (1aB)Pd(0)-catalyzedSonogashiracross-couplingreactionwascarriedout

using $Cl_2Pd(PPh_3)_2$ (53 mg, 0.042 mmol), PPh₃ (11 mg, 0.042 mmol), **4a**

(0.20 g, 0.85 mmol), CuI (16 mg, 0.084 mmol) in Et₃N (15 mL) and THF (8 mL) at 60 °C for 15 h. Pure **1aB** was obtained in 52% (0.20 g, 0.44 mmol) by performing column chromatography using hexane and CH₂Cl₂ (3:1 ratio) as an eluent. Yield: 52% (white solid); Mp: 192 °C (determined by DSC); ¹H NMR (CDCl₃): δ 3.84 (s, 3H), 6.89 (d, *J* = 8.8 Hz, 2H),

^[3] D. W. Bruce, P. Metrangolo, F. Meyer, T. Pilati, C. Präsang, G. Resnati, G. Terraneo, S. G. Wainwright, A. C. Whitewood, *Chem. Eur. J.* **2010**, *16*, 9511–9524.

7.48 (d, J = 8.8 Hz, 2H), 7.52 (ABq, J = 8.4 Hz, 2H), 7.56 (ABq, J = 8.4 Hz, 2H); ¹⁹F NMR (CDCl₃): δ -133.64 (dd, J = 21.8, 9.4 Hz, 2F), -133.67 (dd, J = 21.8, 9.8 Hz, 2F); ¹³C NMR (CDCl₃): δ 55.3, 75.5 (t, J = 3.7 Hz), 87.6, 92.3, 100.6 (t, J = 22.7 Hz), 102.2 (t, J = 3.7 Hz), 104.2 (t, J = 16.2 Hz), 114.1, 114.9, 120.7, 125.2, 131.4, 131.8, 133.2, 144.9 (ddt, J = 247.2, 14.7, 3.6 Hz), 146.7 (ddt, J = 254.5, 14.0, 4.3 Hz), 159.9; IR (KBr): ν 3075, 2976, 2846, 2212, 1518, 1484, 1246, 1027, 967, 837 cm⁻¹; HRMS: (FAB+) m/z [M]+ calcd for C₂₃H₁₁O⁷⁹BrF₄: 457.9929; found: 457.9926.

-OCH₃ Synthesis of 2,3,5,6-tetrafluoro-4-[4-[(4methoxyphenyl)ethynyl]phenylethynyl]anisole (**1aC**) Pd(0)-catalyzed Sonogashira cross-coupling reaction was carried out

using Cl₂Pd(PPh₃)₂ (53 mg, 0.075 mmol), PPh₃ (20 mg, 0.076 mmol), **4a** (0.35 g, 1.5 mmol), Cul (30 mg, 0.16 mmol) in Et₃N (15 mL) and THF (8 mL) at 60 °C for 15 h. Pure **1aC** was obtained in 55% (0.34 g, 0.82 mmol) by performing column chromatography using hexane and AcOEt (20:1 ratio) as an eluent. Yield: 55% (white solid); Mp: 120 °C (determined by DSC); ¹H NMR (CDCl₃): δ 3.84 (s, 3H), 4.13 (t, *J* = 1.6 Hz, 3H), 6.89 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.50 (ABq, *J* = 8.8 Hz, 2H), 7.54 (ABq, *J* = 8.9 Hz, 2H); ¹⁹F NMR (CDCl₃): –137.75 (dd, *J* = 20.3, 7.9 Hz, 2F), –158.06 (dd, *J* = 20.7, 6.8 Hz, 2F); ¹³C NMR (CDCl₃): δ 55.3, 62.2 (t, *J* = 4.4 Hz), 75.7 (t, *J* = 4.4 Hz), 87.7, 92.0, 97.9 (t, *J* = 19.1 Hz), 99.9, 114.1, 115.0, 121.2, 124.6, 131.4, 131.7, 133.2, 138.9 (tt, *J* = 11.8, 2.9 Hz), 140.7 (ddt, *J* = 247.0, 14.5, 4.4 Hz), 147.2 (ddt, *J* = 240.5, 13.2, 4.3 Hz), 159.9; IR (KBr): ν 3014, 2964, 2836, 2210, 1605, 1428, 1285, 1122, 1027, 980, 833 cm⁻¹; HRMS: (FAB+) *m/z* [M]+ calcd for C₂₄H₁₄O₂F₄: 410.0930; found: 410.0934..

-Br Synthesis of 1-bromo-2,3,5,6-tetrafluoro-4-[4-[(4hexyloxyphenyl)ethynyl]phenylethynyl]benzene (**1bB**)

1bBPd(0)-catalyzed Sonogashira cross-coupling reaction was carried outusing Cl₂Pd(PPh₃)₂ (53 mg, 0.042 mmol), PPh₃ (11 mg, 0.042 mmol), 4b (0.20 g, 0.85 mmol), Cul (16 mg, 0.084 mmol)in Et₃N (15 mL) and THF (8 mL) at 60 °C for 15 h. Pure 1bB was obtained in 54% (0.20 g, 0.44 mmol) by performingcolumn chromatography using hexane and AcOEt (20:1 ratio) as an eluent. Yield: 54% (white solid); Mp: 130 °C(determined by DSC); ¹H NMR (CDCl₃): δ 0.91 (t, *J* = 6.8 Hz, 3H), 1.32–1.37 (m, 4H), 1.42–1.51 (m, 2H), 1.79 (tt, *J* =7.2, 6.8 Hz, 2H), 3.98 (t, *J* = 6.8 Hz, 2H), 6.88 (ABq, *J* = 8.4 Hz, 2H), 7.46 (ABq, *J* = 8.4 Hz, 2H), 7.51 (ABq, *J* = 8.8 Hz,2H), 7.56 (ABq, *J* = 8.8 Hz, 2H); ¹⁹F NMR (CDCl₃): δ -133.66 (dd, *J* = 21.8, 9.4 Hz, 2F), -135.69 (dd, *J* = 21.8, 10.9 Hz,2F); ¹³C NMR (CDCl₃): δ 14.0, 22.6, 25.7, 29.2, 31.6, 68.1, 75.5 (t, *J* = 4.4 Hz), 87.5, 92.5, 100.6 (t, *J* = 22.7 Hz), 102.2 (t, *J* = 3.7 Hz), 104.2 (t, *J* = 18.3 Hz), 114.57, 114.61, 120.6, 125.2, 131.4, 131.8, 133.2, 144.9 (ddt, *J* = 262.6, 14.6, 4.4 Hz), 146.7 (ddt, *J* = 255.2, 14.7, 4.3 Hz), 159.6; IR (KBr): ν 3032, 2919, 2847, 2205, 1596, 1518, 1486, 1242, 1174, 967, 837 cm⁻¹; HRMS: (FAB+) m/z [M]+ calcd for C₂₈H₂₁O⁷⁹BrF₄: 528.0712; found: 528.0706.

-OC₆H₁₃ Synthesis of 2,3,5,6-tetrafluoro-4-[4-[(4hexyloxyphenyl)ethynyl]phenylethynyl]-1-hexyloxybenzene (**1bD**) Pd(0)-catalyzed Sonogashira cross-coupling reaction was carried

out using $Cl_2Pd(PPh_3)_2$ (53 mg, 0.042 mmol), PPh₃ (11 mg, 0.042 mmol), **4b** (0.20 g, 0.85 mmol), Cul (16 mg, 0.084 mmol) in Et₃N (15 mL) and THF (8 mL) at 60 °C for 15 h. Pure **1bD** was obtained in 52% (0.20 g, 0.44 mmol) by performing column chromatography using hexane and CH_2Cl_2 (3:1 ratio) as an eluent. Yield: 63% (yellow solid); Mp:

76 °C (determined by DSC); ¹H NMR (CDCl₃): δ 0.91(t, J = 7.2 Hz, 6H), 1.29–1.41 (m, 4H), 1.41–1.52 (m, 4H), 1.75–1.85 (m, 4H), 3.98 (t, J = 6.4 Hz, 2H), 4.27 (t, J = 6.4 Hz, 2H), 6.88 (ABq, J = 8.8 Hz, 2H), 7.46 (ABq, J = 8.8 Hz, 2H), 7.50 (ABq, J = 8.4 Hz, 2H), 7.53 (ABq, J = 8.4 Hz, 2H); ¹⁹F NMR (CDCl₃): δ –138.48 (dd, J = 20.3, 7.9 Hz, 2F), –157.84 (dd, J = 20.3, 7.9 Hz, 2F); ¹³C NMR (CDCl₃): δ 13.96, 14.02, 22.5, 22.6, 25.2, 25.7, 29.2, 29.9, 31.4, 31.6, 68.1, 75.5 (t, J = 2.9 Hz), 75.8 (t, J = 3.7 Hz), 87.6, 92.1, 97.8 (t, J = 17.6 Hz), 99.8 (t, J = 2.9 Hz), 114.6, 114.7, 121.2, 124.7, 131.4, 131.7, 133.1, 138.4 (tt, J = 12.3, 3.0 Hz), 141.1 (ddt, J = 249.4, 13.9, 4.4 Hz), 147.2 (ddt, J = 252.5, 13.2, 3.7 Hz), 159.5; IR (KBr): ν 3039, 2954, 2857, 2210, 1597, 1520, 1492, 1250, 1122, 1019, 984, 837 cm⁻¹; HRMS: (FAB+) m/z [M]+ calcd for C₃₄H₃₄O₂F₄: 550.2495; found: 550.2492.

¹H NMR spectrum of **1aB** (Solvent: CDCl₃)

¹³C NMR spectrum of **1aB** (Solvent: CDCl₃)

¹H NMR spectrum of **1aC** (Solvent: CDCl₃)

¹³C NMR spectrum of **1aC** (Solvent: CDCl₃)

¹⁹F NMR spectrum of **1aC** (Solvent: CDCl₃)

¹³C NMR spectrum of **1bD** (Solvent: CDCl₃)

¹⁹F NMR spectrum of **1bD** (Solvent: CDCl₃)

2. X-ray crystallography

Single crystals were obtained by purification of column chromatography, followed by recrystallization (CH₂Cl₂/MeOH = 1/1). The X-ray diffraction measurement was carried out at 298 or 173 K. Crystal data of **1aC** and **1bA** obtained were listed in Table S1 have been indexed, and are included in the Cambridge Crystallographic Center (CCDC) database with the following numbers: CCDC 1838805 for **1aC** and 1838806 for **1bA**. In Table S1 are also included crystallographic data for the reported **1aA**. The indexed database contains additional supplementary crystallographic data for this paper and may be accessed without charge at http://www.ccdc.cam.ac.uk/conts/retrieving.html. The CCDC may be contacted by mail at 12 Union Road, Cambridge CB2 1EZ, U.K., by fax at (44) 1223-336-033, or by e-mail at deposit@ccdc.cam.ac.uk.

Bistolane	1aA (reported) ^[4]	1aC	1bA
CCDC #	1552781	1838805	1838806
Empirical Formula	$C_{23}H_{11}F_5O$	$C_{24}H_{14}F_4O_2$	C ₂₈ H ₂₁ F ₅ O
Formula Weight	398.32	410.35	468.45
Temperature [K]	298	173(2)	173(2)
Crystal Color / Habit	Colorless / Block	Colorless / Platelet	Colorless / Platelet
Crystal Size [mm]	0.22 x 0.21 x 0.18	0.66 x 0.21 x 0.28	0.21 x 0.18 x 0.10
Crystal System	P 2 ₁ /n	P 2 ₁ /n	Pna 21
Space Group	monoclinic	monoclinic	orthorhombic
<i>a</i> [Å]	5.9797(2)	15.9200(13)	11.4515(6)
<i>b</i> [Å]	7.5043(3)	5.8083(4)	4.9051(3)
<i>c</i> [Å]	40.9251(14)	20.4496(14)	39.555(2)
<i>α</i> [°]	90	90	90
β[°]	92.350(3)	100.147(7)	90
γ[°]	90	90	90
V[ų]	1834.91(11)	1861.4(2)	2221.8(2)
Z	4	4	4
$R[F^2 > 2\sigma(F^2)]^{[a]}$	0.0409	0.0578	0.0404
wR (F ²) ^[b]	0.1064	0.1519	0.0909

 Table S1. Crystallographic data for bistolanes 1aC and 1bA as well as the reported 1aA

[a] $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. [b] $wR = \{[\Sigma w(|F_0| - |F_c|)]/\Sigma w|F_0|\}^{1/2}$.

^[4] S. Yamada, K. Miyano, T. Konno, T. Agou, T. Kubota, T. Hosokai, Org. Biomol. Chem. 2017, 15, 5949–5958.

Figure S1. Packing structures of 1aA.

Figure S2. Packing structures of 1bA.

Figure S3. Packing structures of 1aC.

3. Quantum chemical calculation

All computations were carried out with density functional theory (DFT) using the Gaussian 09 (Rev. C.01) package. Geometry optimizations were executed with the CAM-B3LYP hybrid functional and 6-31G+(d) basis set. The stationary points were characterized by frequency calculations to confirm that the minimum energy structures had no imaginary frequencies.

						20	6	0	1.064014	1.249354	-0.000263
Center	Atomic	Atomic		Coordinates (Ang	stroms)	21	1	0	0.508077	2.181282	-0.000468
Numbe	er Numbe	r Type	х	Y	Z	22	6	0	0.367093	0.032364	0.000001
						23	6	0	1.091602	-1.168362	0.000264
1	6	0	12.191481	-0.869263	0.000036	24	1	0	0.557069	-2.112734	0.000468
2	1	0	12.007000	-1.473845	0.895946	25	6	0	2.475986	-1.151673	0.000264
3	1	0	13.226854	-0.528518	0.000009	26	1	0	3.031283	-2.083777	0.000469
4	1	0	12.006993	-1.473968	-0.895790	27	6	0	3.176484	0.064414	0.000001
5	8	0	11.398132	0.302297	-0.000042	28	6	0	-1.059135	0.016681	0.000002
6	6	0	10.046909	0.172984	-0.000023	29	6	0	-2.267483	0.005099	0.000004
7	6	0	9.320434	1.368983	-0.000115	30	6	0	-3.685737	-0.006670	0.000005
8	1	0	9.865917	2.306898	-0.000192	31	6	0	-4.427256	1.178187	0.000125
9	6	0	7.939585	1.343276	-0.000105	32	6	0	-5.810402	1.169531	0.000124
10	1	0	7.381322	2.273962	-0.000176	33	6	0	-6.512862	-0.028934	0.000003
11	6	0	7.241642	0.122489	-0.000005	34	6	0	-5.791509	-1.216112	-0.000117
12	6	0	7.980339	-1.063982	0.000087	35	6	0	-4.408376	-1.203084	-0.000116
13	1	0	7.457387	-2.015056	0.000164	36	9	0	-3.793651	2.353859	0.000243
14	6	0	9.371570	-1.047836	0.000078	37	9	0	-6.463840	2.333484	0.000242
15	1	0	9.911571	-1.986888	0.000149	38	9	0	-6.426561	-2.390238	-0.000236
16	6	0	5.813851	0.097872	0.000000	39	9	0	-3.756269	-2.368630	-0.000233
17	6	0	4.603464	0.081521	0.000001	40	35	0	-8.376521	-0.043916	0.000004
18	6	0	2.448360	1.264219	-0.000263						
19	1	0	2.982289	2.208711	-0.000468						

3-1. Cartesian coordinates of **1aB** at S₀ state after optimization calculation

SCF Done: E(RCAM-B3LYP) = -3928.77712033 hartree Dipole moment (Debye): X = 4.3761 Y = -1.2762 Z = 0.0001 Tot = 4.5584Imaginary frequency: 0

						-	20	6	0	1.072489	1.275166	-0.000149
Center	Atomic	Atomic		Coordinates (Ang	stroms)		21	1	0	0.510342	2.203034	-0.000247
Numbe	er Numbe	r Type	х	Y	Z		22	6	0	0.351649	0.035964	-0.000011
						-	23	6	0	1.102001	-1.185557	0.000118
1	6	0	12.160587	-0.873854	0.000075		24	1	0	0.562277	-2.126648	0.000222
2	1	0	11.978623	-1.476476	0.896896		25	6	0	2.467077	-1.167854	0.000111
3	1	0	13.191832	-0.522538	0.000047		26	1	0	3.028053	-2.096754	0.000209
4	1	0	11.978628	-1.476636	-0.896640		27	6	0	3.187609	0.069991	-0.000027
5	8	0	11.355829	0.294138	-0.000032		28	6	0	-1.031146	0.019875	-0.000003
6	6	0	10.013152	0.167962	-0.000025		29	6	0	-2.261825	0.007123	0.000003
7	6	0	9.287915	1.372756	-0.000135		30	6	0	-3.650722	-0.005624	0.000008
8	1	0	9.840374	2.306431	-0.000217		31	6	0	-4.413703	1.186527	0.000042
9	6	0	7.914336	1.355299	-0.000138		32	6	0	-5.788905	1.171958	0.000046
10	1	0	7.357000	2.286143	-0.000223		33	6	0	-6.498001	-0.030587	0.000018
11	6	0	7.200992	0.125589	-0.000031		34	6	0	-5.767822	-1.220436	-0.000015
12	6	0	7.950242	-1.075039	0.000079		35	6	0	-4.392558	-1.210995	-0.000021
13	1	0	7.422778	-2.023227	0.000162		36	9	0	-3.775622	2.363245	0.000070
14	6	0	9.332937	-1.058122	0.000082		37	9	0	-6.449873	2.335023	0.000077
15	1	0	9.875258	-1.995748	0.000168		38	9	0	-6.408326	-2.394933	-0.000042
16	6	0	5.805468	0.103807	-0.000033		39	9	0	-3.733885	-2.376355	-0.000053
17	6	0	4.573439	0.087184	-0.000033		40	35	0	-8.359293	-0.047252	0.000024
18	6	0	2.437569	1.290211	-0.000157							
19	1	0	2.976149	2.232252	-0.000260							

3-2. Cartesian coordinates of $\ensuremath{\textbf{1aB}}$ at S_1 state after optimization calculation

SCF Done: E(RCAM-B3LYP) = -3928.76800516 hartree Dipole moment (Debye): X = 5.4280 Y = -1.2864 Z = 0.0001 Tot = 5.5783

						22	6	0	0.349634	0.007702
Center	Atomic	Atomic	C	Coordinates (Ang	stroms)	23	6	0	-0.387187	1.200689
Numbe	er Numbe	er Type	х	Y	Z	24	1	0	0.137951	2.150175
						25	6	0	-1.771588	1.170714
1	6	0	-11.483320	0.810019	0.053671	26	1	0	-2.335333	2.097581
2	1	0	-11.298595	1.399193	0.959654	27	6	0	1.776579	0.037306
3	1	0	-12.516253	0.462160	0.052308	28	6	0	2.984958	0.061539
4	1	0	-11.307334	1.432218	-0.831730	29	6	0	4.404326	0.088667
5	6	0	-9.331283	-0.216324	0.023940	30	6	0	5.164316	-1.081647
6	6	0	-8.596035	-1.406443	-0.001887	31	6	0	6.548884	-1.062758
7	1	0	-9.134195	-2.348375	-0.016733	32	6	0	7.257771	0.140166
8	6	0	-7.215296	-1.370227	-0.008294	33	6	0	6.502409	1.318296
9	1	0	-6.650189	-2.296454	-0.028528	34	6	0	5.122017	1.290172
10	6	0	-6.526330	-0.144619	0.010889	35	6	0	9.424304	-0.692273
11	6	0	-7.273999	1.035855	0.036604	36	1	0	9.013567	-0.943540
12	1	0	-6.758264	1.990641	0.051688	37	1	0	10.389699	-0.200837
13	6	0	-8.665157	1.009229	0.043258	38	1	0	9.535971	-1.596682
14	1	0	-9.211962	1.944030	0.063381	39	8	0	-10.681995	-0.355544
15	6	0	-5.098447	-0.108928	0.004029	40	8	0	8.595208	0.268106
16	6	0	-3.888138	-0.082112	-0.002002	41	9	0	4.551052	-2.269774
17	6	0	-2.460825	-0.051511	-0.009469	42	9	0	7.204708	-2.236412
18	6	0	-1.720898	-1.243654	-0.029419	43	9	0	4.461088	2.451770
19	1	0	-2.245307	-2.193396	-0.039070	44	9	0	7.134876	2.496317
20	6	0	-0.336519	-1.215273	-0.037116					
21	1	0	0.227967	-2.141824	-0.052936					

3-3. Cartesian coordinates of $\ensuremath{\textbf{1aC}}$ at S_0 state after optimization calculation

SCF Done: E(RCAM-B3LYP) = -1472.02670537 hartree Dipole moment (Debye): X = -1.7195 Y = 0.0284 Z = 0.9402 Tot = 1.9600Imaginary frequency: 0 3-4. Cartesian coordinates of 1aC at S_1 state after optimization calculation

						22	6	0	0.365994	-0.000303	-0.036590
Cente	r Atom	icq Atomic	(Coordinates (Ang	stroms)	23	6	0	-0.396591	1.214168	-0.021858
Numb	er Numl	ber Type	х	Y	Z	24	1	0	0.134146	2.160483	-0.019078
						25	6	0	-1.761146	1.184317	-0.011699
1	6	0	-11.451671	0.821419	0.057526	26	1	0	-2.330244	2.108257	-0.000647
2	1	0	-11.266059	1.419686	0.956789	27	6	0	1.749072	0.028807	-0.046826
3	1	0	-12.481839	0.466523	0.062576	28	6	0	2.979526	0.054121	-0.055832
4	1	0	-11.278978	1.431724	-0.836197	29	6	0	4.370267	0.082235	-0.066747
5	6	0	-9.298733	-0.207508	0.034827	30	6	0	5.148799	-1.096413	-0.083274
6	6	0	-8.565679	-1.406934	0.021239	31	6	0	6.526128	-1.069557	-0.097076
7	1	0	-9.111765	-2.344458	0.018887	32	6	0	7.237114	0.137772	-0.071508
8	6	0	-7.191893	-1.381030	0.011140	33	6	0	6.478271	1.318310	-0.060907
9	1	0	-6.629238	-2.308680	0.000563	34	6	0	5.103123	1.292753	-0.062037
10	6	0	-6.484829	-0.147128	0.014275	35	6	0	9.384546	-0.630668	0.660141
11	6	0	-7.243074	1.048365	0.028100	36	1	0	8.957886	-0.749010	1.661333
12	1	0	-6.722257	2.000264	0.030681	37	1	0	10.358845	-0.146463	0.729418
13	6	0	-8.626050	1.022121	0.038197	38	1	0	9.484650	-1.605943	0.180357
14	1	0	-9.173918	1.956585	0.048581	39	8	0	-10.642745	-0.342339	0.043847
15	6	0	-5.089847	-0.116413	0.004030	40	8	0	8.578115	0.252234	-0.125727
16	6	0	-3.856923	-0.090122	-0.005154	41	9	0	4.530881	-2.283885	-0.102661
17	6	0	-2.472643	-0.060651	-0.015463	42	9	0	7.195748	-2.236030	-0.153929
18	6	0	-1.709113	-1.274277	-0.030305	43	9	0	4.435698	2.452608	-0.042801
19	1	0	-2.238606	-2.221511	-0.033516	44	9	0	7.114107	2.496040	-0.042300
20	6	0	-0.344527	-1.246079	-0.040454						
21	1	0	0.225779	-2.169031	-0.051946						

SCF Done: E(RCAM-B3LYP) = -1472.01729160 hartree

Dipole moment (Debye): X = -2.6271 Y = 0.1412 Z = 1.0951 Tot = 2.8497

3-5. Cartesian coordinates of $\ensuremath{\textbf{1bB}}$ at S_0 state after optimization calculation

Center	Atom	iic Atomic		Coordinates (Ang	stroms)
Numbe	er Num	ber Type	х	Y	Z
1	9	0	-6.120498	-2.283716	0.439563
2	6	0	13.795033	1.162193	1.506930
3	1	0	13.643710	0.637718	2.459928
4	1	0	13.187473	2.075246	1.561303
5	9	0	-8.787642	-2.230150	0.559608
6	6	0	13.283124	0.286246	0.364165
7	1	0	13.440441	0.808933	-0.590013
8	1	0	13.888115	-0.630539	0.312724
9	6	0	11.806940	-0.083557	0.498718
10	1	0	11.201323	0.829431	0.537020
11	1	0	11.647363	-0.602078	1.455074
12	9	0	-6.061287	2.372048	-0.349418
13	6	0	11.308866	-0.969610	-0.642005
14	1	0	11.891586	-1.899793	-0.671994
15	1	0	11.466347	-0.467753	-1.604789
16	8	0	9.068355	-0.161287	-0.643521
17	6	0	9.844556	-1.348872	-0.528395
18	1	0	9.560695	-2.047808	-1.325829
19	1	0	9.641142	-1.826191	0.440210
20	9	0	-8.728678	2.426557	-0.229858
21	6	0	7.717152	-0.243433	-0.568197
22	6	0	7.006993	-1.429386	-0.374060
23	1	0	7.519391	-2.377735	-0.269890
24	6	0	5.617608	-1.397471	-0.312830
25	1	0	5.068835	-2.321546	-0.161674
26	6	0	4.913107	-0.197275	-0.442642

SCF Done: E(RCAM-B3LYP) = -4125.23092216 hartree

Dipole moment (Debye): X = 4.7150 Y = -1.1776 Z = 0.0346 Tot = 4.8600 Imaginary frequency: 0

3-6. Cartesian coordinates of $\ensuremath{\textbf{1bB}}$ at S_1 state after optimization calculation

						27	6	0	5.627394	0.982754	-0.6
Center	Atomi	c Atomic		Coordinates (Ang	stroms)	28	1	0	5.098205	1.921865	-0.7
Numbe	er Numb	er Type	х	Y	Z	29	6	0	6.998990	0.949654	-0.7
						30	1	0	7.577490	1.851466	-0.8
1	9	0	-6.094813	-2.291792	0.425470	31	6	0	3.485289	-0.176294	-0.3
2	6	0	13.755873	1.199473	1.482420	32	6	0	2.254349	-0.147994	-0.3
3	1	0	13.607160	0.693094	2.445521	33	6	0	0.870335	-0.114664	-0.2
4	1	0	13.144473	2.110857	1.518973	34	6	0	0.114535	-1.309827	-0.0
5	9	0	-8.766220	-2.232837	0.543903	35	1	0	0.647372	-2.246872	0.0
6	6	0	13.247856	0.299038	0.357068	36	6	0	-1.248974	-1.277416	0.0
7	1	0	13.402115	0.803673	-0.607195	37	1	0	-1.815421	-2.186366	0.1
8	1	0	13.856684	-0.615883	0.323240	38	6	0	-1.962417	-0.044991	-0.1
9	6	0	11.773423	-0.074846	0.500192	39	6	0	-1.206594	1.151314	-0.3
10	1	0	11.164431	0.836628	0.522044	40	1	0	-1.740682	2.087340	-0.4
11	1	0	11.617153	-0.575958	1.466256	41	6	0	0.156907	1.116626	-0.4
12	9	0	-6.033662	2.385586	-0.337829	42	1	0	0.722121	2.026655	-0.5
13	6	0	11.279524	-0.984854	-0.623473	43	6	0	-3.343984	-0.011922	-0.0
14	1	0	11.867021	-1.912244	-0.636744	44	6	0	-4.572932	0.015705	-0.0
15	1	0	11.432727	-0.501539	-1.596258	45	6	0	-5.960541	0.044705	0.0
16	8	0	9.031627	-0.189895	-0.639088	46	6	0	-6.696422	1.242958	-0.1
17	6	0	9.819109	-1.373415	-0.500363	47	6	0	-8.070165	1.268394	-0.0
18	1	0	9.535290	-2.086594	-1.284216	48	6	0	-8.804406	0.102586	0.1
19	1	0	9.616620	-1.828280	0.478410	49	6	0	-8.101150	-1.092498	0.3
20	9	0	-8.705425	2.435005	-0.217922	50	6	0	-6.727486	-1.122879	0.2
21	6	0	7.689830	-0.265985	-0.562238	51	6	0	15.227161	1.577336	1.3
22	6	0	6.972802	-1.451918	-0.341242	52	1	0	15.564809	2.219780	2.1
23	1	0	7.486600	-2.397129	-0.217282	53	1	0	15.865460	0.686218	1.3
24	6	0	5.592334	-1.417961	-0.280443	54	1	0	15.399197	2.117015	0.3
25	1	0	5.037789	-2.334822	-0.109605	55	35	0	-10.663833	0.140569	0.2
26	6	0	4.878626	-0.205299	-0.437529						

SCF Done: E(RCAM-B3LYP) = -4125.22180538 hartree

Dipole moment (Debye): X = 5.8623 Y = -1.2256 Z = 0.0209 Tot = 5.9890

Figure S4. Frontier molecular orbitals at HOMO and LUMO for 1aB, 1aC, and 1bB, calculated by DFT/CAM-B3LYP/6-31+G(d) level of theory.

Table S2. Orbital energies at the HOMO and LUMO and molecular dipole moment along long molecular axis calculated by DFT/CAM-B3LYP/6-31+G(d) level of theory

		1aB	1aC	1bB
S ₀	HOMO [eV]	-7.06	-6.92	-7.04
	LUMO [eV]	-1.35	-1.06	-1.34
	μaι [D]	4.38	1.72	4.72
S1	HOMO [eV]	-6.77	-6.62	-6.73
	LUMO [eV]	-1.64	-1.39	-1.63
	<i>μ</i> а [D]	5.43	2.62	5.86

4. Powder X-ray diffraction

Powder X-ray diffraction measurement was performed using a Rigaku Smart-Lab with $Cu K\alpha$ radition ($\lambda = 1.5418$ Å) at 20 °C-intervals from 200 °C to 80 °C on the 2nd cooling process. The diffraction patterns for **1bA** and **1bB** obtained are shown in Figure S5.

(a)

(b)

Figure S5. XRD pattern and calculated molecular and packing structures for (a) 1bA and for (b) 1bB

5. Phase transition behavior

Phase transition temperatures of polyfluoroinated bistolane derivatives were determined with a differential scanning calorimeter (DSC, SII, X-DSC7000 or SHIMDZU DSC-60-PLUS) at heating and cooling rate of 5.0 °C min⁻¹. The obtained thermograms were shown in Figure S6. At least three scans were carried out to obtain the reproducibility. In Table S3–S6 are summarized the phase transition sequence and thermodynamic parameters.

Figure S6. DSC thermograms of polyfluorinated bistolane derivatives, 1aB, 1aC, 1bB, and 1bD, under nitrogen atmosphere. Scan rate: 5.0 °C min⁻¹.

Phase transition	on sequence and temp	perature [°C] ^[a]	<i>∆H</i> [kJ mol⁻¹]	ΔS [J mol ⁻¹ K ⁻¹]
1 st Heating	Cr – N	192	46.4	99.7
	N – Iso	220	0.54	1.09
1 st Cooling	Cr – N	160	-45.9	-106.1
	N – Iso	220	-0.34	-0.69
2 nd Heating	Cr – N	192	45.9	98.7
	N – Iso	218	0.39	0.80
2 nd Cooling	Cr – N	159	-49.1	-113.8
	N – Iso	220	-0.38	-0.77
3 rd Heating	Cr – N	192	44.6	95.9
	N – Iso	217	0.56	1.16
3 rd Cooling	Cr – N	159	-42.3	-98.0
	N – Iso	220	-0.35	-0.72

Table S3. Phase transition behaviors and thermodynamic parameters for 1aB

[a] Abbreviations: Cr: crystalline, N: nematic, Iso: isotropic phases.

Table S4. Phase transition behaviors and thermodynamic parameters for 1aC

Phase transition	on sequence and temp	perature [°C] ^[a]	⊿ <i>H</i> [kJ mol⁻¹]	ΔS [J mol ⁻¹ K ⁻¹]
1 st Heating	Cr – N	151	48.5	114.4
	N – Iso	252	1.18	2.25
1 st Cooling	$Cr^1 - Cr^2$	78	-15.8	-45.0
	Cr ² – N	88	-18.6	-51.5
	N – Iso	250	-1.15	-2.20
2 nd Heating	$Cr^1 - Cr^2$	101	2.42	6.46
	Cr ² – N	120	37.7	95.9
	N – Iso	250	1.28	2.45
2 nd Cooling	$Cr^1 - Cr^2$	77	-17.9	-51.2
	Cr ² – N	88	-18.1	-50.0
	N – Iso	249	-0.95	-1.83
3 rd Heating	$Cr^1 - Cr^2$	89	2.06	5.69
	Cr ² – Cr ³	105	2.67	7.05
	Cr ³ – N	119	36.6	93.2
	N – Iso	247	1.17	2.25
3 rd Cooling	$Cr^1 - Cr^2$	80	-16.9	-47.9
	Cr ² – N	88	-17.6	-48.8
	N – Iso	247	-0.48	-0.92

[a] Abbreviations: Cr: crystalline, N: nematic, Iso: isotropic phases.

Phase transition	on sequence and temp	<i>∆H</i> [kJ mol⁻¹]	ΔS [J mol ⁻¹ K ⁻¹]	
1 st Heating	Cr – SmA	137	52.9	129.0
	SmA – N	145	0.37	0.89
	N – Iso	194	0.85	1.82
1 st Cooling	Cr – SmA	115	-36.0	-92.8
	SmA – N	147	-0.95	-2.27
	N – Iso	195	-0.87	-1.86
2 nd Heating	Cr – SmA	130	41.0	101.8
	SmA – N	144	0.70	1.69
	N – Iso	194	0.75	1.61
2 nd Cooling	$Cr^1 - Cr^2$	114	[b]	_[b]
	Cr ² – SmA	116	-36.0	-92.7
	SmA – N	143	-0.76	-1.81
	N – Iso	195	-0.82	-1.75
3 rd Heating	Cr – SmA	130	41.0	101.9
	SmA – N	143	0.70	1.69
	N – Iso	194	0.91	1.96
3 rd Cooling	$Cr^1 - Cr^2$	115	[b]	_[b]
	Cr ² – SmA	116	-36.0	-92.5
	SmA – N	146	-0.67	-1.60
	N – Iso	195	-0.74	-1.57

 Table S5. Phase transition behaviors and thermodynamic parameters for 1bB

[a] Abbreviations: Cr: crystalline, SmA: smectic A, N: nematic, Iso: isotropic phases. [b] Not determined due to short period of Cr² phase.

Phase transition sequence and temperature [° C] ^[a]			<i>∆H</i> [kJ mol⁻¹]	ΔS [J mol ⁻¹ K ⁻¹]
1 st Heating	Cr – N	77	27.6	79.0
	N – Iso	185	1.75	3.82
1 st Cooling	$Cr^1 - Cr^2$	52	[b]	_[b]
	Cr ² – N	60	-25.3	-76.1
	N – Iso	188	-0.64	-1.41
2 nd Heating	Cr – N	76	27.2	78.0
	N – Iso	182	2.03	4.46
2 nd Cooling	$Cr^1 - Cr^2$	57	_[b]	_[b]
	Cr ² – N	59	-24.8	-74.6
	N – Iso	185	-0.54	-1.19
3 rd Heating	Cr – N	76	27.1	77.6
	N – Iso	181	1.92	4.23
3 rd Cooling	$Cr^1 - Cr^2$	57	[b]	_[b]
	Cr ² – N	59	-25.0	-75.5
	N – Iso	184	-1.36	-2.97

Table S6. Phase transition behaviors and thermodynamic parameters for 1bD

[a] Abbreviations: Cr: crystalline, SmA: smectic A, N: nematic, Iso: isotropic phases. [b] Not determined due to short period of Cr² phase.

6. Absorption and photoluminescence spectra in CH₂Cl₂ solution

UV-Vis absorption spectra were recorded using a JASCO V-500 absorption spectrometer. Steady-state photoluminescence (PL) spectra were obtained using a Hitachi F-7000 or JASCO FP-8500 fluorescence spectrometer. PL quantum yields were estimated using a calibrated integrating sphere system (JASCO). Absorption and PL spectra obtained are shown in Figure S7.

Figure S7. Absorption (blue line) and PL spectra (red line) of polyfluorinated bistolane derivatives, **1aB**, **1aC**, **1bB**, and **1bD**, measured in dilute CH_2CI_2 solution (concentration: 10^{-5} mol L⁻¹ for absorption and 10^{-6} mol L⁻¹ for PL).

7. Excitation and PL spectra in crystal

Steady-state photoluminescence spectra were obtained using a Hitachi F-7000 or JASCO FP-8500 fluorescence spectrometer. PL quantum yields were estimated using a calibrated integrating sphere system (JASCO). Excitation and PL spectra in crystal are shown in Figure S8.

Figure S8. Excitation (black line) and emission spectra of 1aB, 1aC, 1bB and 1bD in crystals excited by various excitation light.

8. Temperature-dependent photoluminescence spectra

Temperature-dependent PL spectra were measured using a Hitachi F-7000 fluorescence spectrometer equipped with a home-made temperature control unit. The samples were prepared by holding as-prepared crystalline bistolanes by recrystallization between two quartz glass plates. Temperature-dependent PL behaviors obtained are shown in Figure S9..

(d) 1aC (2nd cycle)

(e) 1bA (1st cycle)

(f) 1bA (2nd cycle)

Figure S9. Temperature-dependent photoluminescence spectra of **1aA**, **1aC**, **1bA**, and **1bD**. (a),(c),(e) PL spectra in the 1st and 2nd Cr after heating-cooling process. Inset: normalized spectra. (b),(d),(f) PL spectra in the 2nd heating process. Inset: spectra in the 2nd cooling process. The line color of red, green, and blue indicates the spectra in Cr, SmA, and N phases, respectively.

Photographs of PL in LC states under UV light

The photos were taken under UV irradiation (λ_{ex} = 365 nm) with a heating and a cooling process using a Yanaco micro melting point apparatus (MP-J3). Figure S10 (a)~(c) shows the photos of nematic (N) and crystalline (Cr) states of bistolane **1aC** and (d)~(f) shows those of bistolane **1bD** on the 1st cooling process.

For bistolane **1aC**:

(a) at 200 °C (N phase)

(b) at 100 °C (N phase)

(e) at 100 °C (N phase)

(c) at 60 °C (Cr phase)

For bistolane **1bD**:

(d) at 200 °C (N phase)

(f) at 50 °C (Cr phase)

Figure S10. PL color with varying measurement temperature under UV irradiation for bistolane 1aC and 1bD as selected examples.